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Abstract  

This paper proposes a Bootstrap algorithm for linear discriminant analysis. The apparent error rate in the Linear 
discriminant method and the proposed bootstrap method were compared. From the result, it is evident that the 
proposed Bootstrap method compares favorably with the Linear discriminant method with a reduced error rate.  
Keywords: bootstrap, linear discriminant, apparent error, multivariate, algorithm 
 

1.0  Introduction 

Linear Discriminant Analysis is a multivariate method of finding a linear combination of variables which best 
separates two or more classes. It is used when dealing with continuous independent variables and a categorical 
dependent variable. The performance of a discriminant criterion could be evaluated by estimating the 
probabilities of misclassification of observation.  

According to Efron (1979), the Bootstrap method is a non-parametric technique that resamples the 
original data. The idea behind Bootstrap is to use the data of a sample study for the purpose of approximating the 
sampling distribution of a statistic.  

Linear discriminant analysis is used to discriminate and classify set of data as long as the data involved 
do not have linear dependencies and are drawn from a multivariate normal distribution and the groups have the 
same covariance matrix. Therefore, this work intends to compare the Bootstrap method and the Linear 
Discriminant method to identify which of the method  performs better based on their error rate. 

 

2.0 Materials and Method  

2.1 Method 

The classification rule is to assign an object to the group with highest conditional probability (that is the Bayes 
rule). Let C and D represent two groups, the Bayes rule is to assign the object to group C if 

 According to Teknomo (2006) the probability  that an observation 

belongs to group C, given a set of the independent variables X, and, the probability   that an 
observation belongs to group D given a set of independent variables X are 

 
Where,   

 
By Bayes rule, assign observations to group C if 

  
simplifying 

  



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.6, No.1, 2016 

 

81 

Using the assumption that in LDA the data comes from multivariate normal distribution whose probability 
density function (PDF) is given by  

 

 
Assign observations k to group C if  

  
Simplifying both sides of (5), we obtain 

 
Taking log of both sides of (6) 

  

 
 

2.2 Proposed Bootstrap Algorithms for Estimating Error Rate in Discriminant Analysis 

 

 
2. Obtain the matrix for the independent variables say X matrix of dimension n × p and Y (n×1) column 

vector for groups of observation, and partition the matrix X into XC and XD the number of groups 
available, p is the number of independent variables and n is the total number of observations for the 
groups combined.  

3. Compute the various means for each predictor variable for both groups and then obtain the Bootstrap 

group means which is given as    (Obiora-ilouno and Mbegbu(2012)). 
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5. Classifying the observation in the sample with the Bayes classification rule we obtain probability of 

misclassification   and Error Rate (APER)   
6. Repeating steps 1 - 5 r times (r = 1, 2, …, B) where B is the number of repetition. 
7. Compute the mean of all Bootstrap Error Rate obtained from the Bootstrap samples, 

8.   which is the Bootstrap Error Rate. 

  
2.3 Data Collection 
The data used to implement this algorithm is a Secondary data collected from the pre-science unit of (Nnamdi 
Azikiwe University, Awka). The number of students admitted and not admitted into the University through the 
Pre-science programme were used. The student’s individual scores in the University Tertiary Matriculation 
Examination (UTME) and their corresponding scores in Pre-Science examinations were considered as 
independent variable in order to determine true classification of students admitted into the university.  R code 
was used for the statistical analysis of these data 

Using the Linear Discriminant Analysis to classify students into their various groups of ‘admitted’ or 
‘Not admitted’  

 
 

3.0 Results and Discussion. 

3.1. Results 

The tables below shows the results gotten using the R code using the data in Appendix I which is the student 
scores in UTME and the four highest scores from five different subject taken by 50 students 
Table 2: Table showing Group means for each of the independent variables for the analytical method 

 UTME Subject 1 Subject 2 Subject 3 Subject 4 

1 207.421  58.474 64.947 84.263 66.737 

2 180.161 26.000 23.516 19.677 36.774 

 

