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Abstract 

In this work, product yield distribution at varying reactor temperatures during wood pyrolysis was investigated. 

Hard and soft wood samples (Mahogany- Khaya senegalensis and Gmelina- Gmelina arborea, respectively) 

were procured from Pakiotan sawmill in Ogbomoso, Oyo State, South-Western Nigeria. The samples were cut 

into cuboid shape, each with an average weight of 20 g. The samples were then pyrolyzed in a fixed bed reactor. 

Experiments were performed at five temperature level (350, 450, 550, 650 and 750 
o
C) at a fixed holding time of 

fifteen 15 mins and at vacuum pressure. The weight of char, tar and gas produced in each experiment were then 

measured, recorded and expressed in percentage of initial weight of the pyrolyzed sample. Results showed that 

Mahogany (Khaya senegalensis) gave maximum char, tar and gas yield of 39.43% at 350 
o
C, 42.53% at 350 

o
C 

and 53.93% at 750 
o
C, respectively, while for Gmelina (Gmelina arborea), the maximum yields were 28.35% at 

350 
o
C for char, 24.81% at 350 

o
C for tar and 68.11% at 750 

o
C for gas. The minimum yield of Mahogany 

(Khaya senegalensis) for char, tar and gas were 28.35% at 750 
o
C, 17.72% at 750 

o
C and 18.04% at 350 

o
C, 

respectively and for Gmelina (Gmelina arborea), 17.72% at 750 
o
C, 14.18% at 750 

o
C and 46.84% at 350 

o
C, 

respectively. This study showed that char and tar yields decreased while gas yield increased as pyrolysis 

temperature increased. At all temperatures considered, gas yields were higher than tar and char yields for 

softwood while for hardwood, tar yield declined with increase in temperature with accompanying increase in gas 

yield.  
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1. Introduction 

Ever increasing awareness about the attenuation in the availability of fossil fuels has led to the increasing interest 

in the generation of power and heat from biomass. Of the developed processes, one of which has received 

attention in recent times with yet so much to discover is pyrolysis. The most common source of energy in the 

world presently is petroleum-based fuels, the processing and usage of which expose the environment to 

hazardous emissions that have resulted in its depletion. Though petroleum has over time proven to be a relatively 

efficient energy source, huge dependence on it has caused adverse effects on the environment. Economically also, 

so many nations of the world, developing and developed countries alike, depend largely upon energy from 

petroleum. This has led to a very high demand for it, resulting in an incessant increase in fuel prices making it 

more difficult for the low income earners to survive in these present days. Renewable energy is a usable energy 

derived from replenishable sources such as the Sun (solar energy), wind (wind power), rivers (hydroelectric 

power), hot springs (geothermal energy), tides (tidal power), and biomass (bio-fuels). Amongst all the mentioned 

renewable energy sources, biomass is the most abundant in supply. Subsequently, biomass energy has been 

receiving attention and many research works are still on-going to explore its potentials. Pyrolysis and 

gasification are thermo-chemical routes to recover energy locked up in biomass and agricultural residues. Many 

research works have been carried out for better understanding of the effects of various process parameters, 

physical phenomena and sample nomenclature on these processes (Okekunle et al., 2014). Antal and Grønli 

(2003) reported that increased moisture present when pyrolysis reactions are performed under pressure has been 

shown to systematically increase char yields. Bio-char yield increases with increasing particle size of the sample, 

larger particle sizes tend to give more char by restricting the rate of disengagement of primary vapour products 

from the hot char particles, so increasing the scope for secondary char forming reactions (Brownsort, 2009, 

Jahirul et al., 2012). According to Zanzi et al. (2002), the residence time has an influence on products of 

pyrolysis. The increase in retention time may lead to the secondary reactions thereby resulting in secondary 

products. Addition of pyrolytic charcoal residues was found to promote rapid pyrolysis and save energy due to 

better microwave heating (Bridgewater and Peacocke, 2000; Yu et. al., 2006). Moisture content can have 
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different effects on pyrolysis product yields depending on the conditions (Antal and Gronli, 2003). Increased 

moisture present when pyrolysis reactions are performed under pressure has been shown to systematically 

increase char yields (Antal and Gronli, 2003). As noted by Bridgewater and Peacocke (2000), fast pyrolysis 

processes in general require fairly dry feed, around 10% moisture, so that the rate of temperature rise is not 

restricted by evaporation of water. A rapid heating rate increases volatile yields and decreases char yield. A rapid 

heating leads to a fast depolymerisation of the solid material to primary volatiles while at a lower heating rate, 

dehydration to a more stable anhydrocellulose is limited and very slow (Gheorghe et al., 2010). Di Blasi et al. 

