
Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) DOI: 10.7176/JNSR 

Vol.9, No.9, 2019 

 

17 

Estimation of AUC for Assessing Its Significance in Classification 

Models 
 

Okeh Uchechukwu Marius1      Mbegbu Julian Ibezimako2 

1. Department of Mathematics and Computer Science, Ebonyi State University Abakaliki, Nigeria. 

2. Department of Statistics, Nnamdi Azikiwe University Awka, Nigeria 

 

ABSTRACT 
The assessment of the performance of a diagnostic test when test results are measured on continuous scale can be 

evaluated using the measures of sensitivity and specificity over the range of possible cut-off points for the predictor 

variable. This is achieved by the use of a receiver operating characteristic (ROC) curve which is a graph of 

sensitivity against 1-specificity across all possible decision cut-offs values from a diagnostic test result. This curve 

evaluates the diagnostic ability of tests to discriminate the true state of subjects especially in classification models. 

These tasks of assessing the predictive accuracy of classification models is always better achieved using a summary 

measure of accuracy across all possible ranges of cut-off values called the area under the receiver operating 

characteristic curve (AUC). In this paper, we propose a simple nonparametric method of calculating AUC from 

predicted probability of positive response involving multiple prediction rules. This method is based on the 

knowledge of non-parametric Mann-Whitney U statistic. Based on the predicted outcomes and observed outcomes, 

the performance of diagnostic tests is assessed for the classification models through the AUC calculated from these 

outcomes. The proposed method when applied on real data, the significance of AUC for the classification models 

is assessed. The method offers reliable statistical inferences and circumvents the difficulties of deriving the 

statistical moments of complex summary statistics seen in the parametric method. The proposed method as a non-

parametric estimation is recommended for calculating the AUC as it compares favorably with the existing 

parametric and non-parametric methods.     
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INTRODUCTION 

In medical sciences, the use of diagnostic procedures is based on clinical investigations or laboratory experiments 

or trials purposely to classify subject into diseased or non-diseased. These procedures makes for vital decision 

making aided with advanced machines/tools to detect any given condition. For decades now, receiver operating 

characteristic curve (ROC) analysis has been used as a popular technique of evaluating the performance or ability 

of a test to discriminate between alternative health status. The ROC curve represents a graph of sensitivity against 

1-specificity across various cut-off values of diagnostic test. It assesses the effectiveness of continuous diagnostic 

test results to differentiate between groups of healthy and diseased individuals (Greiner et al., 2000; Zhou et al., 

2002; Pepe, 2004). It is also a common tool for assessing the performance of various classification tools such as 

biological test results, diagnostic tests, and statistical distributional models and in assessing accuracy quantitatively 

or to compare accuracy between tests or predictive models. The ROC curve was originated in the theory of signal 

detection in the years 1950-1960 (Green and Swets, 1966; Egan, 1975) to discriminate between signal and noise. 

It has been used in so many areas such as radiology (Metz,1989), psychiatry(Hsiao et al,1989), epidemiology(Aoki 

et al, 1997), biomedical informatics(Lasko et al,2005). It can provide a direct and visual comparison of two or 

more diagnostic tests on a single set of scales. It is possible to compare different tests at all decision cut-offs by 

constructing the ROC curves. For statistical analysis, a recommended numerical index of accuracy associated with 

an ROC curve are often better used to summarize the information provided for the ROC curve into a single global 

value or index(Swets and Picket,1982). This index is called area under the ROC curve. AUC takes values between 

0.5 (which corresponds to the diagonal ROC curve that passes through the points (0,0) and (1,1)) and 1 

(representing perfect test where all cases are correctly classified). AUC represents the diagnostic accuracy of the 

test Y, so that the larger the area the better the diagnostic accuracy of Y. This means that values closer to 1 indicate 

that Y optimally discriminates between healthy and diseased subjects, while values near 0.5 indicate that the test 

is not informative (Zhou et al, 2002). According to Mann-Whitney (1947), AUC is the probability that the observed 

test result of a randomly selected subject from the diseased population ( 1Y
) is larger than the observed test result 

of a randomly selected subject from the non-diseased population ( 0Y
).For comparing two diagnostic processes, 

the difference between AUCs is often used. In diagnostic imaging it is generally known that the changes due to 

subjects represent a major component of the overall changes of the AUC. To better control for the sources of 

changes when comparing diagnostic tests, a paired study design is often advised because it usually induces positive 
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correlation between the tests results of the same subjects. 

