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Abstract 

In this paper we extracted microphysical properties of six types of atmospheric aerosols from Optical Properties 

of Aerosols and Clouds (OPAC) and numerically analyzed the analytical expressions for the changes in the 

equilibrium relative humidity (RH), effective radius, effective hygroscopic growth, the magnitudes and fractional 

changes in the effective radii  and the effective hygroscopic growth on the effects of surface tension (the Kelvin 

effect) on ambient atmospheric aerosols. The expressions were applied to two - one parameter models. We 

discovered from the analysis of the data extracted that, to the lowest order error, the change in the equilibrium 

RH, effective radii and effective hygroscopic growth depend on the compositions of the aerosols. From the two 

models used, we also discovered that the fractional changes in the ambient RH, effective radii and effective 

hygrosocopic growth, also depend on the aerosols compositions. Finally, we discovered that the magnitude of 

the Kelvin effect and its consequences on the atmospheric aerosols depend on the hygroscopicity of the aerosols. 

Keywords: Kelvin effect, effective radius, effective hygroscopic growth, atmospheric aerosols, ambient Relative 

Humidity. 

 

1. INTRODUCTION 

The atmospheric RH in equilibrium with the aqueous solutions of atmospheric aerosols at a given temperature 

depends on the hygroscopic nature of the solutes, their compositions, concentrations and the effective sizes of 

these aerosols [1,2]. The continuous variability of these characteristics of these aerosols with the ambient RH 

automatically affect their surface activities and can influence climate by changing the effective surface tensions 

of water and can result in changes in cloud droplet concentrations and consequently change in cloud albedo 

[3,4]. Chemical compositions of aerosol particles released from natural and anthropogenic sources are also not 

homogeneous either locally or globally, hence characteristics such as hygroscopicity and surface tension are 

significantly different from one particle to another, controlling the particle’s ability to form cloud droplets and 

also their ability to act as cloud condensation nuclei (CCN). Aerosols that act as cloud condensation nuclei 

(CCN) to form new cloud droplets usually contain high amount of hygroscopic components and are within 

effective the size ranges of 0.1-1.0 µm [5]. 

The equation that is often used to describe both hygroscopic growth of aerosol particles and their 

activation to cloud droplets is the Kohler equation which is divided into two as: (1) the Kelvin effect; this is 

responsible for the increase in equilibrium water vapor pressure over a curved surface, and is directly 

proportional to the effective surface tension as a result of the solution–air interface [6]. For an aqueous solution 

drop with given concentration, the equilibrium fractional relative humidity increases with decreasing drop 

radius; and (2) the Raoult effect; this is the reduction in water activity associated with solute dissolution in terms 

of either effective hygroscopic growth and/or the effective radius of the mixtures at given RHs. 

Theoretically, cloud droplet formation is enhanced by the dissolutions of water soluble aerosols and 

the reduction in surface tension by surface-active materials. A sensitivity study for the prediction of cloud 

droplet numbers dealing with the above factors suggests that variabilities in the chemical compositions of aerosol 

particles strongly contribute to the variability of cloud droplet numbers [7]. The importance of reduction of 

surface tension has been discussed by several researchers [8,9]. However, attempts to measure the surface 

tension of real particles in the atmosphere are limited [3,4,9,10,11] , and insufficient to estimate the surface 

tension of atmospheric aerosol particles under various conditions. Further, a lack of information on the bulk 

hygroscopicity (i.e., solute effect) of the aerosols also limits the prediction of cloud droplet formation. Only one 

constant value of hygroscopicity has been applied in global models dealing with direct and/or indirect effects of 

organic aerosols [12,13] despite the fact that the effective hygroscopicity of these aerosols vary depending on 

their sources and ages [14]. 

