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Abstract 
Background: Malaria is a mosquito-borne infectious disease affecting humans and other animals caused by 
parasitic protozoans. The main objective of the study was to develop Bayesian spatial model for malaria risk in 
Wolaita and Dawuro zone of Southren Regional State, Ethiopia. 
Methods:  
In this study, malaria data obtained from seven woreda Health Centers of Wolaita and Dawuro zones at 345 
spatial locations were used. At these locations, about three hundred twelve respondents had malaria in their 
blood samples out of 5, 062 respondents were tested for malaria infection. In the analysis, Generalized Linear 
Mixed Model was fitted to estimate Generalized Linear Mixed Model parameters to identify significant 
explanatory variables analyzed by using  statistical softwares (STATAversion 12 and SPSS version 16).  
Result: The overall malaria prevalence in the study area was about 19.87%. Results indicate that malaria 
incidence follows spatial pattern because the test result indicates that there is statistically significant local 
clustering of malaria incidence at 5% level of significance. Statistically significant local clustering of malaria 
incidence is detected in all the woredas except in the two woredas (Kido Didaye and Loma woredas). In Kido 
Didaye and Loma woredas, the spatial correlation is negative that means the observed is less than that of 
expected value. The rest of the woredas exhibit positive spatial correlation since the observed value is greater 
than expected value. For Bayesian spatial models; the environmental factor elevation was negatively associated 
with malaria risk. This is to mean that as elevation above sea level of the study area increases, the chance of 
being a candidate of malaria decreases. A negative relation of maximum temperature with malaria risk reveals 
that the lower the maximum temperature the higher malaria risk.  
Conclusions: Spatial modelling of malaria risk was the basis for differentiation of predicted malaria prevalence 
from high level to low on a map. The differentiation may allow effective use of limited financial and human 
resources. It also helps to identify priority areas to control malaria in case of change of climatic variables. 
Keywords: Spatial autocorrelation, GLMM, Local risk factor, Global Local risk factor 
 
1. Introduction 
Malaria is a mosquito-borne infectious disease affecting humans and other animals caused by parasitic 
protozoans  or a group of single-celled microorganisms belonging to the Plasmodium type. Malaria cannot be 
prevented by vaccination but it can be prevented by medications, mosquito elimination, and prevention of bites. 
Prevention of malaria may be more cost effective than treatment of the disease in the long run. Use of mosquito 
nets assist mosquitoes reduce infection rates and transmission of malaria. Malaria is one of infectious disease 
affecting humans and other animals and the disease regularly transmitted by a contaminated female anopheles 
mosquito. A large number of children in Africa were passed away due to malaria. Out of two hundred seven 
million malaria cases, estimated amount of four hundred seventy three thousand to seven hundred eighty nine 
thousand were executed due to malaria disease [1]. Ethiopia is one of the Sub-Saharan African countries in 
which malaria leftovers is a leading communicable disease [2].  

Malaria is relatively meso-endemic, a severing infectious disease caused by the protozoan parasite called 
Plasmodium and which shows seasonal fluctuations due to seasonal variations in climatic conditions. Climates 
are highly related with the risk of malaria distribution and the transmission prototype is usually unstable and 
seasonal distinguished by cyclic prevalent epidemics. There are four main types of malaria communicate a 
disease to humans: Plasmodium falciparum, Plamodium vivax, Plasmodium malariae and Plasmodium ovale. In 
Ethiopia, Plasmodium falciparum and Plamodium vivax are the majority leading parasites [3].When we compare 
malaria death in Africa with America, death due to malaria in Africa is very massive than malaria death in 
America.  The number of death due to malaria in all age group was internationally declined from 2000 to 2015. 
However, a huge number of children killed by malaria in sub-Saharan Africa. In this report the large number of 
death were recorded in Africa (about 90%) and remaining 10% encompassed from other country [4]. 

In study conducted in Butajira, Ethiopia, a total of 19,207 individual samples in six survey on Prevalence of 
Plasmodium infection in about 0.93% � �����,���	 ∗ 100% were malaria positive. In the study, individuals with 
lowest wealth status affected higher compared with middle and higher wealth index (1.74%, 0.62% and 0.42%) 
respectively. At 5% level of significance, age category, gender, household, wealth index status, house status, 
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altitudinal strata and seasons all have significant influence on malaria infection. Due to seasonal variation, 
October to November 2009 category has highest influence on malaria prevalence and January to February has 
lowest influence. This is due to Malaria shows a strong seasonal pattern.The researcher had used multilevel 
mixed-effects logistic regression analysis and found that increased malaria prevalence in individuals categorized 
under five age group and when age group increases the risk of malaria decreases (1.77%, 1.68%, 0.74% and 0.45% 
for age category under 5 age category, 5-9, 10-14 and more than or equals to 15 respectively) [5]. 