Table 3: Table showing the Coefficients of linear discriminant function   

UTME   0.0017522282 

Subject 1 -0.0302208034 

Subject 2 -0.0007046323 

Subject 3 -0.0890596209 

Subject 4   0.0137982325 

 

Table 4: Table showing the true classification of students 

Confusion Matrix 

 

ACTUAL 

PREDICTED 

ADMITTED  NOT ADMITTED 

ADMITTED  19            1 

NOT ADMITTED 0           30 

TOTAL 19 31 

From the Confusion Matrix in Table 4 the Apparent Error Rate for The LDA is 0.02 and the Percentage 
of correctly classified (PCC) for LDA 98% 

Estimating the Bootstrap error rate for 100 Bootstrap samples each of size n = 50 was used as shown in 
Table 5 below. 

Table 5: Group means for the 100 Bootstrap Samples 

 UTME SUBJECT 1 SUBJECT 2 SUBJECT 3 SUBJECT 4 

1  207.9474 56.57895              66.05263 82.57895              60.94737 

2 178.4839              27.93548              24.80645 18.22581              40.83871 
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Table 6: Coefficients of linear discriminant function 

UTME 0.003145706 

SUBJECT 1 -0.041049879 

SUBJECT 2  -0.024705002 

SUBJECT 3  -0.139888570 

SUBJECT 4   0.047445213 

 

Table 7: The probabilities of Correctly Classified (PCC) observation for the 100 Bootstrap sample. 

Bootstrap samples Probability of correctly classified observation 

1 -  7 0.930 0.930 0.943 0.917 0.903 0.927 0.910 

8  -  14 0.910 0.920 0.927 0.920 0.923 0.923 0.940 

15  -  91 . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

92  -  98 0.937   0.890 0.913 0.910 0.920 0.940 0.930 

99  -  100 0.933 0.900      

The mean of the 100 Bootstrap samples which is the percentage of correctly classified observation is 
0.983 or 98.3% 

Bootstrap Error Rate =  
Therefore, Bootstrap error rate is 0.017 

 

Table 11: Summary of the coefficient of linear discriminant function for Normal Linear discriminant 

function and Bootstrap  Linear discriminant function (n=50, B=100 &1000) 

Variables  Normal Linear 

discriminant function 

Bootstrap values for 

B=100 

Bootstrap values for 

B=1000 

UTME  -0.0151 0.0031  0.0028 

SUBJECT 1     -0.0089 -0.0410   0.0068 

SUBJECT 2     -0.0254  -0.0247  -0.0332 

SUBJECT 3     -0.0486  -0.1399  -0.1934 

SUBJECT 4 -0.0112   0.0474   0.0225 

Table 12 shows the summary of error rates obtained from the Linear discriminant method and proposed 
bootstrap method with bootstrap samples of 100 and 1000 respectively. 

 

Table 12: Comparison of Error Rates 

Linear discriminant method APER Bootstrap Error Rate 

Linear discriminant  B=100 B=1000 

0.020 0.017 0.019 

 

3.2  Discussion 

From the result of the analysis, the analytical method has an error rate of 0.02, the bootstrap error rate for B=100 
and 1000 yielded an error rate of 0.017 and 0.019 respectively, indicating that the Bootstrap error compared 
favorably with the analytical method with a reduced error than the analytical method. 

 

4.0 Conclusions 

Bootstrap method for estimating the error rate using the linear discriminant analysis has been proposed in the 
paper. The results obtained as shown in Tables 11 and 12 indicates that the Bootstrap methods produced smaller 
error rate indicating that the Bootstrap algorithm proposed yielded a better reduced error rate. 
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APPENDIX I 

