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Abstract 
Mathematical Models have been very useful in understanding the spread and control of diseases. We will use 
Mathematical model to investigate the dynamics of spread of Lassa fever in human population. We will examine 
the contributions from regular contact with the species of rodents that carry the virus that cause Lassa fever and 
infections contract with persons suffering from the disease is seen as significant in the spread of the disease. We 
examined the factors that influence equilibrium prevalence, the steady states of the model are also examined for 
epidemic and endemic situations. Among several intervention measures, control of the rodents carrying the virus, 
isolation policy for persons infected with the virus and introducing vaccines to the human population are some of 
the best strategies against the spread of the disease. 
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1. Introduction 
When infectious disease starts to spread in any given population, the most important thing in the mind of the 
people is how best to combat the outbreak or at least control the number of infections. Vaccination, quarantining 
the infective and antiviral drugs which are some of the control measures are costly and time consuming, so any 
means that will help to predict the outcome is highly welcome.  

Mathematical models are useful and powerful tool for investigating human infectious diseases, 
providing useful predictions about the potential transmission of the disease and the effectiveness of possible 
control measures. As a result of this, the relationship between mathematics and epidemiology has been on the 
increase. For the mathematician, epidemiology provides new and exciting branches, while for the epidemiologist, 
mathematical modeling provide an important research tool in the study of the evolution of diseases. 

In 1760, Daniel Bernoulli proposed a smallpox model which was useful in understanding the disease 
and this model is considered by many as the first epidemiological mathematical model. The theoretical papers 
provided by Kermack and McKendrinck, between 1927 and 1933 on infectious disease models, have had a great 
influence in the development of mathematical epidemiology models (Helena 2012, .   McCormick et al 1986). 
Mathematical models are increasingly being used to clarify the transmission of several diseases, so that the 
researcher can gain important knowledge of the underlying aspects of the infectious diseases spread out and also 
to evaluate the potential impact of control programs in reducing morbidity and mortality (Harper, 2004). 

After the Second World War, the strategy of public health has been to focused on the control and 
elimination of the organisms that causes diseases.  Furthermore, malaria, tuberculosis, dengue and yellow fever 
have re-emerged as a result of climate Changes and has spreads into new regions ( Hethcote, 2000)). 

The successful containment of the emerging diseases is not just linked to medical infrastructure but also 
on the capacity to recognize its transmission characteristics and apply optimal medical and logistic policies. 
Public health often asks information such as (Anderson and May, 1991) how many people will be infected, how 
many require hospitalization, what is the maximum number of people ill at a given time and how long will the 
epidemic last. 

A comprehensive survey was carry out by (Anderson and May, 1991) on the use of Mathematics to 
study infectious diseases, and since that revelation there has been a great increase in the number of mathematical 
epidemiology papers in circulation. Many infectious diseases are spread by vectors, which transfer pathogens 
from humans to humans, humans to animals or vice versa. The emergence of such vector-borne diseases seems 
especially to have stimulated recent interest. One of the early known vector-borne disease models studies carried 
out, was done (Rogers et al 2003).  Many other authors have also studied various vector-borne diseases, such as 
malaria (Eunha Shim 2012, Jacob C Koella.1991), West Nile virus (Gustavo Cruz-Pacheco et al 2005), and 
dengue fever (Lourdes Esteva and Cristobal Vargas, 1998) 

The focus of researcher now is in the use of models with control measures for disease eradication and 
control. (Lourdes Esteva and Cristobal Vargas 1998) focuses, is how best a persons should make use of social 
distancing and self-protective behaviors during an epidemic  (Althouse et al. 2010) provided a quantitative 
framework for making allocation decisions in the presence of different externalities associated with control 
measures such as vaccination or antibiotic treatment.( Mbah et al. 2012) looked at the effects of both imitation 
behavior and contact heterogeneity on vaccination coverage and disease dynamics. Unfortunately, there are very 
limited control measures for most of the vector-borne diseases. Vaccines, is only available for only a few 
diseases such as yellow fever, Japanese encephalitis, tick-borne encephalitis, tularemia, plague, but are not 
widely used.  Some widespread diseases, such as West Nile virus, malaria, Lassa and dengue fever, don’t have 
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vaccine till now. People have to depend on vector control programs such as the removal of breeding sites 
generated by humans in households, parricidal control, and Marathon spraying to target adult vector populations. 
Other controls rely on shortening the mean vector life span. However, these methods appear not to be 
sufficiently effective, as the frequency of these diseases outbreaks appears to be increasing in some areas. As a 
consequence of a lack of efficient control measures, mathematical models of vector-borne disease seldom 
incorporate the ideas of how to curb the disease, and mostly focus on the dynamic transmission of the diseases 
by using various approaches. 
 
