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Abstract 

Water scarcity and the increasing global demand for water in many sectors, including agriculture, has become a 

global concern .The rapid growth world population and the adverse impacts of climate change lade to growing 

computation for water use by industrial and urban users for agriculture to secure enough food. Irrigated agriculture 

is an important role in total agriculture and provides humanity with wide range of agricultural products, including 

fruits, vegetables, grains and cereals. Effective management of water use is the only way to save water for the 

increasing irrigated agriculture. Different approaches have been adopted to reduce the damage caused by drought; 

among these approaches is water productivity or water use efficiency WUE. A crop with high WUE should have 

greater yield than crop with low WUE. 
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1. Introduction 

Water productivity is the ratio of the net benefits from crop, forestry, fishery, livestock and mixed agricultural 

systems to the amount of water used to produce those benefits. In its broadest sense, it reflects the objectives of 

producing more food, income, livelihood and ecological benefits at less social and environmental cost per unit of 

water consumed (������. 

Improving water use efficiency or enhancing agricultural water productivity is a critical response to growing 

water scarcity, including the need to leave enough water in rivers and lakes to sustain ecosystems and to meet the 

growing demands of cities, industries and crop yields. Originally, crop physiologists defined water use efficiency 

as the amount of carbon assimilated and crop yield per unit of transpiration and then later as the amount of biomass 

or marketable yield per unit of evapotranspiration (Viets, 2008).  

Irrigation scientists and engineers have used the term water (irrigation) use efficiency to describe how 

effectively water is delivered to crops and to indicate the amount of water wasted at plot, farm, command or system 

level and defined it as “the ratio of irrigation water transpired by the crops of an irrigation farm or project during 

their growth period to the water diverted from a river or other natural source into the farm or project canal or canals 

during the same period of time. This approach was further improved by introducing the concepts of uniformity, 

adequacy, and sagacity of irrigation. Some scholars have even pointed out that the commonly described 

relationship between water (input, mm or ML) and agricultural product (output, kg or ton) is an index, and not 

efficiency. Still this concept of water use efficiency provides only a partial view because it does not indicate the 

total benefits produced, nor does it specify that water lost by irrigation is often reused by other users (Seckler et 

al., 2010).  

More than 40% of global land is under arid or semi arid climatic conditions (Gamo, 2009). In the arid and 

semi-arid environments water is the most limiting factor in reducing agricultural production (Cattivelli et al.,2008). 

Drought is a complex process that needs to be understood by many disciplines in order to overcome and minimize 

the damage that it causes. The response of plant to drought is also complex. Because conditions vary in the 

frequency of dray and periods, the degree and timing of drought and the patterns of soil and atmospheric water 

deficits (Boutraa, 2010 a,b).  

Drought is a kind of water stress that is related to other stresses, such as high temperature stress, salt stress, 

cold stress and so on (Sho et al., 2005) and that what made drought more complicated. Currently, drought research 

has been one of the main priorities in plant breeding programs worldwide. Over the past forty years many crop 

breeders and plant physiologists have made great efforts to improve the drought tolerance of arrange of agricultural 

and horticultural crops. Shortage of water at different scales lead to drought with all its agricultural impacts 

(Morison et al; 2008) and the climate has made the situation worse by reducing the amount of rain fall and therefore 

the amount of water available to agriculture (Ipcc, 2007). Shortage of water has forced the decision makers and 

particularly in countries with less water, to reduce the water use in agriculture, As a result farmer are face with 

legislative restrictions on use of water (Morison et al; 2008). 

For better use of water in agriculture in water limited environments ,efforts are needed for different research 
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disciplines; plant breeders, plant physiologists, agronomists ,plant bio technologists, water engineers and experts, 

to develop new approaches in water use. For example, it is possible to find or develop crops that require less water 

and maintaining high yield productivity. Many scientists are skeptical of the role of genetic engineering and bio 

technology in improving water use efficiency; because the manipulation of few single gen is unlikely to significant 

contribute in the improvement of such complex trait (Perry et al., 2005). one of the main breeding adapted approach 

to breeding for drought tolerance to over com the impact of water shortage on agricultural production is to 

concentrate on increasing what has come to be known as water productivity or water use efficiency (WUE) of the 

crop which is defined as productivity term output of crop per unit of water (Jones, 2004). Therefore the purpose 

of this paper is to review the role of improvement of water use efficiency in irrigated agriculture for the production 

and productivity of the crops. 