(1999) studied the product distribution from pyrolysis of different wood and agricultural residues. From their 

study, it was observed that biomass type affects the yield distribution of pyrolysis products. The main aim of this 

research work is to investigate the effects of pyrolysis temperature on product yield distribution from pyrolysis 

of hard and softwood within the temperature range of 350 
o
C and 750 

o
C in a fixed bed reactor. Regression 

equations were also obtained from product yield curves of hard and softwood for the purpose of predicting 

pyrolytic yields of these samples within the temperature range considered.  

2. Experimental set-up 

The pyrolysis unit comprised a fixed-bed reactor, retort, pipes, product collectors, and a carrier gas cylinder. The 

electrically powered fixed-bed reactor heats up the pre-loaded retort, hence the giving off of the volatile stream. 

The product pipes channel the volatile stream into the product collectors which are immersed in an ice-bag (tar 

trapper). Staged tar trapping was employed so as to collect tarry components which escaped the first tar trap in 

order to ensure efficient trapping of the tar. Figure 1 shows the exploded view of the pyrolysis unit. 

Figure 1: Exploded view of the pyrolysis unit 

2.1 Experimental procedure 

For the experimental investigation, five (5) temperature levels were considered i.e. 350 
o
C, 450 

o
C, 550 

o
C, 650 

o
C and 750 

o
C at a fixed holding time of fifteen (15) minutes and vacuum pressure. The reactor was raised to the 

desired pyrolysis temperature and the retort, already loaded with the sample, was then put in the reactor with its 

lid firmly secured in place by using the hold down bolts with the gasket in position. The product collectors were 

then weighed to ascertain their initial weights and afterwards immersed in ice-bags. The stopwatch was set to a 

fifteen minutes countdown. At the lapse of the fifteen minutes residence time, the retort was removed from 

within the furnace chamber. The collected tar was measured on the weighing balance while the retort was 

allowed to cool. The bolts holding the retort lid in position were then loosened and a tong was used to collect the 

char from the retort. The char was then weighed thereafter and its value recorded. From the measured weight of 

tar and char, the weight of gas let off was obtained as well as the percentage weight of all products. The furnace 

temperature was raised again to the desired temperature and the entire process was repeated for other runs and 

temperature levels. 
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2.2  Product analysis 

The mechanism for collection of products was in such a way to assist separating the tar and gas in the volatile 

stream. The char remained in the retort while the fluids were expelled; the liquid (tar) was separated from the gas 

in the same collection mechanism based on the simple principles of condensation. The parameters for 

comparison include weight of char, tar and gas produced in each experiment. A digital weighing scale of 

accuracy ±1g was employed in measuring the weight of the samples and the products. Product yields were 

expressed in percentage of the initial weight of the pyrolyzed samples. 

3. Product yields of soft and hardwood 

The product yield distribution from the pyrolysis of African Mahogany (Khaya senegalensis) and Gmelina 

(Gmelina arborea), samples of hard and soft wood respectively at different temperature levels are presented in 

Tables 1 and 2, respectively. As shown in the tables, char and tar yields from the hardwood pyrolysis decreased 

from 39.43% and 42.53% at 350 
o
C to 28.35% and 17.72% at 750 

o
C, respectively.  Char and tar yields from 

softwood pyrolysis also decreased from 28.35% and 24.81% at 350 
o
C to 17.72% and 14.18% at 750 

o
C, 

respectively. However, for both hard and softwood, gas yield increased from 18.04% and 46.84% at 350 
o
C to 

53.93% and 68.11% at 750 
o
C, respectively. 