This paper examines the effects of Kelvin effects, the quantities it depends on and its effect on 

effective radii and effective hygroscopic growth on six types of atmospheric aerosols extracted from OPAC at 

eight RHs of 0, 50, 70, 80, 90, 95, 98, and 99%. The atmospheric aerosols extracted are Antarctic, Arctic, 

Continental Clean, Desert, Maritime Clean and Urban. The microphysical properties extracted are the individual 

aerosols radii and their volume mix ratios. The analytical expressions derived by Lewis [15] for the changes in 
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the equilibrium radius of a solution drop, the hygroscopic growth, estimates in the changes of their magnitudes 

and their fractional changes due to the Kelvin effect with dependences on surface tension, particle sizes are 

numerically analyzed. We then applied the expressions to two known one parameter models. They are the power 

law dependence (γ-model) and the model as proposed by Petters and Kreidenweis [16]. 

 

2. METHODOLOGY 

The models extracted from OPAC are given in Table 1. 

Table 1 Compositions of aerosols types at 0% RH [17]. 

S/N 

Aerosols 

Model Types 

Aerosols 

Comp. No. Conc. (cm
-3

) 
Rmin (µm) Rmax (µm) sigma Rmod (µm) 

1 Antarctic 

ssam(sol) 0.0470  0.005  20.00 2.03 0.2090  

mitr(ns) 0.0053  0.020  5.00  2.20 0.5000  

suso(sol) 42.9000  0.005  20.00  2.03 0.0695  

2 Arctic 

inso(ns) 0.0100  0.005  20.00  2.51 0.4710  

waso(sol) 1,300.0000  0.005  20.00  2.24 0.0212  

soot(ns) 5,300.0000  0.005  20.00  2.00 0.0118  

ssam(sol) 1.9000  0.005  20.00  2.03 0.2090  

3 Cont. Clean 
waso(sol) 2,600.0000  0.005  20.00  2.24 0.0212  

inso(ns) 0.1500  0.005  20.00  2.51 0.4710  

4 Desert 

waso(sol) 2,000.0000  0.005  20.00 2.24 0.0212  

minm(ns) 269.5000  0.005  20.00 1.95 0.0700  

miam(ns) 30.5000  0.005  20.00 2.00 0.3900  

micm(ns) 0.1420  0.005  60.00 2.15 1.9000  

5 
Maritime 

Clean 

waso(sol) 1,500.0000  0.005  20.00  2.24 0.0212  

ssam(sol) 20.0000  0.005  20.00  2.03 0.2090  

sscm(sol) 0.0032  0.005  60.00  2.03 1.7500  

6 Urban 

waso(sol) 28,000.000  0.005  20.00  2.24 0.0212  

inso(ns) 1.5000  0.005  20.00  2.51 0.4710  

soot(ns) 130,000.00  0.005  20.00  2.00 0.0118  

The sol and ns show that the aerosols are soluble and insoluble respectively, the inso represents the 

water-insoluble part of aerosol particles and consists mostly of soil particles with a certain amount of organic 

material. The waso represents the water-soluble part of aerosol particles that originates from gas to particle 

conversion and consists of various kinds of sulfates, nitrates, and other, also organic, water-soluble substances. 

Thus it contains more than only the sulfate aerosol that is often used to describe anthropogenic aerosol. The soot 

component is used to represent absorbing black carbon. Carbon is not soluble in water and therefore the particles 

are assumed not to grow with increasing relative humidity. The ssam and sscm are Sea-salt accumulation and 

coarse modes particles that consist of the various kinds of salt contained in seawater. Mineral aerosol or desert 

dust is produced in arid regions. It consists of a mixture of quartz and clay minerals and is modeled with three 

modes to allow and consider increasing relative amount of large particles for increasing turbidity. The mitr are 

Mineral transported, is used to describe desert dust that is transported over long distances with a reduced amount 

of large particles. Mineral aerosol particles are assumed not to enlarge with increasing relative humidity. The 

suso is sulfate component (75% H2SO4) is used to describe the amount of sulfate found in the Antarctic aerosol. 

Mineral (nucleation mode) MINM, Mineral (accuumulation mode) MIAM, and Mineral (coarse mode) MICM, 

are mineral aerosols or desert dusts that are produced in arid regions. They consist of mixtures of quartz and clay 

minerals and are modeled with these three modes to allow considering increasing relative amount of large 

particles for increasing turbidity 

The Kelvin effect and water activity are the major parameters that made hygroscopic growth of 

aerosols to be size and composition dependent. The growth of aqueous droplets in ambient RH is commonly 

described by Köhler theory [1,18,19]. According to Kohler theory, the equilibrium water vapor saturation ratio S 

is given by 

S=awKe     (1) 

where aw denotes the water activity or Raoult term, and Ke is the Kelvin effect.  