2. Related work 
Many pathogens have the ability to infect different species. Lassa fever virus is an important example; this virus 
infects a species of rodent in West Africa, and can cause a severe disease in people. Lassa fever virus is 
transmitted from rodent-to-rodent, rodent-to-human, human-to-human and perhaps human-to-rodent. So far, the 
relative importance of these routes has not been assessed (Richmond and Baglole, 2003). 

It is a known fact that disease spread through four basic infectious agents which are viruses, bacteria, 
protozoa and helminthes. (Enns 2011).  There are also four basic ways of transmission of disease by these 
infectious agents. They are Human to human, Human to environment to human, Reservoir to humans, Reservoir 
to vector to human.  The term vector refers to insects and reservoir refers to other non-human vectors such as 
dogs, foxes and rats (Eze et al 2010).  

Lassa fever is a virus transmitted disease; it is under Reservoir to human as mentioned above. The 
incubation period of Lassa fever is 1 to 3 weeks. The disease is endemic in West Africa mostly Nigeria, Liberia, 
Sierra Leone and Guinea. The earliest record of the disease was in the 1950s but the virus was isolated by the 
Centre for Disease Control (CDC), Atlanta, USA, in 1969, from a sample taken from a missionary worker in 
Lassa village in northern Nigeria (Fisher-Hoch 1995).  Humans are infected with this disease by eating foods 
that is contaminated with saliva, urine or excreta of the hosted Lassa virus rat. Nosocomial transmission may 
occur through droplets by person to person contact or the contamination of needles (Fisher-Hoch 1995). The 
symptoms and signs of the disease are similar to the symptoms and signs of malaria, typhoid and yellow fever. 
The symptoms and signs include fever, nausea, vomiting, chest pain, puffy face, puffy cheeks, edema, 
dehydration, conjunctiva injection, fainting attacks, bleeding from orifices, hypotension, shock and coma 
(Harper 2004, McCormick et al 1986, Okuonghae and Okuonghae  2006). 

It has the potential to cause tens of thousands of deaths and after recovery, the virus remains in the body 
fluids, including semen (Timothy C Reluga 2010). The mortality rates for Lassa virus are typically estimated at 
15% to 20%. Some studies estimate mortality as high as 45%. One survey of Lassa infection viscous mortality 
rates indicates that less than 1% of all Lassa-virus infections in West Africa will eventually result in fatal disease. 
The mortality rates for Lassa appear to be much higher in people of non-African stock. (Richmond and Baglole , 
2003). Lassa virus also causes high fatal mortality and high mortality in pregnant women. The mortality rate is 
92% for fetuses in early pregnancy, 75% for fetuses in the third trimester and100% in the neonatal period for 
full-term babies. High concentrations of the virus have been found in both fetal tissue and in the placenta 
(Timothy C Reluga 2010). 

The health workers and policy makers have been battling with this disease in various areas and looking 
for way to put an end to this problem. A mathematical model can be of great help to give better solution to this 
problem. The disease transmission can be represented by a dynamical nonlinear system.  
 
3.    Research Objectives and Approach 
The objectives of this work are to show how a nonlinear mathematical model will aid in implementing health 
policy and to show the rate of spread of Lassa fever. Also, how the solution of system of ordinary differential 
equations of SEIS model can be used to control the spread of Lassa fever. 

We make use of modeling approach to analyze data from published outbreaks and the number of Lassa 
fever hospitalized patients.          
 
4. Current Work and Preliminary Results 
The model will be an SEIS model coupled to a population of the rodent species Mastomys-natalensis. The 
rational for using an SEIS is as a result of recovered individuals could become susceptible to the disease again. 
In this model effort will be made to ensure that the basic variables involved in the disease dynamics are captured. 
The mathematical model is: 
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                                                                    1.1 