This paper is devoted to reviewing some existing methods of calculating AUC. It attempts to calculate AUC 

based on a simple new method and evaluate its significance in assessing classification models.  

 

EXISTING METHODS OF CALCULATING AUC  

There are several methods of calculating the AUC. All these methods differ in the way the distribution functions 

of both populations are estimated based on their sample values. In Lopez-Raton et al (2012a), a review of all these 

methods to estimate ROC curve and AUCs is performed. The two basic methods of estimating AUC are the 

parametric (bi-normal) and non-parametric (empirical). 

 

Parametric (Binormal ROC curve) method 

This estimation is based on the assumption that the test results in the diseased and non-diseased populations or 

some unknown monotonic transformation of the test results follows a bi-normal distribution. Dorfman and Alf, Jr 

(1968, 1969) and McClish (1989) proposed maximum-likelihood estimates (MLEs) for the parameters of a bi-

normal ROC curve and provided parametric methods for estimating and comparing the partial AUC respectively.  

According to Dorfman and Alf (1968), McClish (1989), Metz (1978), suppose that continuous diagnostic test 

results are normally distributed in the healthy and diseased populations, to be able to properly define ROC curve, 

let Y denote a random variable representing a continuous diagnostic test result. The diagnosis according to any 

cutoff value c is positive (diseased) if Y ≥ c and negative (non-diseased) if Y < c. Let D0 and D1 denote the non-

diseased and diseased populations, respectively. The true and false positive rates at the cut-off value c, true positive 

rate, TPR(c), and false positive rate, FPR(c) are 
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where   denotes the standard normal cumulative distribution function. Note also that t is the all possible FPRs 

according to the varying c values in (−∞, ∞). Simplifying, we have 
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Equation 1.14 is the corresponding cut-off value.  

Hence 

The ROC curve is obtained by substituting for c in equation 1.13 to have the function 
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If according to McClish(1989) and Metz(1978), we define 
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 1
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In other to show that AUC measure has an analytic form, we recall and show that 1 0( )AUC P Y Y 
 under the 

binormal or bi-lognormal ROC curve, 

Let 0 1Y and Y
 be two random vectors that are independently drawn from the healthy and diseased population and 

0Y
 follows lognormal distribution with mean, 0  and variance, 

2

0
 and 1Y

 follows lognormal distribution with 

mean, 1  and variance, 
2

1
.We here use log transformation to the random vectors 0 1.Y and Y

Since 0 1Y and Y
 

follows log-normal distribution, then logarithm of 0 1Y and Y
follows normal distribution. Let 

1 1 0 0InY y and InY y 
 be for diseased and non-diseased group respectively, since it is easier to work with 

normal distribution than the lognormal distribution, 

Then 
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Where 1 0,and 
are the means and 

2 2

1 0, 
 are the variances of the result 1 0y and y

 respectively. 

This is the form AUC takes if binormality is assumed. The AUC can be obtained numerically by substituting the 

estimated values of the parameters given as 
2 2

1 0 1 0
垐 垐, , ,   

from the sample data.  

 

Alternative method of calculating AUC. 

Based on the bi-normal assumption, we know that 
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where 
(.)

 is the cumulative standard normal distribution function (Pepe,2003;Metz,1986;Zou et 

al,1997;Hanley and McNeil,1982).  

 

Estimating Variance of AUC 

The respective variances of 1 0
垐a and a

 are 
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where 1 0n and n
 are the numbers of diseased and non-diseased study subjects, respectively. The variance of 

AUC
)

 can be estimated by substituting estimators for the parameters 1 0.a and a
 To estimate the variance of 

AUC, recall that 
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The maximum likelihood estimate of δ is obtained substituting the MLE’s of the means and variances. 

The MLE of AUC is found by substituting the MLE’s of the means and variances into equation 1.20 and using 

numerical integration. The AUC now reduce to 
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Since 
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 is a monotonic increasing function of ̂ , it is enough to find the variance and standard error of 
ˆ.