The relationship between droplet radius and RH at equilibrium can also be given as: 

 
where vw is the partial molar volume of water, σ is the surface tension of the solution at the composition of the 

droplet, R is the universal gas constant, T is the temperature and r(S) is the equilibrium radius.  
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For single-solute particles, the equilibrium water vapor saturation ratio S for a droplet can be described by [20]: 

 

where  and  are assumed to be constant, r(s) and r(s=0) are the radii of the mixtures or 

the volume equivalent radii of the wet and dry mixtures, respectively, σ is the surface tension, v w and vs are the 

molar volumes of pure water and solute, respectively, ν is the degree of dissociation, and φ is the osmotic 

coefficient. The product of ν and φ is equivalent to the so-called van’t Hoff factor [21], R and T are the gas 

constant and temperature, respectively. 

The aerosol’s hygroscopic growth factor g(S), [22,23] is defined as: 

 
where S is taken for eight values 0%, 50%, 70%, 80%, 90%, 95%, 98% and 99% RH.  

Substituting equation (4) into equation(3) we obtain 

 
Comparing the first term on the right hand side of equation (5) with equations (1) and (2), we get 

 

Now comparing the second term on the right hand side of equation (5) with equation (1) and (2), we get 

But generally atmospheric aerosols usually comprised mixtures of soluble and insoluble components, therefore 

the information on the hygroscopicity modes was merged into an “over-all” or “bulk” or “effective” hygroscopic 

growth factor of the mixture, geff(S), representative for the entire aerosols particle population as: 

The effective or volume equivalent radius of the mixture was determined using the relation 

 
where the summation is performed over all compounds present in the particles and xk represent their respective 

volume fractions, using the Zdanovskii-Stokes-Robinson relation [24,25,26,27].  

Therefore for atmospheric aerosols, equation (5) can be written to represents the property of the bulk 

components using equations (8) and (9) as: 

 
using multiple regression analysis with SPSS 16.0 for windows, the constants A and B were determined. 

The first term on the right hand side of equation (10) can replace equation (6) as 

 
This implies 

 
Where a characteristic length for the effect of surface tension  on the mixture or the effective Kelvin radius 

 
The second term on the right hand side of equation (10) is 
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The parameter B was described as the bulk hygroscopicity factor under subsaturation conditions [20]. 

From equations (11) and (12), equation (1) for multiple components can be written as 

 
The error to the first order on ambient RH due to the effect of Kelvin effect on equation (13) was determined by 

Lewis [15] as : 

 
The lowest correction on the effective hygroscopic growth due to the Kelvin effect was also obtained by Lewis 

[15] as: 

 
Similarly, the lowest-order correction to the effective radii due to the Kelvin effect was determined by Lewis 

[15] as: 

 

The first model was used to determine the Kelvin effect is the empirical γ-model that was used in a lot of 

literatures [28,29,30,31,32,33,34,5,36,37] to describe the hygroscopic growth of atmospheric aerosol particles as: 

 
where the values of n depends on the type of solutes and on the range of relative humidity; and is typically in the 

range 0.20–0.33, taking values near 1/3 for S near unity, consistent with vapor-pressure lowering given by 

Raoult’s Law [38].  

To evaluate equations (15) and (16) for the model given by equation (17), we used the following relations which 

were determined by us and Lewis [15]  as: 

 
and 

 
We determined the fractional changes in the effective hygroscopic growth and effective radii due to the Kelvin 

effect from equations (18) and (19) as: 

 
The second model is the relation between geff(S,0) and S that has been parameterized in a good approximation by 
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a one-parameter equation, proposed e.g. by Petters and Kreidenweis [16], the k-model, Gysel et al., [39]  and 

used extensively by some researches [33,34,35,36,37] as: 

 
The coefficient κ is a simple measure of the particle’s hygroscopicity and captures all solute properties (Raoult 

effect), that is, it is for the ensemble of the particle which can be defined in terms of the sum of its components. 