S(0)=N, E(0)=0, I(0)>0, R(0)=0. 
The symbols used in the model are listed in Table 1 and a diagrammatic representation of the model is in Figure 
1. 
Table 1: Symbols used in the mathematical model 
S Number of susceptible 
E Number of those who are exposed to Lassa fever 
I Number of those who are infected with Lassa fever 
R  Population of rodents carrying the virus 
N Total population of humans  
B Human birth rates per day 
D Death rate of the rodents per day 
R Growth rate of the rodents per day 
K Carrying capacity of the environment for the rodents 
µ  Human death rate per day 
β  contact rate of infection from susceptible to exposed per day  
α  Infectious contact rate with rodent per day 
γ  Rate at which infected recover from Lassa per day 
η  Contact rate of infection from exposed to infected class per day 

 
Figure 1: Diagrammatic representation of the model 

Equation 1.1 describes the dynamics of susceptible, exposed and infected individuals as well as the 
rodent population. The first equation in (1.1) describes the dynamics of susceptible. The population is of constant 
size N. the susceptible are renewed at a rate b and die at rateµ . The susceptible become infected with the 
disease due to contacts with rodents (as a result of eating the rodents, food contaminated with rodent’s fasces, 
urine and saliva) at rate α  and also due to infectious contacts with individuals suffering from Lassa fever at rate
β . Since we are using the SEIS model, recovered individuals get back to the susceptible pool at rate γ  
(recovering rate). 

The second equation in (1.1) describes the dynamics of the exposed people in the given population; 
those exposed to Lassa fever. The equation shows that the expose population increases as susceptible become 
infected (the first term in the second equation) and decreases at the rate at which they die. 

The third equation in (1.1) describes the dynamics of the infected people in the given population; those 
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suffering from Lassa fever. The equation shows that the infected population increases as susceptible become 
infected (the first two terms in the third equation) and decreases as they recover from the disease and the rate at 
which they die. 

The fourth equation in (1.1) describes the dynamics of the rodent population. We use logistic growth 
equation to describe the population of the rodents, with K being the environmental carrying capacity for the 
rodents and r the growth rate. The rodents die (either naturally or by outright killing) at the rate d.  

All individuals in human classes die at the same rate µ . For the sake of the model, we assume that the 
birth and the death rate are equal.  
 
Equilibrium Analysis 
We have to perform the equilibrium and the stability analysis of the model for a better understanding of the 
dynamics of the disease. We set each of the four derived equations in (1.1) equal to zero and solve for S, E, I and 
R. This gives the fixed points, or equilibrium solutions; that gives values of S, E, I and R for which the system 
will no longer change (that is all the derivatives or rate of change will be zero). 
 
Stability Analysis 
We need to compute the linearization of the system, to determine the population behavior near the equilibrium 
solutions. We will get this from the Jacobian matrix of the system. 
From the system of equations in (1.1), the Jacobian matrix is as below.  
 

0
0 0

0

0 0 0 1

I R S S
I

R I S S
R rRr d
K K

µ β α β γ α
β η µ

α β β γ µ α

− − − − + − 
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 + − −
 

  − − −    

                                                   1.2 

We will work out the stability analysis using the Jacobian in 1.2 above. 
Lassa free population. 
When (S*, E*, I*, R*) = (N, 0, 0, 0) this is a disease free equilibrium point. 
For the points (S*, E*, I*, R*) = (N, 0, 0, 0), the Jacobian matrix of the system is the matrix below 

0
0 0 0
0 0
0 0 0

N N

N N
r d

µ β γ α
η µ

β γ µ α

− − + − 
 − − 
 − −
 

− 

                                                                                                       1.3 

The eigenvalues of the Jacobian are 1 2 3 4, , ,N r dλ µ λ η µ λ β γ µ λ= − = − − = − − = −  
For the stability of the disease Free State, all eigenvalues of (1.3) must be negative. This is only possible if and 
only if    
        Nγ µ β+ >                                                                                                                                          1.4 
            d r>                                                                                                                                                  1.5   
If (1.4) and (1.5) are achieved, then the disease dies out. 
From (1.4) we can obtain threshold condition. Which is given as  

 N γ µ
β
+

<                                                                                                                                                     1.6 

The critical susceptible pool is given as                

cS γ µ
β
+

=                                                                                                                                                     1.7 

If the initial susceptible, i cS S> , then the disease will spread and there will be an epidemic.   From (1.7) the 
basic reproduction number for the infection is given by  
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γ µ
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+

                                                                                                                                              1.8 

If 1oR > , a disease outbreak will occur, but if 1oR <  the number of Lassa cases will reduce and will in fact 
return to zero. 
 