Since   is a function of the parameters, 
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Hence the variance expression for ̂  can be obtained using the following expression 
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The variance of 
ˆAUC or ̂  can be obtained by substituting the estimated values of 
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1 0 1 0, , and   
 in the 

above expression. The standard error 
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of ̂  is just the square root of the above expression for the 

variance of estimated AUC. To determine the asymptotic 100(1-α) % confidence interval for AUC, we have 

 
2

垐. ( ) ( ) 1 .2 3C I A U C Z V   
 

Where  is the level of significance and 2
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NON-PARAMETRIC (EMPIRICAL ROC CURVE) METHOD OF CALCULATING AUC 

This method is employed if the normal assumption is violated or tenuous. There are distribution-free methods. 
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Some methods using the empirical ROC curve are the trapezoidal rule to approximate AUC by integration, the 

Mann-Whitney statistic and the empirical method by DeLong et al. (1988). 

 

Nonparametric (conventional) Delong et al method 

The empirical (nonparametric) method by DeLong et al. (1988) is a popular and best known method to compare 

two correlated AUCs by using the theory of generalized U statistics. They used the structural components method 

provided by Sen (1960) to generate consistent variance estimates of the elements of the variance-covariance matrix 

of a vector of U statistics, and the resulting test statistic has asymptotically a 
2

 distribution. This method is 

important as it helps to study the behavior of the type I error and the statistical power of the conventional 

nonparametric test for comparing two AUCs over a wide range of relevant parameters and against various 

alternatives. According to Delong et al. (1988), let the variance of 1Y
 being the component of the ith subject from 

the diseased population, 1( )iV Y
 be defined as 
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and the variance of 0Y
 being the component of the jth subject from the healthy population, 0( )jV Y

 be defined as 
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where 1 0n and n
 are the number of diseased and non-diseased subjects respectively. While  1 0i jY and Y

 are the 

diagnostic test result of the ith subject with disease and the diagnostic test result of the 
jth

 subject without disease 

respectively and   is a function comparing 1 0i jY and Y
 such that   
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The variance of the estimated AUC is estimated as 
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The variance of 0

2

YS
is similarly defined. 

 

THE TRAPEZOIDAL RULE AND MANN-WHITNEY U STATISTIC METHODS  

To calculate the AUC using the Trapezoidal rule, first the ROC curve is separated into many segments, the area 

of each segment is computed by joining the points (sensitivity, Se, 1-specificity, Sp) at each interval value of the 

continuous test results and draws a straight line joining the x-axis. This forms several trapezoids and the AUC can 

be easily calculated directly by summing the area of the trapezoids that are formed below the connected points 

making up the ROC curve. 

According to Bamber(1975), Hanley and McNeil (1982), the area under an empirical ROC curve, when 

calculated by the trapezoidal rule, is equal to the Mann-Whitney two sample statistics applied to the two samples 

since the nonparametric analog to the t-test is the Wilcoxon rank-sum test, or synonymously the Mann-Whitney U 

test. Here, the possible diagnostic test results for each cutoff value c are considered, and the corresponding true 
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and false positive rates are calculated by 
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where s1(c) is the number of subjects with test results greater than or equal to c(Y ≥ c) among the diseased subjects 

and s0(c) is the number of subjects with test results greater than or equal c(Y ≥ c) among the non-diseased subjects. 

The ROC curve is subsequently created by connecting these points with a straight line (Bamber, 1975;Hanley and 

McNeil,1982). The AUC of the nonparametric ROC curve is obtained using trapezoidal rule and is estimated by 
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where 1 0n and n
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AUC is estimated by substituting for equation 1.30 in equation 1.29 to yield 
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Since the Mann-Whitney U-statistic is based upon an estimate of 1 0( )P Y Y
, which is exactly the AUC, the 

properties of the Mann-Whitney U-statistic can be used to predict the statistical properties of the AUC(Hanley and 

McNeil,1982). The variance of the estimated AUC is computed using Mann-Whitney Statistic (Hanley and McNeil, 

1982) as: 
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where 0

y
n


 is the number of true negative subjects with test results equal to 1,
y

y n


 is the number of true positive 

subjects with test results equal to 0,
y

y n


 is the number of true negative subjects with test results less than 

1

y
y and n



is the number of true positive subjects with test results greater than y(Hanley and McNeil,1982).  