In an ensemble of aerosol particles, the hygroscopicity of each particle can be described by an “effective” 

hygroscopicity parameter κ [16,40]. Here “effective” means that the parameter accounts not only for the 

reduction of water activity by the solute but also for surface tension effects [41,42]. It also scales the volume of 

water associated with a unit volume of dry particle [16] and depends on the molar volume and the activity 

coefficients of the dissolved compounds [43].  

Evaluation of equations (15) and (16) for the model given by equation (22) we determined : 

 
From equation (22) the fractional change in the effective hygroscopic growth factor and effective radii due to the 

Kelvin effect were determined using equations (23) and (24) as 

 

The fractional change in the equilibrium pressure  due to the error in Kelvin effect on 

equation (14) was determined as  

 

where   is the actual RH. 

 

RESULTS AND DISCUSSIONS 

Table 2: The results of the regression of equation (10), the critical water vapor of super saturation using equation 

(28), the effective radii of the aerosols at 0% RH using equation (9) and the percentage by volume of water 

soluble components of the aerosols. 

 equation (10) Equa (9)  

equ 10 R
2
 A (Kelvin radii) (µm) B (Bulk hygroscopicity factor) 

reff (µm) at 

0% RH 

% vol. of water 

solubles 

Antarctic 0.9957 0.0221 1.4648 0.1916 94.82 

Arctic 0.9957 0.0268 1.5819 0.2075 79.22 

Cont. Clean 0.9970 0.0066 0.4125 0.3685 52.12 

Mari. Clean 0.9893 0.0512 2.1480 0.5926 100.00 

Sahara 0.9990 -0.0186 0.0194 1.1284 1.71 

Urban 0.9979 0.0054 0.3727 0.3421 44.93 

From table 2, it can be seen that, from the values of R
2
, that the data fitted the equation very well. By 

comparing A(Kelvin radii) and B (Bulk hygroscopicity factor) with the effective radii of the aerosols at 0%, it 

can be observe that they don’t depend on the initial size of the radii. But by analysing their compositions from 

table 1, it can be seen that both A and B depend on the nature of the compositions. From the values of Kelvin 

radii, it can be seen that it is negative for the Saharan aerosols. It can be concluded that, the Kelvin radii, apart 

from positive for concave curvature and zero for flat surface, but it can also be negative which can be called as 

convex curvature. By comparing the values of the effective radii at 0% RH, the Kelvin radii and the Bulk 

hygroscopicity factor, it can be concluded that the most important parameter in the formula is the Kelvin radii. 
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Figure 1: A plot of Kelvin effect of the aerosols against Relative Humidity using equation (11b). 

From figure 1, it can be seen that Kelvin effect on the Saharan aerosols is independent of RH (that is it 

is constant) and is less than 1. Secondly, the urban and continental clean have the same type of behavior, in that 

they increase slightly with the increase in RH and are slightly more sensitive at higher RHs (95 to 99). Lastly, 

the remaining are more sensitive to RH although the sensitivity increases with increase in RH in a non-linear 

form. By comparing figure 1, with table 2, it can be observe that apart from high percentage of hygroscopic 

solutes, the next important parameter that effect Kelvin effect is the effective radii, that is, the smaller the 

effective radii the higher the Kelvin effect. 
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Figure 2: A plot of Route effect (water activity) of the aerosols against Relative Humidity using equation (12b). 

From figure 2, the plot of RH which is the ambient RH is used to compare how the Route effects affect 

the ambient RH for the aerosols. From the figure it can be seen that Route effect lowers the ambient RH of 

Arctic, Antarctic, Maritime clean, Urban and continental clean, while it raised that of Saharan aerosols. By 

comparing the plots in the figure with the values of reff at 0% RH and % by volume of water soluble from table 2, 

it can be observe that the route effect is higher for the aerosols that are very hygroscopic and smallest effective 

radii. By comparing figure 2 with the reff at 0% RH and % by volume of water soluble, it can be observe that, not 

only the high % of water soluble that is important, but also the effective radii of the mixture. 
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Figure 3: A plot of S(RH) of the aerosols against Relative Humidity using equation (13). 

