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Abstract 

Purpose of study 

Methods of comparing the accuracy of diagnostic tests are of increasing necessity in biomedical science. When a 
test result is measured on a continuous scale, an assessment of the performance of the overall value of the test can 
be made using the Receiver Operating Characteristic (ROC) curve. This curve describes the discrimination ability 
of a diagnosis test in terms of diseased subjects from non-diseased subjects. The area under the ROC curve (AUC) 
describes the probability that a randomly chosen diseased subject will have higher probability of having disease 
than a randomly chosen non-diseased subject. For comparing two or more diagnostic test results, the difference 
between AUCs is often used. This paper proposes a non-parametric alternative method of comparing two or more 
correlated area under the curve (AUCs) of diagnostic tests for paired sample data. This method is based on Chi-
square test statistic.  
Methods 

This paper investigated both parametric and non-parametric methods of comparing the equality of two AUCs and 
proposed a Chi-square test for the comparison of two or more diagnostic test processes. The proposed method does 
not require the knowledge of true status of subjects or gold standard in evaluating the accuracy of tests unlike other 
existing methods. The proposed method is most suitable for paired sample design. It also offers reliable statistical 
inferences even in small sample problems and circumvent the difficulties of deriving the statistical moments of 
complex summary statistics as seen in the Delong method. The proposed method provides for further analysis to 
determine the possible reason for rejecting the null hypothesis of equality of AUCs.  
Results 

The proposed method when applied on real data, avoids the lengthy and more difficult procedures of estimating 
the variances of two AUCs as a way of determining if two AUCs differ significantly. The method is validated 
using the Cochran Q test and was shown to compare favourably. The proposed method recommended for 
comparing two or more correlated AUCs when the data is paired. It is simple and does not require prior knowledge 
of true status of subjects unlike other existing methods.   
Keywords: Chi-square test, Cochran Q test, cut-off value, area under the curve, receiver operating characteristic, 
Dichotomous data  
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INTRODUCTION 

The performance of a diagnostic test in the case of a binary predictor can be evaluated using the measures of 
sensitivity and specificity (Mandrekar,2010). In studying statistical methods for diagnosis, the comparison of the 
measures of diagnostic test accuracy such as sensitivity and specificity having the prior knowledge the true disease 
status is always an interesting topic (Senaratna et al, 2015). In medical sciences generally, the use of diagnostic 
procedures is based on clinical investigations or laboratory experiments or trials purposely to classify subject into 
diseased or non-diseased. These procedures makes for vital decision making aided with advanced machines/tools 
to detect any given condition. However, in many instances, we encounter predictors that are measured on a 
continuous or ordinal scale. In such cases, it is desirable to assess performance of a diagnostic test over the range 
of possible cut-points for the predictor variable. This is achieved by a receiver operating characteristic (ROC) 
curve that includes all the possible decision thresholds from a diagnostic test result (Mandrekar,2010). For decades 
now, receiver operating characteristic curve (ROC) analysis has been used as a popular technique of evaluating 
the performance or ability of a test to discriminate between alternative health status(Kummar and Indrayan,2011). 
The ROC curve represents a graph of sensitivity against 1-specificity across various cut-off values of diagnostic 
test. It assesses the effectiveness of continuous diagnostic test results to differentiate between groups of healthy 
and diseased individuals (Greiner et al., 2000; Zhou et al., 2002; Pepe, 2004). It is also a common tool for assessing 
the performance of various classification tools such as diagnostic tests, and to compare accuracy between tests or 
predictive models. The ROC curve was originated in the theory of signal detection in the years 1950-1960 (Green 
and Swets, 1966; Egan, 1975) to discriminate between signal and noise. It can provide a direct and visual 
comparison of two or more diagnostic tests on a single set of scales. It is possible to compare different tests at all 
decision cut-offs by constructing the ROC curves. For statistical analysis, a recommended numerical index of 
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accuracy associated with an ROC curve is often better used to summarize the information provided for the ROC 
curve into a single global value or index (Swets and Picket,1982). This index called area under the ROC curve is 
the most popular summary measure of ROC curves (Honghu-Liu, 2005; Pepe,2003). However in many studies 
involving paired sample designs, the positive and negative predictive values as measures of diagnostic accuracy 
have been estimated and compared (Leisenring et al, 2000; Moskowitz and Pepe, 2006; Wang et al, 2006). The 
use of correlated AUCs from alternative diagnostic tests have also been used in comparing the accuracy of test 
results (Krzanowski and Hand,2009; Pepe,2003). Meanwhile, Hanley and McNeil (1982) in their paper first wrote 
on the theory for comparing two AUCs for two independent AUCs. This work was extended by Hanley and McNeil 
(1983) for comparing two correlated AUCs as induced by paired sample data. Hanley and McNeil (1983) in their 
work used Wilcoxon’s non-parametric method for estimating the AUC’ and its standard errors while DeLong, 
DeLong and Clarke-Pearson (1988) in comparing correlated AUCs used the Mann Whitney method for estimating 
the AUC and its standard errors. Park, Goo and Jo(2004) as well as Hanley and McNeil (1983) pointed out that 
the trapezoidal rule (Mann Whitney test) as a non-parametric method underestimates the AUC but rather used the 
Dorfman and Alf (1969) method of maximum likelihood estimation for estimating AUC mainly for comparing 
independent AUCs. Metz, Wang, and Kronman(1984) extended this comparison to two correlated AUCs. 
Furthermore, ROC curves generated using data from patients where each patient is subjected to two (or more) 
different diagnostic tests of interest are considered as correlated ROC curves (Mandrekar,2010).Similarly, in 
paired designs, the estimation and comparison of certain measures of diagnostic accuracy such as the positive 
(negative) predictive values has been the subject of several studies (Moskowitz and Pepe,2006; Wang et al, 2006).  