Prevalence and risk factors of malaria study conducted in Ethiopia, the researcher examined age, sex, 
family size, region, toilet facility, main source of drinking water, availability of television, number of rooms 
(persons), main material of room’s wall, main material of room’s roof, main material of room’s floor, anti-
malarial spraying, number of nets (persons) and use of mosquito nets were statistically significant at 5% level of 
significance. Base on the result investigated via fitting a generalized linear modelby using statistical software 
(SAS version 9.2) the increment of the age  �OR � 0.970, CI � 0.319 � 2.505�of respondent inversely related 
with the odds of malaria prevalence [6]. 

Today, Ethiopia has made progress in reducing the number of malaria nationally, but the observed changes 
are not sufficient enough compared to the desired goals of the response against the epidemic. Given the size of 
population and the magnitude of the damage inflicted, it will take us a number of years to see significant declines 
in malaria prevalence and incidence. Malaria death and birth are known to vary geographical location and 
depend on eco-climatic conditions. Demographic, eco-climatic death factors, age, sex vary by geographical 
location, and many authors recommend that targeting interventions to the high malaria case are omitted due to 
inconsideration of spatial dependence. In this study the spatial distributions of malaria is assessed using spatial 
model along with meteorological and environmental variables of malaria incidence in Wolaita and Dawuro 
zones and to identify whether the distribution of malaria is clustered or not. Spatial models explain malaria 
morbidity variation by geographical location better than non-spatial models when limited data is available for 
meteorological variables. Incidences of malaria, which also vary spatially, raise the need for spatial models for 
covariates. Environmental variation risks can be quantified using spatial models of prevalence and morbidity 
heterogeneity. Furthermore, modeling the probability of contracting malaria is helpful to identify a group with 
higher chance of getting the disease and take evidence based on prevention measure. 

 
2. Methodology 
2.1 Source of Data 
In this study, malaria data obtained from seven woreda Health Centers of Wolaita and Dawuro zones at 345 
spatial locations were used. At these locations, about three hundred twelve respondents had malaria in their 
blood samples out of 5, 062 respondents were tested for malaria infection.  
2.1.1 Measurement  
The dependent variable in this study was malaria positive counts of individuals at household locations during the 
malaria season at the study area. Predicting whether an event will or will not occur and identifying the variables 
in making the prediction is an important step in carrying out the study. The independent variables: Minimum 
Temperature (MIT), Maximum Temperature (MAT), Rainfall (RF), Distance to nearest Water Body (DWB), 
Economic Status (Pooror Medium Status)Elevation (ELN), Normalized Difference Vegetation Index (NDVI)and 
Relative humidity (RH). 
 
2.2 Statistical Methods 
Statistical models are useful for quantifying the relation between malaria risk and environmental factors and 
upon this relation predicting malaria risk at locations without observed malaria data. 
2.2.1 Generalized Linear Mixed Model (GLMM) 
The generalized linear mixed model is an additional room of the generalized linear model, complicated by 
random effects. It has gained significant popularity in recent years for modeling binary/count, clustered and 
longitudinal data. The origin of the likelihood function is also straightforward for generalized linear mixed 
models. However, numerical methods are needed in most cases to obtain the Maximum Likelihood Estimators. 
The two scholars give a brief review of some numerical techniques, such as a restricted pseudo–likelihood, the 
Gauss–Hermite quadrature, and Bayesian methods [7].  

The malaria prevalence data were treated as binomial data and modeled by means of the logistic regression. 
Malaria positive counts of individuals at closer geographical locations are under similar climatic and 
environmental conditions. Analysis of spatially correlated data under the assumption of independence leads to 
overestimation of the statistical significance of the covariates. Based on the existing geographical information, 
spatial model incorporate spatial correlation. Spatial correlation is commonly taken as a function of the distance 
between locations for geo-statistical data [8].At each spatial household location �; � � 1,2,3, … . , � malaria test of 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 
ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 
Vol.8, No.15, 2018 
 

70 

individuals may result either malaria positive or negative individuals in their blood samples and  ! � "####$
 !� !�.... !%&''''( be 

the vector of p associated environmental predictors observed at location�.Suppose )! is binomially distributed 
random variable for all � and it is assumed to be the number of observed malaria cases between*! number of 
individuals in a household located at� . Thus,)!~	-��	�*! , .!� , with parameter .!  measuring malaria risk at 
location �. /�)!� � *!.! , 0�.!� �  !1� ,Where0	�. �  represents a link function which is given to be a logit 
function inmalaria risk study,  ! � 21,  !�,  !�, … .  !345  is a vector of q associated environmental predictors 

observed at location � and1 � 67778
1�1�1�...139:::;is a vector of regression coefficients. 