S/N Group Jamb A B C  D 

1 1 211 48 60 90 54 

2 1 193 55 48 87 54 

3 1 196 73 52 85 74 

4 1 218 48 58 88 57 

5 1 222 63 82 83 74 

6 1 186 51 56 80 56 

7 1 251 59 75 81 60 

8 1 209 50 80 89 68 

9 1 199 55 64 63 48 

10 1 214 69 84 94 77 

11 1 196 71 70 90 92 

12 1 195 60 80 88 72 

13 1 209 57 46 87 67 

14 1 182 69 84 86 70 

15 1 204 48 54 84 61 

16 1 231 58 54 83 69 

17 1 205 67 73 81 76 

18 1 237 63 40 80 60 

19 1 183 47 74 82 79 

20 2 168 43 60 77 53 

21 2 262 37 35 42 57 

22 2 200 19 28 23 35 

23 2 155 28 18 23 39 

24 2 200 53 45 22 61 

25 2 183 23 15 22 63 

26 2 219 25 19 20 37 

27 2 180 13 16 19 22 

28 2 128 33 33 19 22 

29 2 161 26 20 19 31 

30 2 199 33 20 19 37 

31 2 191 14 14 18 26 

32 2 231 17 14 18 28 

33 2 175 25 19 18 30 

34 2 169 20 06 18 36 

35 2 201 31 21 18 37 

36 2 129 28 39 18 44 

37 2 176 36 45 18 45 

38 2 170 24 38 18 49 

39 2 183 10 20 17 22 

40 2 167 17 22 17 26 

41 2 173 36 26 17 28 

42 2 218 20 16 17 33 

43 2 171 25 04 17 35 

44 2 164 10 08 12 24 

45 2 153 24 14 12 31 

46 2 172 41 18 12 33 

47 2 154 39 37 12 50 

48 2 160 13 11 12 27 

49 2 156 11 22 08 31 

50 2 217 32 26 08 48 
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APPENDIX II 

The Computer Program in R For the Bootstrap 

DATAb=read.table("data.txt", header=TRUE) 
NewData <-matrix(0,50,6) 
for(j in 1:6) 
  {  
    NewData[,j] <- DATAb[,j] 
} 
nsampl<-50 
B = 100 
boot.samples<-array(rep(0), dim=c(nsampl,6,B) ) 
for( i in 1:B){  
  SG1<-c(sample(1:19, 19 , replace=TRUE)) 
  SG2<-c(sample(20:50,31, replace=TRUE)) 
  boot.samples[,,i] = (rbind( NewData[SG1,],NewData[SG2,] )) 
}  
NewData = as.data.frame(NewData) 
cf = rep(0,B) 
for(i in 1:B)  
  {  Cla <-lda(boot.samples[,1,i]~ boot.samples[,2,i] + boot.samples[,3,i] + boot.samples[,4,i] + boot.samples[,5,i] 
          + boot.samples[,6,i] ) 
DATALL<-predict(Cla,newdata=NewData[, 2:6])$class 
tab=table(DATALL,NewData[,1]) 
cf[i] = (tab[1,1] + tab[2,2])/50 } 
cf 
BER=1-mean(cf) 
BER 
 

The computer program in R for the Linear Discriminant Analysis 

rm(list=ls(all=TRUE)) 
library(MASS) 
DATA<-read.table("r.txt", header=TRUE) 
head(DATA) 
plot(DATA[,c(2,3,4,5,6)],col=DATA[,1]) 
 
DATAL<-lda(Group~Jamb+A+B+C+D,data=DATA) 
DATAL 
DATALL<-predict(DATAL, newdata=DATA[,c(2,3,4,5,6)])$class 
tab=table(DATALL,DATA[,1]) 
dimnames(tab)<-list(Actual=c("Admitted","Notadmitted"), Predicted=c("Admitted","Notadmitted")) 
#con<-rbind(tab[1,]/sum(tab[1,]),tab[2,]/sum(tab[2,])) 
#dimnames(con)<-list(Actual=c("Admitted","Notadmitted"), Predicted=c("Admitted","Notadmitted")) 
print(round(tab,3)) 
N=sum(tab[1,])+sum(tab[2,]) 
APER=(tab[1,2]+tab[2,1])/N 
APER 
PCC=((tab[1,1]+tab[2,2])/N)*100 
PCC 
 