In this paper, we propose a nonparametric method based on chi-square test for comparing two or more 
correlated AUCs when the diagnostic test results are paired in the absence of the true disease status. This is due to 
the fact that the changes due to subjects represent a major component of the overall changes of the AUC. Therefore, 
to better control for these sources of changes when comparing diagnostic tests, a paired study design is often 
advised because it usually induces positive correlation between the tests results of the same subjects. 

To carry out significant test for the differences between two or more correlated AUCs, it is necessary to 
consider the distribution of the outcome which also determines the procedure to be adopted in estimating the AUCs 
and its variance-covariance matrix. Three possible procedures to be used include the parametric, semi-parametric 
and non-parametric methods. Two nonparametric methods are known for use in literature that is best for comparing 
correlated AUCs. There are Hanley & McNeil, 1983 and Delong, Delong & Clarke-Pearson, 1988. For these 
methods, the AUC and its variance covariance matrix are estimated using Wilcoxons method and Mann Whitney 
method respectively. Different methods of estimating the AUC have been used for each method. For instance, the 
parametric approach which was suggested in the paper, Dorfman and Alf (1969) method of fitting smooth curves 
based on the binormal assumption is used where the ROC curve can be completely described by two parameters 
estimated using Maximum Likelihood Estimation (MLE). A review of some of the existing methods for comparing 
AUC is outlined here. 
 

Parametric (Binormal ROC Curve) Method 

The parametric analysis assuming the binormal model was developed by Dorfman and Alf Jr.(1969), McClish 
(1989)and later implemented and further developed by Metz et al(1998).  To compare the AUCs of two diagnostic 
test results for paired sample design and given the viability of the binormal assumption according to 

McClish(1989), the hypothesis for the equality of two AUCs denoted respectively as 1 2AUC and AUC
 can be 

tested using the test statistic given as 
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The variance of AUC can be estimated by substituting estimators for the parameters a1 and a2. 

From equation 1, 1 2 1 2
垐 垐( , ) ( ). ( )Cov AUC AUC SE AUC SE AUC

according to Metz et al (1984) is an 
estimate of the covariance between the two correlated AUC’s in parametric approach of comparative study of two 

diagnostic procedures. Where  and SE denote the correlation coefficient between the two estimated AUC’s and 
the standard error (i.e. the square root of variance) of estimate of AUC’s respectively. If the two diagnostic tests 
are not examined on the same subjects, obviously the two estimated AUC’s are independent and the covariance 
term would be zero. 
 