The trapezoidal approach systematically underestimates the AUC, because of the way all of the points on the ROC 

curve are connected with straight lines, rather than smooth concave curves which is normally experienced when 

the Mann-Whitney U statistic approach is used for estimation (Zhou et al, 2002).By increasing the number of the 

possible cut-off points, the bias of the estimation of AUC can be significantly reduced and make it acceptable for 

the estimation. Hanley and McNeil (1983) showed that the area computed by trapezoidal rule under an empirical 

ROC curve is equal to the Mann-Whitney U statistic for comparing correlated AUCs from two samples. In general 

the interpretation of the AUC is the same regardless of whether trapezoidal rule or the Mann-Whitney U statistic 
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was used. A way to compare the trapezoidal rule and the Mann-Whitney U statistic in estimating AUC is to 

compare their respective AUCs. In order to determine if the two AUCs are significantly different, the variances of 

both AUCs estimates must be taken into account.  

 

CLASSIFICATION MODELS ASSESSMENT 

Classification models discussed generally here includes logistic regression, discriminant analysis and dummy 

variable multiple regression because of their similarity in models and estimation techniques. Classification 

modeling has the purpose of finding a mathematical relationship between a response, or “dependent” variable and 

“independent” variables with the purpose of estimating the independent variables through which future values of 

the response variable could be predicted from the estimated variable(s). We shall verify the significance of AUC 

in assessing classification models. For instance, based on the previous works by Okeh and Oyeka 

(2014,2015,2016), on dummy variable regression analysis, predicted probability of positive response can be 

obtained and applied in calculating AUC for assessing the dummy variable regression model. This assessment is 

based on the p-value of the AUC calculated. So much have been said about some of these models: Ogum(2003) 

said that discriminant analysis is a rather powerful statistical tool when many variables (e.g. patients risk factors 

for diabetes) are to be considered simultaneously while Onyeagu (2003) viewed discriminant analysis as a 

technique concerned with the problem of classification in the sense that the output generated from these 

classification models belong to a certain range of values defined by the cut-off value c. This cut-off value if known 

or assumed can always be applied on the basis of which classification into groups of presence or diseased (coded 

1) or negative or non-diseased (coded 0) is made. Applying the cut-off value c in dichotomizing a continuous or 

discrete outputs into the range [1,0], so that this output 
( )y x

,is set such that 

1,
( ) 1 .3 4

0 ,

i f x c
y x

o t h e r w i s e


 

   
And can be used in constructing a contingency table from where a set of pairs of sensitivity and 1-specificity can 

be obtained for constructing the ROC curve and calculating AUC. The alternative method developed here in 

building a contingency table required having observed outcomes generated by equation 1.34 and predicted 

outcomes obtained from predicted probability of positive response. This method will be demonstrated as a new 

method under methodology.  

 

METHODOLOGY  

Here we propose a simpler method of calculating AUC from predicted probability of positive response obtained 

from classification models. We shall also propose an easy to understand method of comparing between two or 

more diagnostic tests in terms of their AUCs. To define the AUC, this paper adopted the pattern of Mann-Whitney 

(MW, 1947) statistic approach of calculating AUC based on predicted probability of positive response from 

classification models and observed outcomes. In particular to specify the observed subjects’ outcomes, let  

 

1,

0, (2 .1)

1, 2, ..., ; 1, 2, .., .

ij

ij

if x is the sam ple test resu lt o f the ith subject

y screened and tested positive at jth diagnostic test

o therw ise

for i n subjects j T diag test




 


 

 
In other to predict the outcome values or obtain the predicted subjects’ outcomes using the predicted probability 

of positive response denoted as, 
 ˆ 1ijP

, we propose to develop multiple rules, called  -prediction rules which 

represents unbiased estimate of an indicator variable 
 ,ij

y 
 used in modeling AUC and this is given as  

,

ˆ1, (1) 1 ; 0 1
ˆ 2 .2

0 ,

i j
i j

i f P
y

o th e r w is e


     
 



Where ,
ˆ

ijy   is the predicted outcome (in row) for ith subject at 
jth

 diagnostic test, 
ˆ (1)ijP

is the predicted 

probability of positive response of ith subject at the
jth

 diagnostic test. Also   is some probability real numbers 
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given the fact that the graph of ROC curve is within this probability range. Equation 2.2 implies that higher values 

of  means that more predicted outcome values will be 1 while lower values of  indicates that more predicted 

outcome values will be zero. 