 

2. Role of Irrigated Agriculture 

Like rain fed agriculture, irrigated agriculture also plays a major role in food production, and also provides 

livelihoods for millions of poor farmers in developing countries. Irrigated agriculture currently provides 40% of 

the global cereal supply (60% of the cereals produced in developing countries). Worldwide, about 38% of the 

gross value of production comes from irrigated areas, which make up 29% of the harvested area. Many observers 

expect that the contribution of irrigated agriculture to food production and rural development will increase in the 

coming decades (Bruinsma, 2003; Seckler et al., 2000). Perceptions of the costs and benefits of irrigation have 

changed markedly during the past 50 years (Faure et al., 2007), contributing to a decline in public investments in 

irrigation during the 1990s. After a decade of decline, the last few years have seen an increasing interest in public 

funding in water infrastructure for agriculture, particularly in Asia and in sub-Saharan Africa, where irrigation 

development is limited and the potential for improving access to irrigation water remains large. Reasons for the 

renewed interest include concerns regarding climate change induced rainfall variability; maintaining the existing 

infrastructure; potential for poverty alleviation; the high potential to improve performance and the recent concerns 

regarding food prices and availability(Faures et al., 2007). 

Agriculture is the larger consumer of water, as around 70% of all fresh water withdrawals are used for food 

production (Calzadilla et al., 2010). The irrigated areas represents approximately 18% of the total crop land in 

2003 (FAOSTAT, 2006), resulting in the production of 40-50%of the food worldwide (Doll and Siebert, 2002). 

Irrigation has long been considered to be wistful, because of an necessary high amount of water use. The objective 

of the irrigation is to meet the evapo transpiration requirements of a crop ,by apply sufficient amount of water in 

the soil taking in consideration the local climate, the density of plant cover and [the growth stage of the crop (Perry 

et al.,2009). 

In arid and semi arid environment, regions ‘with less rain fall, there is an increase computation for water 

between agriculture and other water users (De Fraiture and Wichelns, 2010). Agriculture water use has ‘grown in 

recent decades due to the increase in global population and the change in the type of food that require moiré water 

than traditional foods (Molden, 2007).A range of strategies need to be implemented globally to reduce the impacts 

of water scarcity in agriculture. These could be implemented to collaboration between through research 

organizations and decision makers (Molden, 2007). 

 

2.1. Biophysical background of water productivity (WP) at the plant scale 

Assessing the scope for gains in water productivity requires an understanding of basic biological and hydrological 

crop–water relations. How much more water will be needed for agriculture in the future is governed, to a large 

extent, by links between water, food and changes in diets. The amount of water that we consume when eating food 

depends on diet and also on the water productivity of the agriculture production system. The amount of water 

required for field crops and its relation to yield dominates the equation on the need for additional water for food. 

For a given crop variety and climate there is a well-established linear relationship between plant biomass and 

transpiration (Steduto et al., 2007). Different kinds of plants are more water efficient in terms of the ratio between 

biomass and transpiration. More biomass production requires more transpiration because when stomata open, 

carbon dioxide flows into the leaves for photosynthesis and water flows out. Water outflow is essential for cooling 

and for creating liquid movement in the plant for transporting nutrients. Stomata close during drought, thereby 

limiting transpiration, photosynthesis and production. The most common crops, C3 crops such as wheat and barley, 

are less water-efficient than C4 crops such as maize and sugarcane. The most water-efficient crops are the CAM 

(crassulacean acid metabolism) crops such as cactus and pineapple. These different plant types (C3, C4 and CAM) 

have evolved according to their different environments, and are classified primarily based on how they fix carbon 

dioxide in the photosynthetic process (Steduto et al., 2007). 

To boost economic yield, plant breeders have developed varieties with a higher harvest index (the ratio of 

marketable grain yield to total crop biomass), achieving more economic produce per unit of transpiration. This 

breeding strategy has probably raised the potential for gains in water productivity more than any other agronomic 

practice over the last 40 years (Keller and Seckler, 2004). The harvest index for wheat and maize rose from about 
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0.35 before the 1960s to 0.5 in the 1980s (Sayre et al., 1997), when plant breeders of the green revolution focused 

their attention on these crops. But the rate of increase in the harvest index has slowed over the last 20 years as 

physiological limits are being reached, and, thus, there has been a slowdown in the rate of gains in water 

productivity that are achieved through this method. In situations where yield is less than 40–50% of the potential, 

non-water factors such as soil fertility limit yield and crop water productivity per unit of ET (Tanner and Sinclair, 

1983). 

Land degradation and nutrient depletion significantly constrain opportunities to increase water productivity. 