Non-parametric methods 

Hanley and McNeil showed that AUC has a meaningful interpretation as Man- Whitney U-statistics and thus, U-
statistics is a nonparametric estimate of AUC (Hajian-Tilaki,2013). In addition, they proposed exponential 
approximation of SE of nonparametric AUC (Hanley and McNeil,1982). Delong et al. also developed a 
nonparametric methods of SE of AUC (Delong et al,1988). The DeLong’s method of components of U-statistics 
and its SE has been well illustrated by Hanley and Hajian-Tilaki in a single modality of diagnostic test (Hanley 
and Hajian-Tilaki,1997). DeLong et al(1988) developed a consistent empirical (nonparametric) estimator of the 
covariance matrix for several AUC estimators in a paired design.. The conventional nonparametric test for 
comparing correlated AUCs proposed by DeLong et al.(1988) uses a consistent variance estimator and relies on 
asymptotic normality of the AUC estimator. The advantage of Delong method is that the covariance between two 
correlated AUC can be estimated from its components of variance covariance matrix as well (DeLong et al,1988). 
Comparing the AUC of paired sample design by DeLong et al (1988) using the empirical non-parametric method 
is based on the previous work by Zhou et al(2002) that a Z-test for this comparison of the AUCs of two diagnostic 
test for paired sample design is 
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The variance of the components 0 1t j t iY and Y
 are respectively defined as  
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Note here that 0 1t j t iY and Y
 are the observed diagnostic test results for the jth and ith  subjects in group t 

that are not diseased and diseased respectively. 
Also 
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When the variances are estimated, one can calculate the AUC for the two diagnostic tests and then make 
comparison.  
 

PROPOSED CHI-SQUARE TEST STATISTIC FOR COMPARING THE EQUALITY OF TWO OR 

MORE CORRELATED AUCs  

Interest is to develop a simple and easy to understand method of testing the equality of AUCs arising from two or 
more diagnostic tests across different diagnostic tests. It was proposed a chi-square test for the comparison of two 
or more diagnostic tests based on continuous, ordinal or binary scale data. Given measurement of test results on 
continuous scale, we dichotomize the results as positive or diseased (coded 1) and negative or non-diseased (coded 
0) using a cut-off value c and present the information as coded in a contingency table.  

Suppose n is a random sample of subjects drawn from a population of subjects for this study and ijx
is 

the sample test result for the ith  subject at jth  diagnostic test T, i = 1, 2, …, n and j = 1, 2,…,T,  
Let 
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Where  ijy
 is the continuous diagnostic test result drawn from population Y.  

Based on the classification of ijy
 in equation 7, the format of the data obtained is presented in table 1. 

Table  1.  Format of the data for the test results of the ith  subject at the jth  diagnostic test. 
      Diagnostic test dependent result 
Subjects 1 2 .. T  
1 

11x
 12x

  
.. 

1Tx
 

2 
21x

 22x
 

.. 
2Tx

 
3 

31x
 32x

 
.. 

3Tx
 

…   ..  
n  1nx

 2nx
 

.. 
nTx

 
This pattern of coding is appropriate if interest is to compare the AUCs obtained from diagnostic tests processes 

carried out on the same set of subjects. The coding is such that if a subject’s test result is ijx c
, that subject is 

considered diseased or response positive(coded 1) while a subject whose test result is ijx c
 is declared non-

diseased or response negative to the disease (coded 0). 
To develop the test statistic for testing the equality of two or more AUCs across different diagnostic tests, 
Let 
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Where jf
 indicated the number of subjects that are diseased or responding positive in the jth diagnostic test while 

the corresponding subjects who are not diseased or those responding negative is 
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Where j
 is the population proportion of subjects that are diseased or those responding positive for the jth  

diagnostic test. 
Its sample estimate and sample variance are respectively 
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Where jA
is actually the area under a portion of the AUC curve of jth diagnostic test. If the proportions of positive 

response or diseased subjects are equal for all entire the diagnostic test T, then the common proportion can be 
estimated as 

1 6
f

A
n T



 
These results are presented in a 2 × T contingency table 2.  
Table 2.  2 × T   Contingency table for the Analysis of diagnostic Test Dependent Measurements. 