Figure 3 shows the plots of calculated S using equation (13) for the aerosols and the ambient RH. 

Comparing this figure with figures 1 and 2, it can be seen that for Saharan aerosols, Route effect is more 

dominant at the RH of 70, 80 and 90%, while for the remaining five aerosol, the Kelvin effects are more 

dominant at the RH of 50, 95, 98, and 99% RH. 
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Figure 4: A plot of ∆S of the aerosols against Relative Humidity using equation (14). 

Figure 4 shows the plots of the amounts by which the equilibrium RH of the aerosols is larger than the 

water activity due to the Kelvin effect. From the figure, it can be observe that for Sahara the error in RH shows 

overestimation and it increases almost linearly with the RH from 0.008 to 0.018. For the remaining five aerosols, 

we observed some underestimation within 0.008 to 0.095 depending on the type of the aerosols and RHs and the 

errors are very sensitive to RHs. 
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Figure 5: A plot of ∆geff of the aerosols against Relative Humidity using equation (15). 

Figure 5 shows the plots of the change or correction in the effective hygroscopic growth due to the 

Kelvin effect. From the figure, it can be observe that the corrections in the effective hygroscopic growths due to 

the Kelvin effects are that for five aerosols they are over estimated at different levels, while for Sahara they are 

underestimated. The errors in the estimations increase in almost exponential or power form with the increase in 

RH. It also shows that, the estimation depend on the degree of hygroscopicity.   
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Figure 6: A plot of ∆reff of the aerosols against Relative Humidity using equation (16). 

Fgure 6 shows the corrections to the effective radii due to the Kelvin effect. it can be observe that the 

error corrections in the effective radii due to the Kelvin effect is that for the six aerosols are similar to that of 

figure 5. However, there is a decrease in the overestimation for five aerosols, while for Sahara there is an 

increase in the under estimation. 
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Table 3: Equation (17): The results of the regression of equation (17), using the ambient RHs and the water 

activity. 

 equ17 

R
2
 n 

Antarctic 0.9891 0.2816 

Arctic 0.9942 0.3317 

Cont. Clean 0.9997 0.1981 

Mari. Clean 0.9868 0.3544 

Sahara 0.8661 0.0766 

Urban 0.9995 0.1950 

From table 3, by observing the values of R
2
, it can be observe that the data fitted the equation very 

excellent. As determined by Lewis & Randall, (1961), that n is typically in the range 0.20–0.33, taking values 

near 1/3 for S near unity, it can be observe that, the values of n also depends on the types of the aerosols and 

compositions.  
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Figure 7: A plot of ∆geff(RH) of the aerosols against Relative Humidity using equation (18) 

Figures 7 shows the correction to the effective hygroscopic growth due to the Kelvin effect on 

equation (17) using equation(18) with the increase in RH. From the figure, it can be seen that Antarctic has the 

highest overestimation followed by Maritime clean, then Arctic. For Urban and continental clean the effect is 

negligible. However, for Sahara underestimation is observed. 
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Figure 8 : A plot of ∆reff(RH) of the aerosols against Relative Humidity using equation (19). 

Figure 8 shows the plots for correction of the effective radii of the aerosols due to Kelvin effect with 

RH for equation (17) using equation (19). From the figure, it can be observe that the overestimation due to 

Kelvin effect is higher for Antarctic and Maritime clean and the errors become more important at higher RHs. 

But for Arctic, Urban and Continental clean, the error is very small, though it becomes higher as from the RHs of 

95, 98 and 99. For Sahara, we can see underestimation that is more important at higher RHs. 
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Figure 9: A plot of ∆geff/geff (RH) of the aerosols against Relative Humidity using equation (20). 

Figure 9 shows the plots of the fractional change in the effective hygroscopic growth of equation (17) 

using equation (20). From the plots, it can be observe that Arctic has higher overestimation followed by 

Antarctic, then Maritime clean followed by Urban and Continental clean, lastly, underestimation can be observe 

for Sahara. Lastly,comparing this figure with table 2, it can be observe that the higher the percentage of water 

soluble, the higher the overestimation, most especially at higher RHs. 
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Figure 10: A plot of ∆reff/reff(RH) of the aerosols against Relative Humidity using equation (21). 