In these situations there is a synergistic effect when water practices that increase access to water at the right time 

or reduce land degradation processes are combined with other agronomic practices such as maintaining soil health 

and fertility, controlling weeds and disease and the timing of planting. Such synergistic interactions between 

production factors raise water productivity, especially when yield values are low, because most production 

resources are used more efficiently as yield levels rise (de Wit, 1992). 

 

2.2. Impacts of Climate Change on Irrigation Requirements 

The requirement for irrigation water would be affected by the variation of meteorological effects under the 

conditions of climate change, and irrigation water will always be the major portion of the water consumption. 

Based on the projections and a water balance model in paddy fields, the future crop water requirement, effective 

rainfall and the demand for water for irrigation can be calculated. A comparison between the present (2004–2011) 

and the future (2046–2065) clearly shows that climate change would lead both rainfall and the temperature to rise; 

this would cause effective rainfall and crop water requirement to increase during cropping seasons in the future 

(Jyun-Long Lee  and Wen-Cheng Huang, 2014).  

To estimate how long term irrigation requirements average might change due to the expected climate change 

conditions of the 2020s,a global model of irrigation requirement, GIM(Global Irrigation Model) has been 

implemented (Doll and Siebert,2002). The climate impute of the GIM is based on long term observation of monthly 

values of precipitation, temperature, sunshine hours and number of wit days (Doll, 2002).  

 

2.4. Water Use Efficiency 

Water use efficiency (WUE) or water productivity has emerged from the idea of drought resistance and drought 

tolerance (Passioura, 2006). At the beginning of the sixties of the last century, water use efficiency has been 

generally define in agronomy (Viets, 2008) as: 

WUE= Crop yield (usually the economic yield) 

             Water used to produce the yield 

The term water use efficiency can be used at wide range of scales; for example, it can be used at the farm, the field, 

the plant or down to the plant part levels, such as the leaf (Morison et al., 2008). In agriculture, WUE can be used 

at different levels; at leaf level (leaf photosynthesis rate per transpiration rate), at whole plat level (the ratio of total 

dray mass to water use) and at the final economic yield (crop grain per unit area to transpiration) (Hong-Xing et 

al., 2007; Ali and Talukder, 2008). In crop production the aim of improving WUE, is to produce more economic 

yield with less water when water is a limiting factor (Boutraa and Sanders, 2001a; Boutra, 2010a), such as in arid 

and semi arid regions across the globe. 

 

2.5. Saving Water for Irrigation Agriculture 

Water saving agriculture, is a notion to describe the combination of agronomic, physiological, bio 

technological/genetic and engineering approaches to reduce agricultural water use (Morison et al., 2008). Many 

workers focused on reducing the use of irrigation in hot, dray environments, as in these environments agriculture 

products require high water use due to the  high rate of evapo-transpiration (Wallace; Gregory, 2004).Improving 

water use efficiency implies how effectively we can increase the out com of the crop with the current available 

water (Passioura, 2006; Ali and Talukder, 2008). 

At the global level, the major grain exporters (USA, Canada, France, Australia and Argentina) produce grains 

in highly productive rain fed lands and the major grain importers rely on irrigation to produce grains (De Fraiture 

and Wichelns, 2010).The main strategy that needs to implemented in improving water productivity in rain fed 

agriculture is the wise management of crops and water resources in addition to the improvement of genetic makeup 

of crops to maximize the capture of water in plant bio mass production (Passioura, 2006).Whereas in irrigated  

land there is  a need to better  manage and use water efficiently, not only because of water shortage but also to 

maintain or reserve the environment (Karoun and EL-Mourid, 2009). Farmers are required to be motivated in order 

to increase water productivity through technical assistance, capacity building and the right to incentives and 

policies (De Fraiture and Wichelns, 2010). Improving crop water productivity relies not only water management, 

but it involves arrange of practice. Ali and Talukder (2008) summarized the techniques and practices that can be 

used to improve water productivity .These includes: deficit irrigation, proper sequencing of water deficit, surge 

irrigation in verity soil, increasing soil fertility, improving harvest index, manipulation seedling age, priming or 
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shocking of seed, application of organic matter, tillage and sub soiling, water harvesting irrigation, crop selection, 

modernization of irrigation system and integrating agriculture-aquaculture.  