                 Diagnostic Test Measurements 
Observations 1 ….. …… T  Total 

Number of diseased subjects ( jf
) 1f  

….. …. 
Tf  

f  

Number of non-diseased subjects ( jn f
) 1n f

 
….. … 

Tn f
 

nT f  

Total n  ….. … n  nT  

Proportion( jA
) 1A

 
….. …. 

TA
 

f
A

nT


 

Based on table 2, the observed numbers of diseased and non-diseased subjects for the jth  diagnostic test are 
respectively 

1 2 1 7j j j jo f a n d o n f  
 

The corresponding expected numbers of diseased and non-diseased subjects are respectively 

1 2

( )
18j j
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nT nT
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The null hypothesis that the AUC of two or more diagnostic tests are equal is stated as 

0 1 2 1 1 2: ... : ... 19T TH AUC AUC AUC versus H AUC AUC AUC     
 

Since AUC summarizes the accuracy or discriminating power of a diagnostic test, then we shall subsequently be 

viewing the test of hypothesis for AUC in terms of the proportion of positive response rate, j
 of subjects to tests 

because the ability of a test to discriminate among alternative health status (positive and negative response) gives 
a summary of the diagnostic accuracy of a test. In other words, the probability of positive response of a test if 
obtained indicates a summary of the accuracy or discriminating power of a diagnostic test given that the proportion 
of negative response is just a relationship.   
The corresponding test statistic for testing this hypothesis is 
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Whose distribution is approximately of the chi-square type having T–1 degrees of freedom and it can be used to 
test the null hypothesis of equality of AUCs across diagnostic tests.  
Writing equation 20 in terms of Equations 14 and 16, we have 
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This simplifies to 
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Equation 22 has also a distribution of the chi-square type with T–1 degrees of freedom. 
Rewriting equation 20 in terms of the proportions stated in equations 14 and 16, we have an equivalent expression 
given as  
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 At a given level of significance (α), the null hypothesis H0 is rejected if 

2 2
1 ; 1 2 4T   

 
Otherwise it is accepted. 
 

SUBSEQUENT ANALYSIS IF NULL HYPOTHESIS IS REJECTED  

When the null hypothesis of equations 19 is rejected, it means that differences exist in the AUC across diagnostic 
tests or the proportion of positive response across diagnostic tests. Therefore, it is of interest to determine which 
of the AUC or equivalently the proportion of positive response among the diagnostic tests that has contributed to 
the rejection of H0.In particular, interest may be to determine if the accuracy of diagnostic test result is improving 

successively over testing trials or procedures. Let j
 be the proportion of subjects that are diseased or those 

responding positive for the jth  diagnostic test. 

 Now let j kand 
 be the population proportions of subjects that are diseased or those responding 

positive at the jth and kth  diagnostic tests respectively for , 1,.., ; .j k T j k    
Its corresponding sample estimates are respectively,  

14.j k
j k

f f
A and A as in equ

n n
 

 

Where
j kA and A

 are the areas under a portion of the AUC of jth and kth  diagnostic tests respectively. 
Interest here may be in testing the null hypothesis that the proportion of diseased subjects in jth diagnostic test is 
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at most equal to the proportion of diseased subjects in kth diagnostic test. The null hypotheses may be expressed 
as  
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To test the null hypothesis of equation 25, where the sample estimates of 
j k 

 are 
.j kA A

 
Let 

 
 

0
2 6

j k

e j k

A A
z

s A A

 



 
Where  

  ( ) ( ) 2 ( , ); tane j k j k j ks A A Var A Var A Cov A A se s dard deviation    
 

Where 

 
 

2

1 1
2

( , )

, 14

, 13

j k j k j k

j k j k

n n

ij sk

i s
j k

C ov A A E A A E A E A

E f f E f E f
see equation

n n

E y y

see equation
n

  

       

       

  
 
 

 

Now 
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assumes the value 1 provided ij sky and y
both assume the value 1 with probability 
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Hence, 
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Therefore, 
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Based on the null hypothesis of equation 25, the statistic z of equation 26 becomes 
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which is the unit normal distribution. 
Hence, 
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has approximately a distribution of the chi-square type with 1 degree of freedom where jA
is already given in 

equation 14  
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Under the null hypothesis of equation 19 and overall estimate of j
such as jA is A

 given in equation 16, the 
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The corresponding test statistic is given as: 
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         