 Table 1: Product yield distribution from pyrolysis of Mahogany (Khaya senegalensis) 

Temperature (
o
C) Char yield (wt%) Tar yield (wt%) Gas yield (wt%) 

350 39.43 42.53 18.04 

450 32.89 37.98 29.13 

550 28.35 31.89 39.76 

650 28.35 24.81 46.84 

750 28.35 17.72 53.93 

Table 2: Product yield distribution from pyrolysis of Gmelina (Gmelina arborea) 

Temperature (
o
C) Char yield (wt%) Tar yield (wt%) Gas yield (wt%) 

350 28.35 24.81 46.84 

450 24.81 24.81 50.39 

550 21.26 24.81 53.93 

650 21.26 17.71 61.02 

750 17.72 14.18 68.11 

Some other researchers have reported results along this trend. Amutio et al. (2012) reported that high 

temperatures enhance volatiles release from the biomass particle. Dermibas (2004) stated in his work that if the 

purpose were to maximize the yield of liquid products resulting from biomass pyrolysis, a low temperature, high 

heating rate, short gas residence time process would be required. For a high char production, a low temperature, 

low heating rate process would be chosen. If the purpose were to maximize the yield of fuel gas resulting from 

pyrolysis, a high temperature, low heating rate, long gas residence time process would be preferred. Jahirul 

(2012) reported that different reactions occur at different temperatures in pyrolysis processes. Consequently, at 

higher temperatures, molecules present in the liquid and residual solid are broken down to produce smaller 

molecules which enrich the gaseous fraction. The information provided in Table 3 contains detailed information 

and justifies the reported trend as well as other literature that reported very similar trends. 

3.1 Comparison of char yield from soft and hardwood samples 

Figure 2 shows the yield of char at different reactor temperatures from soft and hardwood samples. From the 

figure, char yield decreased as temperature increased from 350 to 550 
o
C for both wood samples and then 

flattened out on further temperature increase from 550 to 650 
o
C. While the hardwood sample (Khaya 

senegalensis) showed no significant response in char yield to further increase in temperature, the softwood 

sample showed some further reduction in char yield after the flattened region. The flattened region in both cases 

may be due to polymerization of tarry species keeping char yield from depreciating as the temperature increased. 

At all temperature levels, char yields from the hardwood sample were much higher than those from softwood.  
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            Table 3: Pyrolysis reactions at different temperatures. 

Condition Processes Products 

Below 350 °C 
Free radical formation, water 

elimination and depolymerization 

Formation of carbonyl and carboxyl, 

evolution of CO and CO2, and 

mainly a charred residue 

Between 

350 °C and 

450 °C 

Breaking of glycosidic linkages of 

polysaccharide by substitution 

Mixture of levoglucosan, anhydrides 

and oligosaccharides in the form of 

a tar fraction 

Above 450 °C 
Dehydration, rearrangement and fission 

of sugar units 

Formation of carbonyl compounds 

such as acetaldehyde, glyoxal 

andacrolein 

Above 500 °C A mixture of all above processes A mixture of all above processes 

             Source: Jahirul (2012). 

The effect of temperature can be thought of as more volatile material being forced out of the char at higher 

temperatures thereby reducing char yield but increasing the proportion of carbon in the char. Temperature also 

has an effect on char composition, chars produced at higher temperatures having higher carbon contents both 

total- and fixed-carbon (Antal and Grønli, 2003). This may have important implications for biochar stability in 

soils. Solid residence time is also important but to a lesser degree than peak temperature, longer time at 

temperature leading to lower char yield (Antal and Grønli, 2003). Antal et al. (2000) reported relationship of 

lignin content and fixed carbon from 19 kinds of softwoods, hardwoods and agricultural residues samples and 

those samples with high lignin contents mainly indicated high fixed carbon yield. But difference of hardwood 

and softwood was not clearly mentioned. In general, softwood samples have higher lignin content than hardwood 

samples (Hasegawa et al., 2005). Di Blasi (2009) reported that the differences between wood species belonging 

to the standard hardwood or softwood categories are relatively small but char yields from softwood species are 

lower than those from other biomass. Thus, it is suggested that the char yield is not only affected by the lignin 

content but also other factors such as heating rate (Iwasaki et al., 2014). 