 

CONSTRUCTING ROC CURVE BASED ON THE   PREDICTION RULES 

To construct ROC curve, let Y be a random variable representing a continuous diagnostic test result. To 

dichotomize these test results, we assume that there exist a cut-off value c such that test results of the population 

of diseased subjects(coded 1) are classified based on Y ≥ c and the population of non-diseased subjects(coded 0) 

are classified based on Y < c.  

Mathematically, using a cut-off value c to define a dichotomous test result from a continuous diagnostic tests 

 ( . )Y y 
 as diseased (D=1) if Y ≥ c and non-diseased (D=0) if Y < c. 

To construct ROC curve, let a total random sample of a+c subjects be observed outcomes 
( 1)ijy 

 that are 

known or believed on the basis of diagnosis to actually have the disease in a population and a total random sample 

of b+d subjects be observed outcomes  
( 0)ijy 

 from the same population known or believed on the basis of 

diagnosis not to actually have the disease. Similarly, let a total of a+b subjects be predicted outcomes ,
ˆ( 1)ijy  

 

that are estimated to have actually tested positive to the disease and let a total of c+d subjects be predicted outcomes 

,
ˆ( 0)ijy  

estimated to have actually tested negative to the disease. The resulting four fold contingency table for 

a given α–prediction rule is Table 1  

Table 1: Contingency Table notation for a given  –prediction rule 

   Observed  outcomes                 Total 

Predicted  outcomes 1ijy 
 

0ijy 
 

 

,
ˆ 1ijy  

 
a  b  a b  

,
ˆ 0ijy  

 
c  d  c d  

Total a c  b d  ..n n a b c d    
 

Note that a or true positive(TP) is the number of subjects that are observed to have disease 
 1

ij
y 

and predicted 

to have disease also 
 ,

ˆ 1
ij

y  
,b or false positive(FP)is the number of subjects that are observed not to have 

disease 
 0

ij
y 

and predicted to have disease 
 ,

ˆ 1
ij

y  
,c or false negative(FN)is the number of subjects that 

are observed to have disease 
 1

ij
y 

and predicted not to have disease also 
 ,

ˆ 0
ij

y  
,d or true negative(TN)is 

the number of subjects that are observed not to have disease 
 0

ij
y 

and predicted not to have disease also 

 ,
ˆ 0

ij
y  

 and ..n n a b c d    
 is the total number of subjects randomly sampled from the population.  

Based on the results in a classification table 1 for each model, we carry out ROC curve analysis to measure the 

accuracy of the diagnostic test in discriminating between alternative health status by first calculating the sensitivity 

and 1-specificity since ROC curve is a graph resulting from the plotting of these values. By varying the value of 
  in Equation 2.2 between 0 and 1 inclusive, we generate so many predicted outcomes that can be represented in 

there corresponding contingency tables for each model. Based on these tables, we calculate values of sensitivity 

and 1-specificity that will be used in constructing an ROC curve. Specifically here, each α-rule contributes one 

point to the ROC curve and so since a pair of sensitivity and 1-specificity values contributes one point to the ROC 

curve, several pairs will be used in constructing a smooth ROC curve. This method of defining AUC represents a 

shift from the existing works by Buros and Tubbs (2013); Hanley and McNeil (1982) and Mann-Whitney (1947).  