        


 
Where under the null hypothesis 

 
3 2

( ) ( ) ( ) , 29j k

f nT f
Var A Var A Var A see equation

n T


  

 
The test statistic of equation 28 is now given as 
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 

3 2

2
0 3 1

j k
f f

n T
n n

f n T f
 

 
 

  


 

In terms of jA and A
 given in equations 14 and 16, equation 31 becomes 

 

2

02
( )

3 2
2 1

j kn A A

A A




   


 
which has approximately a chi-square distribution with 1 degree of freedom.  
The test statistic of equation 32 can be used to test the null hypothesis of equation 25 that the proportion of diseased 
subjects in the jth diagnostic test is at most equal to the proportion of diseased subjects in the kth diagnostic test. 
Using this test statistic, it is suggested that all comparison should be made with a well chosen critical value of the 
chi-squared distribution with T-1 degrees of freedom at a specified   level. This is for the purpose of reducing 
type 1 error and minimizing errors in conclusions.  
 
METHODOGY 

APPLICATION TO REAL DATA 
The proposed methods can be applied to real data obtained from a retrospective study of pregnant women at risk 
for gestational diabetes mellitus (GDM) at certain hospitals in Ebonyi State Nigeria.The records of a total of 1113 
pregnant women who had earlier tested positive after screening using 1 hour 50g Glucose Challenge Test (GCT) 
and who were also subjected to diagnosis using 2-hour 75g OGTT as well as 3-hours 100g OGTT according to 
WHO(1999) and National Diabetic Data Group(NDDG,1979) criteria were taken. This was to compare the 
efficacy of these two diagnostic procedures, These pregnant women were seen to have positive risk factors and 
aged between 15-45 years at less than 24 weeks and between 24-28 weeks of gestation. 

Women who were known diabetics, or who were suffering from any chronic illness were excluded from the 
study. After obtaining permission from the hospitals’ Research and Ethics Committee, assess was granted into the 
record units of the antenatal wards of these hospitals where the medical history of the patients were kept in a 
proforma containing general information on demographic characteristics such as body mass index, maternal age, 
previous fetal weight and vital clinical histories such as obstetric history of GDM and family history of diabetes 
were taken.  

The GDM response variables (tests results) for the two tests, namely 75g OGTT and 100g OGTT represents 
the paired data for the pregnant women. These data type is suitable for comparing the accuracy of two tests in 
terms of their AUCs. Under this arrangement, the null hypothesis of interest which is testing of equality of the 
proportion of positive response is equivalent to testing the equality of AUCs for the tests. This comparison will be 
evaluated using the proposed method. 

The research interest is to compare two or more correlated AUCs of diagnostic tests which also are equivalent 
to comparing the probability of positive response for paired sample design. To do this, the data was coded for this 
work based on the specification of equation 7 to generate the corresponding data of 1’s and 0’s. In other to calculate 
the chi-square test statistic of equation 23 for testing the null hypothesis of no difference among the proportion of 
positive response (see equation 19) in paired sample design, we evaluate the data for the work to have table 3. 
Table 3: Computation of total number of diseased, non-diseased and proportion of diseased.    

 Diagnostic test 1 Diagnostic test 2 Total 

No of 1’s 
( )jf

 
146 149 295 

No of 0’s  
( )jn f

 
967 964 1931 

Total n 1113 1113 2226 

Proportion of 1’s 
( )jp

 
0.1311 0.1339 0.265 

Now, to test the null hypothesis of equation 19 which is equivalent to testing the homogeneity of AUCs for paired 
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sample tests, it was substituted the proportion of 1’s or diseased pregnant women of the data given in equation 23, 
to calculate the chi-square test statistic as 

 2 2

2
1113 ( 0.1339) ( 0.1311) 1113 (0.01793) (0.01719) 1113[0.03512] 39.08856

200.96
(0.265)(0.735) 0.194775 0.194775 0.194775


         

At 5% level of significance, where c=2, the chi-square is 
2
0.95,1 3.841. 

 
This means that the proportion of positive response for the two diagnostic tests differ significantly. In other 

words, the two AUC for the tests are different. From Table 3, the proportion of pregnant women who have GDM 
increased after the second diagnostic test.  