 
3. Results 
3.1.1 Descriptive Statistics for the Variables used in the Study 
In this study, malaria data obtained from seven woreda Health Centers of Wolaita and Dawuro zones at 345 
spatial locations were used. At these locations, about three hundred twelve respondents had malaria in their 
blood samples out of 5, 062 respondents were tested for malaria infection. The overall malaria prevalence in the 
study area was about 19.87%. The spatial data used for the spatial stationary model and validation are displayed 
in the given figure in appendix (figure 1). 
3.1.2 The Moran’s I and Geary’s C coefficient 
Moran’s I is similar but not equivalent to a correlation coefficient.  It varies from -1 to +1.  In the absence of 
autocorrelation and regardless of the specified weight matrix, the expectation of Moran’s I statistic is <�=<�, which 
tends to zero as the sample size increases.  For a row-standardized spatial weight matrix, the normalizing factor 

0S  equals n  and the statistic simplifies to a ratio of a spatial cross product to a variance.  A Moran’s I 
coefficient larger than <�=<� indicates positive spatial autocorrelation, and a Moran’s I less than <�=<� indicates 
negative spatial autocorrelation.Geary’s C ranges from 0 (maximal positive autocorrelation) to a positive value 
for high negative autocorrelation. Its expectation is 1 in the absence of autocorrelation and regardless of the 
specified weight matrix [9].If the value of Geary’s C is less than 1, it indicates positive spatial autocorrelation. 
The Moran’s I and Geary’s C coefficient, both being among the most widely implemented measures of spatial 
autocorrelation between neighboring districts. In this section, our focus is on their application to particular data 
analysis, the essential task being to seek for spatial pattern. First, the global Moran’s I and Geary’s C test 
statistics were computed to test the null hypothesis. 
Null hypothesis 

• There is no significant clustering of malaria incidence in the entire study region. 
(>�: ? � 0� 

Alternative hypothesis 
• There is significant clustering of malaria incidence in the entire study region at 5% level of significance 

(>�: ? @ 0�.The test was repeated using diagnostic for spatial dependence to validate the consistency of 
results. 

3.1.3  Moran’s I and Geary’s C Test Statistics for Global Spatial Autocorrelation 
The aim of estimating Moran’s I and Geary’s C test statistics for global spatial autocorrelations to measure the 
strength of spatial autocorrelation surrounded by neighboring woreda of malaria incidence, to seek for spatial 
pattern or to diagnosis for spatial dependence in regression model.  

In the above table (table 2), the test results indicate the presence of significant global spatial autocorrelation 
of malaria incidence. These global results in the distribution of malaria need to be further explored using local 
spatial statistics. Based on the P-values of the Moran’s I and Geary’s C coefficients output, we can reject the null 
hypothesis of there is no spatial autocorrelation or there is no significant clustering of malaria incidence in the 
entire study region. Additionally, the calculated	A � BCDC�BC�E	for Moran’s I is positive and for Geary’s C is 
negative showing the existence of significant positive spatial autocorrelation (clustering). 
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3.1.4 Local Moran’s I Test Statistic for Spatial Autocorrelation 
Local statistics are used to identify where high or low values cluster. Local Moran’s I and local Getis statistics 
are computed to test the null hypothesis of no local spatial clustering among malaria incidence at neighboring 
woredas [10].As can be seen from the results of local Moran’s I test(table 3), it shows results of local Moran I as 
a function of neighboring values. Results indicate that malaria incidence follows spatial pattern because the test 
result indicates that there is statistically significant local clustering of malaria incidence at 5% level of 
significance. Kindo Koysha, Damot Woyide, Duguna Fango, Tercha and Marka woredas are statistically 
significant local clustering of malaria incidence where asKido Didaye and Loma woredas are statistically 
insignificant at 5% level of significance. In these woredas which are categorized under insignificant at a given 
level that implies high value is surrounded by low values and vice- versa is true for neighboring woredas.  
3.1.5 Inference for Spatial Non-stationary Model 
In appendix (table 1), Coefficients whose the 95% dependable interval does not include zero with in interval are 
considered to be significant and Coefficients whose the 95% dependable interval does not include zero with in 
interval are considered to be significant.Explanatory variables ELN, MAT, MIT, NDVI and RF are statistically 
significant at 5% level of significance.  