 

CALCULATING AUC BASED ON PREDICTED PROBABILITY OF POSITIVE RESPONSE 

To model the AUC based on the contingency table 1, let 1 0ij ijy and y
be the diagnostic test results of the ith 

subject at jth diagnostic test who are drawn randomly from the diseased and non-diseased population respectively 

while n represents the total number of sampled observations of subjects for those responding positive (diseased) 
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and negative(non-diseased) from the population, then the AUC is defined as     

 
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1 0
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if y y

y y if y y

if y y
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AUC y y y y
n

 

 
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

  
 

       




 

The AUC defined by equations 2.3 or 2.4 follows the non-parametric MW approach and it is rather flexible and 

yields ROC estimates even with a better precision than the MW approach or the trapezoidal rule for calculating 

the AUC. This method of calculating AUC avoids the computational complex procedures of the maximum 

likelihood estimation (MLE) and numerical integration methods which not only involves lengthy calculations but 

also have restrictive assumptions about the distribution of diagnostic test results. It is note worthy that estimates 

from parametric methods such as the method of MLE are inconsistent thereby giving a misleading picture of the 

regression relationship (Pepe, 2003). Our method of calculating AUC is unique in so many ways: it incorporates 

predicted probability of positive response in the construction of ROC curve and indeed AUC, it uses the   

prediction rule which enables the construction of very smooth ROC curve because several values of   normally 

will produce smoothness in the curve, the AUC calculated is also diagnostic test dependent since the test result 

depends on the test for the subjects and finally the method is not only simpler and straight forward but also it 

avoids the iteration procedure which is rigorous, time consuming and liable to errorrneous results. The new AUC 

if obtained for two or more diagnostic tests can be compared using a chi-square test statistic proposed for that 

purpose which approximates continuous distribution to discrete distribution as seen in a contingency table. 

 

APPLICATION TO REAL DATA 

The proposed methods can be applied to real data on gestational diabetes mellitus(GDM).This was a retrospective 

study of test results of pregnant women screened using 1 hour 50g Glucose Challenge Test(GCT) and diagnosed 

using 75g OGTT as well as 100g OGTT according to WHO(1999) and National Diabetic Data Group(NDDG,1979) 

criteria. These test results were collected using the simple random sampling method. Medical records showed that 

out of a total of six thousand and ten (6010) pregnant women registered for antenatal clinic (ANC) who were 

screened using a universal screening with 1 hour 50g Glucose Challenge Test (GCT) for GDM in the sampled 

hospitals within the two years (from January 2011 to December 2012) chosen for this study, a total sample of 1113 

pregnant women who had positive risk factors (such as positive family history of diabetes, age at least 30 years, 

BMI  30 kg/m2, previous fetal weight  4kg, and positive obstetric history of GDM) and aged between 15-45 

years at less than 24 weeks and between 24-28 weeks of gestation tested positive for GDM(indicating the presence 

of GDM) since their plasma blood glucose level was at least 140 mg/dl after 1 hour. These positively responding 

women were subsequently recalled for confirmatory diagnostic test using 2-hour 75g OGTT in accordance with 

the criteria set by WHO (1985) and later repeated using 3-hours 100g OGTT during the later part of their gestation 

period.  

The study protocol was according to the recommendations for universal screening by the Fifth International 

Workshop Conference on Gestational Diabetes (Metzger et al, 2007).The essence of the repeated tests was to 

actually determine the status of GDM in them. Since the results of the diagnosis are two, one stands the chance of 

comparing between their tests results (between 2-hours 75g OGTT and 3-hours 100g OGTT). Women who were 

known diabetics, or who were suffering from any chronic illness were excluded from the study. After obtaining 

permission from the hospitals’ Research and Ethics Committee, assess was granted into the record units of the 

antenatal wards of these hospitals where the medical history of the patients were kept in a proforma containing 

general information on demographic characteristics such as body mass index, maternal age, previous fetal weight 

and vital clinical histories such as obstetric history of GDM, and family history of diabetes were taken. BMI was 

calculated by dividing the weight in kilograms by the height in meters squared.  
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The data for this paper is recorded according to the number of pregnant women, GDM test results (response 

variable) and their observed risk factors or parent independent variables. This is suitable for fitting the 

classification models for analysis. Since we have two set of response variable from the two diagnostic tests, we 

took the average of the test results as observed outcomes. Analysis of this data will yield the predicted probability 

of positive response needed to be applied in calculating the AUC for the models. 

 

PREDICTED PROBABILITY OBTAINED FROM THE CLASSIFICATION MODELS 

We here calculate predicted probability of positive response from the classification models for the purpose of 

calculating the AUC. Fitting the data to the models, the analysis yielded the results shown in table 2. 