Furthermore, our interest may be to determine which of the test is superior or other wise. This is also the same 
as carrying out further analysis to determine which of the test that may have contributed to our rejecting the null 
hypothesis of equality of AUCs in equation 19. This means that we need to test the null hypothesis of equation 25. 

From Table 3, put 2 10.1339 0.1311,p and p 
in equation 32 to have 

 2

2 1113 0.1311 0.1339 1113 0.00000784
0.0224.

2(0.265)(0.735) 0.38955


 
  

 

If 
2 0.0224   is compared with its critical value at 1 2 1 1 0.05c and      , we accept the null 

hypothesis of equation 25 and conclude that there exist no significant different between the two diagnostic tests. 

This simply means that 2 1AUC AUC
.This means that that the second diagnostic test (100g OGTT), that is

2AUC
 is preferred to first diagnostic test (75g OGTT), that is 1AUC

because the second test was able to discover 
few more pregnant women who actually have plasma glucose level of at least 7.8mmol/l(GDM positive patients).    
 

COMPARISON OF THE PROPOSED METHOD WITH DELONG ET AL (1988) METHOD 
Using the same coded data meant for comparing AUC, the estimates of AUCs was obtained for the diagnostic tests 
as 0.687, and 0.752 respectively for the first and second diagnostic test respectively. To test the null hypothesis of 
equation 19 for the homogeneity of AUCs, the non-parametric test by DeLong et al.(1988) and the proposed chi-
square test yielded significant results with their p-values as 0.0068 and 0.0027 respectively. 
 

VALIDATION OF THE PROPOSED METHOD USING COCHRAN Q TEST 

To make the proposed method valid in terms of efficiency, we illustrate using Cochran Q test for dichotomous 
data since the same null hypothesis of equality of AUCs (proportion of diseased pregnant women) across 

diagnostic tests can suitably be tested. Using the paired coded data which is also applicable, we let iB
 be the sum 

of the number of 1’s in row i, the pregnant women, where i=1,2,….,1113 and ,j kZ
be the sum of the number of 

1’s in column j and k, where j is test 1 and k is test 2. Then the statistic for Cochran’s Q test is given by   

   

2

2

2 2 2
1 1

2 2 2 2
2

1 1

(146) (149) (146 149) 2
( 1) (2 1) 43517 43513 4

295 (2) (1) (2) .... (1) 2

T T

j j

j j

n T

i

i j

Z Z T

Q T

B B T

 

 

  
  
               

      
 
 

 

 

Which has T-1=2-1=1 degrees of freedom. Since 4Q  is greater than 
2
0.95;1,3.841 

, we reject the null 
hypothesis of equation 19 which stated the equality of diagnostic tests in terms of their AUCs and conclude that 
the proportion of pregnant women responding positive (GDM positive patients) and indeed the AUCs differs 
significantly across tests. This conclusion is the same as that obtained when the proposed method is applied to the 
same data set. The advantage that the proposed method has over Cochran Q test is that it is capable of finding the 
reason for rejecting the null hypothesis in the first instance. This implies that subsequent analysis when the null 
hypothesis is rejected applies to the proposed chi-square method but does not apply to the Cochran method. 
 

DISCUSSION 

Many authors have carried out studies for comparing two AUCs(Obuchowski,2005; MacMillan et al,2004; 
Mackassy and Provost,2004 ) but up till date only two studies have been able to compare more than two AUCs of 
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several diagnostic tests at once (Delong et al, 1988; Senaratna et al,2015). Some authors developed a bivariate test 
for comparing two AUCs at a time and included the Bonferroni adjustment for multiple comparison of pairs of 
AUCs (Senaratna et al, 2015). 

DeLong et al (1988) proposed a nonparametric approach to compare the correlated AUCs using the theory of 
the U-statistics. The disadvantage of this method is that it has computational burden although that can be alleviated 
by the development of faster computers. Computational burden can still be substantial in binormal ROC curve as 
a method of calculating AUC because a number of iterative procedures that are involved in obtaining estimators, 
for instance MLE of AUC (Dorfmann & Alf 1969; Metz, Herman & Shen 1998).  