Figures 10 shows the plots of the fractional change in the effective radii of equation (17) using 

equation (21). From the plots, it can be observe that Antarctic and Maritime clean have the highest 

overestimation, followed by Arctic, then Continental clean followed by Urban, but underestimation for Saharan 

aerosols. All the overestimation and underestimation increased with RH in almost exponential or power form. 

Table 3: equation (22): The results of the regression of equation (22), using the ambient RHs the water activity. 

 Equation 24 

R
2
  k 

Antarctic 0.9837 0.4270 

Arctic 0.9992 0.8838 

Cont. Clean 0.9610 0.1579 

Mari. Clean 0.9980 1.0685 

Sahara 0.9991 0.0332 

Urban 0.9644 0.1545 

From table 3, it can be seen that by observing the values of R
2
, it shows that the data fitted the equation 

very well. 
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Figure11: A plot of ∆geff(RH) of the aerosols against Relative Humidity using equation (23). 

Figure 11 shows the correction for the effective hygroscopic growth of equation (22) using equation 

(23). From the plots, it can be seen that the error in the Kelvin effect with RH has caused decrease in the 

overestimation of five aerosols, and increase in the underestimation of Sahara. 
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Figure12 A plot of ∆reff(RH) of the aerosols against Relative Humidity using equation (24).  

Figures 12 shows the plots of the correction to the effective radii due to the Kelvin effect with RHs. 

From the plots it can be observe that the error in the Kelvin effect with RH has caused decrease in the 

overestimation for five aerosols, but increase in the underestimation of Sahara. 
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Figure13: A plot of ∆geff/geff(RH) of the aerosols against Relative Humidity using equation (25). 

Figures 18 shows the plots of the fractional change in the effective hygroscopic growth of equation 

(22) using equation (25) due to the Kelvin effect with RHs. The plots show decrease in the over estimation for 

five aerosols but increase in the under estimation for Sahara aerosols. 
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Figure14: A plot of ∆reff/reff(RH) of the aerosols against Relative Humidity using equation (26). 

Figures 14 shows the plots of the fractional change in the effective radii of equation (22) using 

equation (26) due to the Kelvin effect with RHs. The plots show for five aerosols increase in the overestimation 

but increase in the underestimation for Sahara. 
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Figure 15: A plot of ∆S/S of the aerosols against Relative Humidity using equation (13) and the ambient RHs. 

Figure 15 shows the plots of the fractional change in the RH of equation (13) using equation (27) with 

the ambient RHs. From the plots, it can be observe that for Antarctic, Arctic and Maritime clean, the errors in the 

underestimation decreased with the increase in RH, for Continental clean and Urban the errors in 

underestimation decrease while for Sahara is shows error in the overestimation which is almost constant with 

RH. 

 

4.      CONCLUSION 

For lower RHs, (50 and 70) the range of the over estimation and underestimation of the effective hygroscopic 

growth and effective radii are less that 1% depending on the type of the aerosols. As the RH increases, both the 

underestimation and the overestimation increase in the form of power law with respect to RH. This implies that 

there is a strong departure from ideality as the RH increases and this can be attributed to the electrolytic nature of 

the ionic solutions of the mixtures. This shows that at higher RHs more complicated expressions are required to 

achieve greater accuracy [15]. This finally shows that Kelvin corrections are necessary for proper modelling of 

effective hygroscopic growths and effective radii of atmospheric aerosols. From table 2, by looking at the 

effective radii of the dry aerosols, percentage of water soluble and the sc, it shows that even atmospheric for the 

mixture to act as cloud condensation nuclei (CCN) to form new cloud droplets they must contain high amount of 

hygroscopic components and should be within the effective size ranges of 0.1-1.0 µm as also determined by 

Solomon et. al., [5]. However, there are some researchers that reported some erroneous implementation of the 

hygroscopic growth within OPAC, especially at intermediate RH ranges with the exception of Saharan dust [44]. 
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