6.   Conclusions 
Effort must be made to reduce the spread of Lassa fever by reducing the basic reproduction number Ro, it must be 
below 1, if it is more than 1 the disease will not die out. To achieve this, the transmission rate must be very Low.  
The contacts rate of sick individual with other must be low to prevent the transmission rate. Good health policy 
must be implemented. 
 
7.   References 
1. Anderson R.M. and May R.M. (1991). Infectious   Disease of Humans, Oxford University Press, Oxford. 
2.   Benjamin M Althouse, Theodore C Bergstrom, and Carl T Bergstrom (2010). A public choice framework for 
controlling transmissible and evolving diseases. Proceedings of the National Academy of Sciences, 107(suppl 
1):1696-1701. 
4. Eunha Shim, Zhilan Feng, and Carlos Castillo-Chavez.(2012) Differential impact of sickle cell trait on 
symptomatic and asymptomatic malaria. Mathematical biosciences and engineering: MBE,9(4):877. 
5. Enns R.H, LLC (2011). It’s a Nonlinear World, Springer Science Business Media DOI 10, 1007/978-0-387-
75340-9-10. 
6 . Eze K. C, Salami T.A.T, Eze I. C, Pogoson A. E, Omordia N, Ugochukwu M. O,    (2010). High Lassa fever 
Activity in Northern Part of Edo State, Nigeria: Re-analysis of Confirmatory Test Results, African Journal of 
Health Sciences, Vol. 16, No. 3-4, 52-56.  
8.  Fisher-Hoch S.P, Tomori O, Nasidi A, Perez-Oronoz G.I, Fakile Y, Hutwagner L, McCormick J.B, (1995) 
Review of Cases of Nosocomial Lassa fever in Nigeria: The High Price from Poor Medical Practice, British 
Medical Journal, 311: 857-859  
9. Fisher-Hoch S.P, Hutwagner L, Brown B, McCormick J.B, (2000). Effective Vaccine for Lassa fever, Journal 
of Virology, 74: 6777-6783. 
10. Gustavo Cruz-Pacheco, Lourdes Esteva, Juan Antonio Monta~o-Hirose, and Cristobal Vargas.(2005) 
Modelling the dynamics of West Nile virus. Bulletin of mathematical biology, 67(6):1157{1172}.   
11. Harper, T. K. (2004) Lassa fever. Available at www.tarakharper.com/vLass.html 
12. Helena S. F. R. (2012). Optimal Control and Numerical Optimization Applied to Epidemiological Models 
13. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42(4). 
14. Jacob C Koella.(1991) On the use of mathematical models of malaria transmission. Acta tropica, 
49(1):1{25}.   
15.Lourdes Esteva and Cristobal Vargas (1998). Analysis of a dengue disease transmission model. Math-
ematical biosciences, 150(2):131{151}. 
16. Martial L Nde_o Mbah, Jingzhou Liu, Chris T Bauch, Yonas I Tekel, Jan Medlock, Lauren Ancel Meyers, 
and Alison P Galvani (2012). The impact of imitation on vaccination behavior in social contact networks. PLoS 
computational biology, 8(4):e1002469. 
17.   McCormick J.B, King I.J, Webb P.A, Scribner C.L, Craven R.B, Johnson K.M, Elliot L.H, Belmont-
Williams R, (1986). Lassa fever. Effective Therapy with Ribavirin. New England Journal of Medicine, 314: 20-
26.  
18. Murray, J. D. (2002). Mathematical Biology. Springer-Verlag. 
19. Okoror L.E, Esumeh F.I, Agbonlahor D.E and Umolu D.I, (2005). Lassa virus: Sero epidemiological Survey 
of Rodents Caught in Ekpoma and Environs, Tropical    Doctor, 35: 16-17. 
20. Okuonghae D and Okuonghae R.(2006).Mathematical model for Lassa fever.  
21.   Richmond J.K and Baglole D.J, (2003). Lassa fever: Epidemiology, Clinical Features and Social 
Consequences, British Medical Journal 327:1271-1275 
22.  Rogers, D. J., Onstad,D.W and R Killick-Kendrick, R.(1988) The dynamics    of vector-transmitted diseases 
in human communities [and discussion]. Philosophical Transactions of the Royal Society of London. B, 
Biological Sciences, 321(1207):513{539}.  
23.  Timothy C Reluga (2010). Game theory of social distancing in response to an epidemic. PLoS 
computational biology, 6(5):e1000793. 
24.  World Health Organization: WHO Lassa fever fact sheet No179, Geneva, WHO, 2000. 