Table 2. Predicted probability from the classification models 

Classification models Predicted probability p-value F-ratio 

Logistic Regression 0.1949 0.0251 10.346 

Linear Discriminant Analysis  0.1184 0.0425 6.6421 

Dummy variable regression 0.4785 0.0013 15.843 

Having obtained the predicted probability of positive response for each of the models as in table 2, we now 

use each of them to find the predicted outcomes as defined in equation 2.2 as well as the observed outcomes as 

defined in equation 2.1. Since ROC curve has the ability of evaluating the discriminatory power of a continuous 

test result (observed outcome) to correctly assign into a two-group classification, the observed outcomes is 

dichotomized using at least 7.8mmol/l as cut-off value for GDM diagnosis as recommended. Having generated the 

observed outcomes based on equation 2.1 and predicted outcomes based on equation 3.2, the resulting coded data 

from these outcomes are cross-classified and will constitute as many tables as contingency table 2.5 for 

constructing ROC curve for each model. For instance, the contingency table 3 represents a pair of sensitivity and 

1-specificity out of 1113 pairs required for constructing the ROC curve for each model.  

Table 3. Outcome values for a given  –prediction rule 

 Observed Outcomes 

Predicted Outcomes Diseased Not diseased Total 

Positive  
11n

 12n
 1.n

 
Negative 

21n
 22n

 2.n
 

Total 
.1n

 .2n
 ..n n

 
Suppose each α-rule (for instance, table 3) contributes one point to the ROC curve, the estimates of sensitivity 

and specificity obtained from this table for generating the point is not enough to be used to obtain sufficient pairs 

of sensitivity and 1- specificity that will enable for the actual smooth ROC curve analysis for each model. In order 

to have sufficient estimated pairs of sensitivity and 1-specificity that can generate a smooth curve, we vary the   

value from 0 to 1 in the prediction rule of equation 2.2 so as to generate multiple prediction rule capable of being 

used in obtaining enough contingency tables for the construction of ROC curve. This computation is supported by 

SAS version 9 soft ware. The difference between one model and another model is the predicted probability of 

positive response for that model. The number of pairs of sensitivity and 1-specificity equals a sample size 1113 

for each model. Using this method, the AUCs are obtained for the models. 

 

ASSESSING THE DISCRIMINATING ABILITY OF CLASSIFICATION MODELS    

Assessment of classification models here is based on their discriminating or predictive ability of diagnostic 

accuracy. Since many models are available for assessment, interpreting and comparing the models using the ROC 

curves may be erroneous, instead the interpretation and comparison of the discriminatory accuracy of the test will 

be based on the AUC which summarizes the accuracy of each model. It is vital to note that these models were 

chosen because of their similar set of modeling techniques. The estimators of AUC for the selected models are 

estimated using both parametric and non-parametric methods. From Table 4, result shows that little differences 

exist among the non-parametric estimates than the parametric estimates. The highest difference in AUC can be 

seen in linear discriminant analysis. This may be due to its strict compliance to the normality assumption as well 

as equal variance.  
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Table 4. CLASSIFICATION MODELS AGAINST METHODS OF CALCULATING AUC  

 Classification models Binormal 

parametric 

mtd(parametric 

mtd) 

Predicted 

probability 

method 

(nonparametric 

mtd) 

Mann-Whitney 

U statistic 

method 

(nonparametric 

mtd) 

Trapezoidal 

Rule 

(nonparametric 

mtd) 

1 Logistic Regression 0.6284832 0.6034563 0.6007869 0.6034212 

2 Dummy Variable Regression 0.6194562 0.6004383 0.6003231 0.6007853 

3 Linear Discriminant Analysis 0.6384753 0.6013955 0.6002135 0.6011457 

 

NORMALITY TEST FOR THE CLASSIFICATION MODELS 

The test of normality for the models shows that after estimating maximum likelihood estimate ̂  by power 

transformation, it was discovered that only discriminant analysis is the distribution (Table 5) that have the normal 

distribution on the basis of the specification of Shapiro-Wilk normality test say at 0.05  . This test suggests 

that if the chosen alpha level is 0.05 and the p-value is less than 0.05, then the null hypothesis that the data are 

normally distributed is rejected. If the p-value is greater than 0.05, then the null hypothesis is accepted. Similarly, 

two test results such as X(diseased) and Y(non-diseased) may not follow normal distribution according to Krzyśko 

et al (2008), but the fact that parametric binormal ROC curve suggests that two test results such as X(diseased) 

and Y(non-diseased) must each follow normal distribution always give good results, due to the fact that ROC 

curves concerns itself with the relationship between distributions instead of the individual distributions. 