 

2.6. A key Opportunities for Improving Water Productivity or water Use Efficiency  

Key opportunities for improving water productivity in irrigated agriculture include, structural measures such as 

improving irrigation efficiency using micro-irrigation systems. In addition, it is essential to prevent seepage losses 

in the conveyance system and reduce evaporation during conveyance in areas where water is scarce. Actual losses 

depend on the state of the delivery network, and its engineering and management practices. After water arrives at 

the farm, it is sometimes temporarily stored, for example in night reservoirs, but more often it is directly distributed 

to the fields for irrigation. Losses at this stage are also due to leakage and evaporation. Losses in the application 

of water to famers’ fields depend on the type of irrigation system, e.g. furrow, sprinkler or drip irrigation. Good 

water management requires that irrigation application do not exceed the amount of water that can be stored in the 

root zone (Jacob et al., 2009).  

In irrigated crop production, farmers can reuse drainage water and (treated) wastewater, while minimizing 

pre-planting irrigation, and managing the amount of water that infiltrates the soil and is stored in the root zone. 

Another approach to improving irrigated agriculture is to support high input irrigated production using high 

yielding varieties, fertilizers, pesticides and other inputs. This is increasingly difficult to achieve, as irrigation 

development in sub-Saharan Africa is expensive. Irrigated systems have been widely criticized for low efficiency 

in their use of water and the corollary is therefore that opportunities exist to increase water productivity. However, 

it is important to avoid problem shifting and recognize that apparent water losses may appear downstream as return 

flows (Jacob et al., 2009). In addition to this the following also an opportunity for improving water use efficiency. 

2.6.1. Increasing harvest index 

The harvest index is the ratio of the economic yield to total biomass of a given crop and all agricultural system are 

interested for the use full part of the crop; for example, grain, seeds, fruits, vegetables and so on (Boyer and 

Westgate, 2004).The economic yield is very sensitive to the water balance in the plant particularly during the 

reproductive stage. for example, water deficit conditions during germination (Boutraa et al., 2009) or early stage 

of plant growth result in early senescence (Boutraa and Sanders, 2001a,b), which result in reducing grain feeling 

and consequently yield loss (Yang et al., 2001).water stress can affect plant reproduction and it causes ovary 

abortion (Boyer  and Westgate ,2004) or pollen sterility (Saini and Westgate,1999). Improvement of harvest index 

by increasing the rate of grain feeling and accelerating the mobilization of photo assimilates may improve water 

use efficiency in water scarce environment (Zhang and Yang, 2004). 

2.6.2. Deficit Irrigation 

Deficit irrigation is the application of only pre determined percentage of calculated potential water use. This 

method needs the use of remote sensing techniques that can detect and assess the level of plant water stress and 

the amount of water needed by the plant. This technology uses the plant as an indicator, to assess the plant water 

requirement rather than soil water status (Jones, 2004 a, b). This method can greatly reduce the amount of water 

used by the plant and has the potential increase of water use efficiency. The deficit irrigation can also save water 

by reducing the irrigation depth by watering only the plant root zone and increasing the interval between successive 

irrigation. For example, at the international center of agricultural research in the dray areas (ICARDA) application 

of only 50% of full irrigation requirement causes a yield reduction of only 10-15% (Zhang and Oweis, 1999). 

Besides this regulated deficit irrigation is very important method to improve WUE and minimize application of 

water to the irrigated crop. RDI is generally defined as an irrigation practice whereby a crop is irrigated with an 

amount of water below the full requirement for optimal plant growth; this is to reduce the amount of water used 

for irrigating crops, improve the response of plants to the certain degree of water deficit in a positive manner, and 

reduce irrigation amounts or increase the crop’s WUE. There are three main RDI approaches in the production of 

agricultural crops, as follows. 

2.6.2.1. Stage-based deficit irrigation 

Stage-based deficit irrigation is defined as RDI applied at different stages of plant development, with water applied 

to meet full plant evapotranspiration (ET) at the critical growth stages and less applied at the non-critical growth 

stages. The principle behind this approach is that the response of plants to RDI induced water stress varies with 

growth stages and that less irrigation applied to plants at non-critical stages may not cause significant negative 

impact on plant productivity even though it may reduce normal plant growth. To apply this approach effectively, 

one must predetermine the critical growth stages for a specific crop species and cultivar and evaluate the relative 

sensitivity of crop plants to water deficit at various stages in their life cycle (García Del Moral et al., 2003). 

2.6.2.2. Partial root-zone irrigation 

Partial root-zone irrigation (also called partial root-zone drying in some literatures) is the second most popular 

approach of RDI. Essentially, half of the root system is irrigated with a full amount, while the remaining half is 

exposed to drying soil (Fig. 1,2 and 3) (Chai et al., 2016). Typically, this approach includes two types as follows: 

1. Alternate partial root-zone irrigation (Fig. 1). The watering and drying of root zone are alternated in a pre-set 
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frequency that allows the previously well-watered side of the root zone to dry down while fully irrigating the 

previously dried root zones. The drying–wetting frequency is typically decided according to water requirements 

of the crop species, growth stages, and soil water holding capacity at the time irrigation is applied. The irrigated 

and partially dried sides of the root zone are interchanged in subsequent irrigations (Reddy, 2017). 