The chi-square test employs a continuous distribution to approximate a discrete probability distribution. Apart 
from being simple to calculate, easy to understand and readily applicable, the chi-square test statistic provides the 
quality evidence of inferiority or superiority of one diagnostic process over the other. It does this by providing the 
opportunity for subsequent analysis to determine the inferiority or other wise of a test when the null hypothesis of 
interest is rejected. For instance, if the null hypothesis of equality of AUCs is rejected, there is need for further 
analysis to ascertain which of the AUC or diagnostic test that has contributed to the rejection of the null hypothesis. 
This is not possible when the Delong et al (1988) method is used for comparing between two AUCs. In using any 
existing methods, the idea of assessing inferiority or superiority of a diagnostic procedure are not immediately 
obtainable because sensitivity and specificity simultaneously measures the accuracy of diagnostic procedures 
(Swets et al, 1982) which always requires the knowledge of true disease status of subjects (Pepe,2003). The 
proposed method does not require the knowledge of the true disease status or the gold standard may not be known. 
This is similar to the result obtained using McNemar test for comparing the accuracy of two diagnostic tests for 
matched sample data (Sumi et al, 2010). This attribute makes the proposed method to have robust feature since it 
is invariably applicable in all instances in addition to situations where it does require having the knowledge of true 
status (gold standard).This is not the same with other traditional methods of comparing the accuracy of diagnostic 
test results such as Bandos et al (2005) and Delong et al(1988)which must require the knowledge of true status 
(gold standard) in the estimation and comparison using the AUC. Using the proposed chi-square test is simpler 
and easy to compute than McNemar test proposed by Sumi et al(2010) which can be taken to be a better alternative 
to the test by DeLong et al.(1988) and test by Bandos et al.(2005) which are very cumbersome to compute. It is 
known that in the study of the statistical methods for diagnosis, one of the most interesting topics is the comparison 
of the accuracy of two binary diagnostic tests in relation to the same gold standard (José Antonio et al,2011).For 
instance, a global hypothesis test was studied to simultaneously compare the positive and negative predictive 
values of multiple binary diagnostic tests when the binary tests and the gold standard are applied to all of the 
subjects in a random sample(José Antonio et al,2011).The proposed chi-square method used in comparing the 
accuracy of two or more diagnostic tests in terms of their AUCs does not make any reference to the gold standard  
in its comparison. This is indeed an innovation in statistical methods for diagnosis. The AUC were calculated from 
the parameters a and b obtained using the method of maximum likelihood (Dorfman and Alf, 1969) while the 
variance of the AUC were calculated using the delta method (Casella and Berger, 2002).These are rather tedious 
methods, which is why the proposed chi-square method made the calculation of AUC and its variance simpler and 
easy to understand. 

 
CONCLUSION 

This paper concludes as follows 
1. That the proposed chi-square test method has higher statistical power when compared with the conventional 

nonparametric test method (DeLong et al method) and so has the capacity to discriminate between diseased 
and non-diseased subjects. In other words, the strength of our method is that it has easy implementation to 
discriminate diagnostic test procedures even by non- statisticians. 

2. The proposed chi-square test method is simpler to understand, easy to compute or communicate to the 
potential users of the procedure to operate than the conventional nonparametric test method. 

3. The proposed chi-square test method provides an opportunity for further analysis in a situation where the null 
hypothesis of interest is rejected. The purpose of this is to determine the possible reason for the rejection of 
the null hypothesis. This is an advantage over similar methods such as the Cochran Q test method. 

4. Knowledge of true status of subjects or any other gold standard is not required to employ by the proposed 
method in analysis. 

5. The proposed method offers reliable statistical inferences even in small sample problems and circumvent the 
difficulties of deriving the statistical moments of complex summary statistics. 

6. The proposed method has the capacity of comparing even more than two AUCs unlike what obtains in other 
existing methods especially Cochran Q test and Delong method. 

7. The proposed method avoids the lengthy and more difficult procedures of estimating the variances of two 
AUCs as a way of determining if two AUCs differ significantly, rather it developed a simple test statistic for 
testing the hypothesis of equality or otherwise.  
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8. The chi-square test statistic is therefore recommended for comparing the equality of two or more correlated 
AUCs in paired sample design. 
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