Table 5 Test of Normality for the classification models 

                       GDM STATUS 

  Diseased=1 Non-diseased=0 

  ̂  
p-value ̂  

p-value 

1 Logistic Regression 1.22 0.0350 1.19 1.05E-26 

2 Dummy Variable Regression 0.52 0.0112 0.74 1.03E-04 

3 Linear Discriminant Analysis 0.63 0.1064 0.69 2.16E-07 

Information in cells of Table 6 shows the p-values for the difference between two AUCs when the predicted 

probability method of calculating AUC is used. The null hypothesis of no difference in AUCs is rejected when 

any of the p-value is smaller than the level of significance ( 0.05  ). Table 2.8 showed that the AUCs for linear 

discriminant analysis did not show any significant difference because the assumptions of normality and equal 

covariance are not met while dummy variable regression analysis followed by logistic regression analysis showed 

significant differences in AUCs indicating their flexibility in handling data when the assumption of normality and 

equal variance is violated.  

TABLE 6. TESTING THE DIFFERENCE BETWEEN TWO MEASUREMENTS OF AUC USING P-

VALUES 

  Logistic 

Regression 

Dummy Variable 

Regression 

Linear Discriminant 

Analysis 

 Logistic Regression 0.02456234 0.013384476 0.03485746 

 Dummy Variable 

Regression 

 0.012759491 0.01625433 

 Linear Discriminant 

Analysis 

  1.00000000 

 

SUMMARY AND CONCLUSION 

The purpose of this paper was to evaluate the methods of calculating AUC and its significance in assessing 

classification models. In assessing these classification techniques, it was discovered that non-parametric methods 

of estimating AUC give convergent results in terms of their measurement for AUC while parametric approaches 

are known generally for the higher values of AUC. Practically, the assumption of normality cannot be achieved 

for the parametric methods of estimating AUC. This is why the non-parametric methods are recommended. The 

strength of our method is that it has easy implementation to discriminate diagnostic test procedures even by non-

statisticians. The proposed method offers reliable statistical inferences even in small sample problems and 

circumvent the difficulties of deriving the statistical moments of complex summary statistics. 

 

DISCUSSION 

The method of calculating AUC from predicted probability of positive response avoids the computational complex 
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procedures of the maximum likelihood estimation (MLE) and numerical integration methods which not only 

involves lengthy calculations but also have restrictive assumptions about the distribution of diagnostic test results 

since there are parametric methods. It is note worthy that estimates from parametric methods such as the method 

of MLE are inconsistent thereby giving a misleading picture of the regression relationship (Pepe, 2003). Our 

method of calculating AUC is unique in so many ways: it incorporates predicted probability of positive response 

in the construction of ROC curve and indeed AUC, it uses the   prediction rule which enables the construction 

of very smooth ROC curve because several values of   normally will produce smoothness in the curve, the AUC 

calculated is also diagnostic test dependent since the test result depends on the test for the subjects and finally the 

method is not only simpler and straight forward but also it avoids the iteration procedure which is rigorous, time 

consuming and liable to errorrneous results. Computational burden can still be substantial in binormal ROC curve 

as a method of calculating AUC because a number of iterative procedures that are involved in obtaining estimators, 

for instance MLE of AUC (Dorfmann & Alf 1969; Metz et al, 1998).  

 

RECOMMENDATIONS 

The new method of calculating AUC from predicted probability is recommended because of the reasons given 

above. It is highly recommended that non-parametric method of calculating AUC such as the predicted probability 

method be employed because of the fact that it is always distribution free and heavy computational procedures are 

not required. It is also advised that dummy variable regression be utilized in classifying disease conditions since 

it not discriminates well, it determines the contributions of the various levels of the parent independent variables. 
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