The 95% credible intervals for the parameters in spatial non-stationary modelling of malaria risk in 
Bayesian setting. Moreover, the median of the spatial correlation parameter in sub-region oneand two 
were0.21089 with the 95% dependable interval �0.03254, 0.26249�  and0.00720with the 95% dependable 
intervals �0.00985, 0.00986�respectively. For Bayesian spatial models; the environmental factor elevation was 
negatively associated with malaria risk. This is to mean that as elevation above sea level of the study area 
increases, the chance of being a candidate of malaria decreases. A negative relation of maximum temperature 
with malaria risk reveals that the lower the maximum temperature the higher malaria risk.  
3.1.6 Fitting Spatial Autoregressive Models 
Spatial autoregressive models are the error generating process and operate with spatial weight matrices that 
specify the strength of interaction between neighboring sites[11]. We will use a spatial autoregressive model to 
measure the relationships between malaria incidence rate and meteorological variables obtained at a 
neighborhood sites. In the given table below (table 4), results of Spatial Lag Model-Maximum Likelihood 
Estimation output analysis of malaria risk , all the variables except cold zone were found  to have  significant 
effect on malaria distiributions at 5% level of signficance.   
Consequently, the fitted spatial lag model equation is given by: - YJK � βM�X� O βM�X� O βMPXP O βMQXQ O βMRXR O βMSXS /BC�TDCUV	WDXDY�D	Y�BZ	 � 1.260 (spatially lagged malaria incidence)O1.261(mid-land   zone)O2.688(hot 
zone� O 0.697(rainfall� O 1.459(maximum temperature� O 1.084(minimum temperature). 
As the values of coeffiecients of variables (table 4) implies the statistical association between malaria  incidence 
and  minimum temprature (1.084 ) was less compared with that of association between malaria incidence and 
maximum temprature (1.459). When the amount of temprature increases it would increase the rate of mosquito 
emergence from breeding places. The increased temperature allows the development of parasites to occur in the 
mosquitoes, and the mosquito population also increases as the temperature rises. 
 
4. Discussion  
This study is undertaken to develop and apply Bayesian spatial model for risk in Wolaita and Dawuro Zone of 
SNNP Regional State, Ethiopia. Secodary data used for analysis was taken from selected health centers of two 
woredas mentioned in above statement. Malaria disease is predisposed by both environmental and climatic 
factors. The relation of malaria prevalence and explanatory variables can be established by statistical models.  

According to this research finding minimum temperature, maximum temperature, rainfall, hot zone and 
mid-land zone are statistically significant at 5% level. Other similar study conducted in Switzerland shows that 
NDVI, maximum temperature, minimum temperature and rainfall were significantly associated with malaria 
prevalence. As statistical output presented in table 4, areas characterized by minimum temperature, maximum 
temperature, rainfall, hot zone and mid-land zone were strongly associated with the risk of malaria and risk of 
spatial clustering. In adding up, maximum and minimum temperatures were found to be significant, indicating 
strong relationship between temperature and malaria risk [8]. The main concern of spatial study of malaria risk 
was to demonstrate spatial patterns and levels of malaria prevalence. The findings of the study showed that 
malaria prevalence exhibits spatial patterns with varying levels of malaria prevalence and a significant 
association with climatic and environmental variables. Global Moran's I computed over the study area suggested 
the presence of spatial cluster of malaria positive individuals. The presence of clustering was in agreement with 
the studies carried out by [13]. In this study, rainfall was associated negatively with malaria prevalence. The 
outcome was not in agreement with no association of rainfall with malaria prevalence outcome obtained [13].  
Again, it was not in agreement with the study carried out in Switzerland in SNSM [8]. The possible explanation 
for the outcome of the study could be the more likely get ride off larva of infectious mosquitoes by high and 
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relatively consistent levels of rainfall across the study area over the malaria season. On the contrary to the 
positive association of distance to nearest water body to malaria prevalence done in Switzerland [8], it was not 
significantly associated with malaria prevalence in this study. This may be due to seasonal or episodic nature of 
the water bodies or people awareness in keeping the water bodies clean so as to avoid the possible occurrence of 
malaria. High rainfall may be a manifestation of high relative humidity. According to this study, the higher the 
rainfall, there could be less likely occurrence of malaria. Similar relation may hold for relative humidity. 
However, it was not related with malaria prevalence in this study. This is possibly the insignificant variation of 
relative humidity over the study area. Moreover, local spatial statistics were used to test the spatial dependency 
in the patterns of malaria distribution, detect pockets of disease and identify the relevant spatial scale at which 
local cluster of malaria occurs. In order to better understand the factors associated with spatial differentials, with 
malaria risk distribution were analyzed. The result helps to identify woredas with malaria burden. 