 

Figure 2: Char yield at different reactor temperatures 

3.2 Comparison of tar yield from soft and hardwood samples 

Figure 3 shows the yield of tar from the pyrolysis of both soft and hardwood samples. As seen from the figure, 

tar yield from hardwood was continuously declining with increase in temperature while tar yield from softwood 

as temperature increased from 350 to 550 
o
C was not so significant to begin with. However, further increase in 

temperature beyond 550 
o
C caused tar yield from softwood to decline appreciably. At all temperature levels, tar 

yields from hard wood were higher than those from softwood. 

Brownsort (2009) stated that the effect of temperature on liquid and gas yields is more complex. Liquid yields 

are higher with increased pyrolysis temperatures up to a maximum value, usually at 400-550 °C but dependent 

on equipment and other conditions. Above this temperature secondary reactions causing vapour decomposition 

become more dominant and the condensed liquid yields are reduced. Gas yields are generally low with irregular 
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dependency on temperature below the peak temperature for liquid yield; above this gas yields are increased 

strongly by higher temperatures, as the main products of vapour decomposition are gases. 

Figure 3: Tar yield at different reactor temperature  

3.3 Comparison of gas yield from soft and hardwood samples 

Figure 4 shows the yield of gas from soft and hardwood pyrolysis at different reactor temperatures. From the 

figure, for both wood types, gas yield increased with increase in reactor temperature. Generally, it is expected 

that at higher temperatures, volatile species and tar undergo a series of secondary reactions such as 

decarboxylation, decarbonylation, dehydrogenation, deoxygenation and cracking to form components of syngas. 

Therefore higher temperatures favour tar decomposition and the thermal cracking of tar to increase the 

proportion of syngas, resulting in decrease in oil and char yields. Studies have also shown that when the reactor 

temperature increases, syngas flow rate also increases for a short period of time and then reduces dramatically 

(Jahirul et al., 2012). 

Figure 4: Gas yield at different reactor temperature 

 

In agreement with the findings reported in other literature of similar works, it was observed in this work that the 

hardwood samples yielded more char and tar than the softwood did but yielded lesser gas at the different 

temperature levels. 

3.4  Regression Models between Reactor Temperature and Product Yields 

The regression models between the reactor temperatures and product yields, and the respective square value of 

the coefficient of correlation (R
2
) for Mahogany (Khaya senegalensis) were obtained and are given as 

Char:     R² = 0.988                                                                 (1) 

Tar:                          R² = 0.999                                                                (2) 
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Gas:                  R² = 0.999                                                                (3) 

The regression models between the reactor temperatures and product yields, and the respective square value of 

the coefficient of correlation (R
2
) for Gmelina (Gmelina arborea) were also obtained and given as 

Char:    R² = 0.956                                                                 (4) 

Tar:      R² = 0.942                                                                 (5) 

Gas:                 R² = 0.997                                                                 (6) 

Where Yc is the char yield, Yt is the tar yield, Yg is the gas yield and T is the reactor temperature. 

The models presented above are instrumental for predicting the response of hard and softwood feedstock 

pyrolyzed in a fixed-bed reactor between 350
˚
C-750

˚
C. The values of the correlation coefficients obtained 

indicate a fairly high degree of accuracy of the regression models to predict experimental results when used 

within the temperature range considered. 

4.1 Conclusions 

In this research, wood samples were pyrolyzed at different temperature levels and yielded char, tar and gas in 

different proportions in a particular trend as the pyrolysis temperature increased. It was observed that char and 

tar yield decreased while gas yield increased as pyrolysis temperature was increased. 

The wood samples pyrolyzed were of two classes i.e. hardwood and softwood. Though both classes showed the 

same yield trend, they showed slight differences in close comparison. It was observed that the hardwood samples 

yielded more char and tar but gave off less gas at particular temperature levels than the softwood samples. 

The regression models and coefficients of correlation presented show that the results from the experiment were 

valid on statistical basis and in comparison with any numerical work in the same scope. 

4.2 Recommendations 

For all who would undertake pyrolysis processes in the future, it is recommended that depending on the product 

of interest, say gas, it is better to pyrolyze softwood as the softwood sample used as shown to produce more gas 

than the hardwood sample whereas when char or liquid fuel (tar) is desired, hardwood appears to be more 

appropriate. 
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