 
Fig. 1 Sketch of the main “regulated deficit irrigation” approaches, including alternate partial root-zone irrigation 

where the two neighboring plant rows in every four rows are irrigated and they are shifted in consecutive irrigations 

(Reddy, 2017). 

2. Fixed partial root-zone irrigation (Fig. 2). During the entire growth period, approximately half of the root system 

is irrigated in a normal amount each time when irrigation is applied, and the remaining half is always exposed to 

drying soil. In both approaches, it is assumed that (i) the fraction of the root system under the drying soil may 

respond to drying by sending a root-sourced signal to the shoot where stomata may close to reduce water loss 

through transpiration (Liu et al., 2006b; Sobeih et al., 2004) and (ii) by reducing the amount of water applied to 

plants, a small narrowing of the stomatal opening may occur which helps reduce water loss with little or no impact 

on plant photosynthesis (De Souza et al., 2005; Liu et al., 2004). 

 
Fig. 2. Sketch of the main “regulated deficit irrigation” approaches, including, fixed partial root-zone irrigation 

where the two neighboring plant rows in every four rows are irrigated every time and the remaining two rows of 

plants kept in drying soil (Reddy, 2017). 

2.6.2.3. Subsurface irrigation or infiltration movement 

Subsurface irrigation is the third most popular RDI practice. Irrigation water is supplied to plants by capillary 

movement from the bottom (Fig.3). The root-zone air space is not immediately filled by water, in contrast with 

traditional irrigation where water is supplied directly overhead and water first fills the air space in the soil. 

Infiltration movement induces plant hardening or internal physiological regulations caused by mild water stress. 

A false signal of water deficit is transduced to the internals of the cell, where it induces apparent 

xerophytophysiological regulation with internal adjustment from the gene level to physiological levels (Xu et al., 

2011). Research shows that subsurface irrigation increases crop productivity and product quality (Xu et al.,  2011) 
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Fig. 3. Sketch of the main “regulated deficit irrigation” approaches, including, subsurface irrigation where 

irrigation is applied in the lower part of the root zone (Reddy, 2017). 

2.6.3. Supplemental irrigation 

Supplemental irrigation aims to add a limited amount during critical and water stress sensitive crop development 

stages, such as flowering and initial grain setting, or early establishment. Although this strategy has shown large 

potential to improve water productivity especially in semiarid and dry sub-humid cropping systems with high 

rainfall variability and high intra seasonal dry spell occurrence,(Barron, 2004; Pandey et al., 2001) this is not a 

common practice to supplement rain fed agriculture in sub-Saharan Africa. In some regions, supplementary 

irrigation is applied to crops in combination with soil surface covering. At the critical growth stages, dripper 

systems are used to provide supplemental water under the cover of plastic film. In other cases, some of the plant 

rows are irrigated and the other plant rows are left without irrigation but mulched with plastic films (Hu et al., 

2015). In areas with crop straw readily available, straw is used to cover the soil surface of plant rows with alternate 

rows irrigated. All these techniques add benefits such as reduced soil evaporation and soil erosion, increased 

topsoil temperature with plastic cover in the early spring when soil temperatures are low and improved soil nutrient 

availability to crops (Gan et al., 2013; Reddy, 2017). 

 

3. SUMMERY AND CONCLUSION 

Due to increasing demand for food production worldwide, in regions where water is scarce, the improvement of 

agricultural water production become argent need. As irrigated agriculture remains vitally important as a means 

of food production. Enhancing water use efficiency is one of the main approaches to make better use of water. 

Many options to improve water use efficiency are available and the target is to produce yield with possible 

minimum amount of water. Despite the progress achieved in improving yield per unit of water used, major efforts 

still needed to deal with water shortage in order to increase food production and particular in regions where water 

is scarce. This goal cannot be achieved without collaborative efforts between agronomists, plant physiologists, 

hydrologists, molecular geneticists; agricultural engineers water experts and decision makers. Therefore, the final 

aim of improving WUE in irrigated agriculture is to increase the economic crop product per unit of water in water 

scarce environments. The effective use by the crop of a limiting water supply can be achieved by manipulating 

crop penology or by using agronomic techniques and practices that can be improve water use efficiency.  
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