 
5. Conclusions 
This study was performed for Spatial Modelling of Malaria Risk in Bayesian Setting in a Case Study of Wolaita 
and Dawuro Zones in SNNPR, Ethiopia. The results of the analysis show that the risk of malaria in the study 
area exhibits a spatial pattern which is dependent on some meteorological variables. Non-spatial analysis was 
performed by fitting Generalized Linear Mixed Model using the explanatory variables in cooperation. As a result, 
minimum temperature and NDVI were positively and significantly related with malaria prevalence. The results 
of the analysis also obscured negative and significant effects from elevation above sea level, maximum 
temperature and rainfall on malaria risk. Distances to nearest water body and relative humidity were not 
significantly related with malaria prevalence. In addition to this, significant local clustering of malaria risk 
occurs among woredas within neighboring woredas. Spatial modelling of malaria risk was the basis for 
differentiation of predicted malaria prevalence from high level to low on a map. The differentiation may allow 
effective use of limited financial and human resources. It also helps to identify priority areas to control malaria in 
case of change of climatic variables. 
List of abbreviations 
DWB  Distance to nearest Water Body 
ELN  Elevation 
FMoH  Federal Ministry of Health 
GLMM  Generalized Linear Mixed Model 
MAT  Maximum Temperature 
MIT  Minimum Temperature 
NDVI  Normalized Difference Vegetation Index 
RH  Relative humidity 
SNNPRS Southern Nation Nationalities and People Regional State 
SPSS  Statistical Package for Social Sciences 
WHO  World Health Organization  
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Appendix 
Table 1: Posterior Estimates in Spatial Non Stationary Model. 

Variables Median 95% Dependable interval 
INT 54398.1876 (-8589.02894, 87691.5219) 

DWB 0.53241 (-0.39871, 0.26548) 
ELN -0.69850 ��0.89241, �0.41259�∗ 
MAT -69.26927 (-96.35281, -13.86101)* 

MIT 91.12528 (16.25907, 102.59109)* 

NDVI 0.85691 (0.00896, 0.99895)* 

RF -95.36879 (-159.02951, -26.00818)* 

RE -0.52044 (-0.79337, 0.22011) 
RH -85211.52648 (-109.23658, 12529.02009) λ� 0.21089 (0.03254, 0.26249) λ� 0.00720 (0.00985, 0.00986) δ�� 0.60123 (0.65009, 0.98502) δ�� 0.00347 (0.00013, 0.03095) 

 
Table 2: Results of Global Moran’s I and Geary’s C Statistics 
Assumption Coefficient  Observed Expected Dev.Std Z ]^_` a |c| 
Normality Moran’s I 0.7341 -0.0215 0.2001 3.78 <.0003* 
Normality Geary’s C 0.0413 0.9872 0.3511 -2.69 <.0020* 
Asterisked p-values indicate the significance of the covariates at 5% level. 
 
Table 3: Results of Local Moran’s I Test 
S. No. Woreda Observed  Expected  Std Dev.  Z P-value  
1 Kindo Koyisha 0.8412 -0.3553 0.5322 2.25 0.0005 
2 Kindo Didaye -0.3291 -0.1063 0.0950 -2.35 0.1009 
3 Damot Woyide 0.7121 -0.3391 0.3587 2.93 0.0005* 
4 Duguna Fango 0.2160 -0.2579 0.1072 4.42 0.0004* 
5 Tercha 0.4572 -0.2930 0.0936 8.01 0.0001* 
6 Loma  -0.5057 -0.1173 0.1405 -2.76 0.0607 
7 Marka 0.5481 -0.6305 0.4069 2.90 0.0038* 

Asterisked p-values indicate the significance of the covariates at 5% level. 
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Table 4: Results of Spatial Lag Model Estimation 
Variable  Coefficient  St.d error  t-statistic P-value 
Constant  0.517 0.315 1.64127 0.101 
W-malaria  1.260 .349 3.61032 .0000* 
Cold -0.263 0.230 -1.1435 0.253 
Mid-land 1.261 .443 2.84650 .0041* 
Hot 2.688 .445 6.04045 .0000* 
Rainfll .697 .336 2.07440 .0381* 
Max temp.  1.459 .513 2.84405 .0040* 
Min.temp.  1.084 .367 2.95368 .0030* 
Asterisked p-values indicate the significance of the covariates at 5% level 
 
Figure 4.1: Spatial Data for Spatial Stationary Model  

 
(a) Spatial Data for Estimation                          (b) Spatial Data for Model Validation  
 
 
 
  


