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Abstract:

We give a holistic model for the systems mentioned in the foregoing. Most important implication is that
Higgs Boson is the one, which warps space and time. Concept of Neuron DNA and signature less particles
are introduced.
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Introduction:

We take in to consideration the following to build the 36 story model which consummates and consolidates
the parameters and processes involved:

Quantum Information

Quantum Mechanical behaviour

Quantum Tunneling

Non adiabatic multi photon process in the strong vibronic coupling limit

Environmental Decoherence(Green House Effects for example)

Schrodinger’s wave function

Gravitational lensing

Black holes

Faster than Light Particles (Neuron DNA- Mind, a signature less particles. How do you classify that?

Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in

consideration psychic energy which is taken to be holistically conservational ,but individually and

collectively non conservative)

10. Consciousness( Total awareness- use ASDCII and Information field capacity to find the total storage-
Please refer Gesellshaft-Gememshaft paper on the subject matter)

11. Higgs Boson
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12. Distorted Space and Time

Notation :

Quantum Mechanical Behaviour And Quantum Information
Module Numbered One

Tis

: Category One Of Quantum Mechanical Behaviour
: Category Two Of Quantum Mechanical Behaviour

: Category Three Of Quantum Mechanical Behaviour
: Category One Of Quantum Information

: Category Two Of Quantum Information

:Category Three Of Quantum Information

Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling

Module Numbered Two:

Gie
Gl7
Gig
T
T17

Tig

: Category One Of Non Adiabatic Multi Phonon Process

: Category Two Of Non Adiabatic Multi phonon Process

. Category Three Of Non Adiabatic Multi Phonon Process
:Category One Of Quantum Tunneling(There Are Lot Of Tunnels)
. Category Two Of Quantum Tunneling

: Category Three Of Quantum Tunneling

Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave
Function:

Module Numbered Three:

G2o
G21
622
TZO
T21

TZ 2

: Category One Of Collapse Of Schrodinger’s Wave Function(There Are Lot Of Potentialities)
:Category Two Of Collapse Of Schrodinger’s Wave Function

: Category Three Of Collapse Of Schrodinger’s Wave Function

: Category One Of Environmental Decoherence

:Category Two Of Environmental Decoherence

: Category Three Of Environmental Decoherence

Gravitational Lensing And Black holes

Module Numbered Four:

G,, : Category One Of Black holes

Gos

: Category Two Of Black holes
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G, : Category Three Ofblack Holes

T,, :Category One Of gravitational Lensing
T,s :Category Two Of Gravitational Lensing
T, : Category Three Of Gravitational Lensing

Faster Than Light Particles(Hypothetical Particles Of Neuron DNA-Mind) And Consciousness(Total
Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity)

Module Numbered Five:

G,g : Category One Of Faster Than Light Particles(Signatureless Neuron Dna)

G,q : Category Two Of Faster Than Light(Signatureless neuron Dna)

G5, :Category Three Of Faster Thank Light Neuron Dna Particles Without Signature

T,g :Category One Of Consciousness(Just Total Knowledge That Is Stored Like In Computer-See
Gratification Deprivation Model For Details)

T4 :Category Two Of Consciousness

T;, :Category Three Of Consciousness

Distorted Space And Time (St Warp) And Higgs Boson
Module Numbered Six:

G5, : Category One Of Higgs Boson

G4 : Category Two Of Higgs Boson

G5, : Category Three Of Higgs Boson

T;, : Category One Of Distorted Space And Time

T54 : Category Two Of Distorted Space And Time

Ts, : Category Three Of Distorted Space And Time

(a13)(1), (a14)(1), (a15)(1), (b13)(1); (b14)(1), (b15)(1) (‘116)(2)' (a17)(2), (a18)(2)
(b16)(2)' (b17)(2), (b18)(2) . (azo)(3)’ (a21)(3), (azz)(3) , (bzo)(B), (b21)(3), (bzz)(3)
(a20)®, (a25), (a26)®, (520)®, (b25)®, (b26) ™, (b26)®, (b29)®, (b30)®,
(a28)®, (820)®, (@30)®, (a32) ), (a33), (@34) @, (b32) ), (b33)®@, (b34)©
are Accentuation coefficients

(a1, (a1) ™, (@15)®W, (b1)®, (b1)@, (b1)™, (a1, (a17)?, (a1)?,
(b16)®, (1), (b18)?, (a20)P, (a21)®, (22)P, (636)®, (b31)®, (b3)®
(a20)®, (a25)®, (a36)®, (03)®, (b35)®, (b26)®, (b36)®, (b30)®, (b30)®
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(alzs)(s)' (‘159)(5)' (aéo)(s) ’ (aéz)(G): (a’33)(6)' (aé4)(6)' (béz)(G)‘ (bés)(é)' (bé4)(6)
are Dissipation coefficients

Quantum Mechanical Behaviour And Quantum Information
Module Numbered One

The differential system of this model is now (Module Numbered one)

dG ’ "

—=(a 13)( )G14 [(a13)(1) + (a13)(1) (Ty4, t)]613
dG ’ "

= (a,) VG5 — [(a14)(1) + (a1 @ (T, t)]Gl4
dG ’ "

= = (a,5) VG, — [(a1s)(1) + (a)s) @ (T, t)]G15
dT13

= (by3) Ty, — [(b13)(1) — (bi5)?(G, t)]T13

Tt = (byy) DTy — [P — BV (G, D] Ty

T8 = (by5) DTy, — [(bis)® — (bis) (G, )] Ty

+(a}3)®P(T,,,t) = First augmentation factor

—(b}5)V(G,t) = First detritions factor

Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling
Module Numbered Two:

The differential system of this model is now ( Module numbered two)

dGls =(a 16)( )Gy, — [(aia)(z) + (aile)(z)(Tﬂ: t)]Glé

dGl7

= (a17)( )616 [(ab)(z) + (a1'7)(2)(T17, t)]617

dGls

= (a18)?Gy7 — [(ais)(z) + (afs) P (Ty7, t)]Gm

dT16 (b16)(2)T17 [(bm)(z)_(b )(2)((019) t)]T16

dT17 (b17)(2)T16 - [(b17)(2) - (b )(2)((619) t)]T17

dr: b

- (b1s)(2)T17 - [(b18)(2) 18)(2)((619)’t)]T18
+(ais) P (Ty,,t) = First augmentation factor
—(b1e)?P((Gy9),t) = First detritions factor

Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave
Function:

Module Numbered Three

The differential system of this model is now (Module numbered three)
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d ’ "

GZO = (az0)¥ Gy — [(azo)(3) + (ah0) P (Tyy, t)]Gzo
dGZl = (a21)® G, — [(a21)(3) + (a3’ )(3)(T21,t)]G21
dG ’ "

22 = (azz)( )621 [(azz)(B) + (azz)(B)(sz t)]Gzz
d

20 = (byo) DTy — [(530)P = (b56) ) (G, D] Tao
dar:

=2 = (by) Ty — [(b21)(3) — (b)) (G, t)]T21

= (by)®Ty, — [(bzz)(3) — (b35)® (G, t)]Tzz
+(ayy)®(Ty,, t) = First augmentation factor
—(by)®(Gp3,t) = First detritions factor
Gravitational Lensing And Black holes

Module Numbered Four

The differential system of this model is now (Module numbered Four)

d
22 = (434) @G5 — [(@3)@ + ()P (Tys, )] Gog

dst

(azs)( )Gy — [(alzs)m + (alzls)(4)(T25. t)]st

daaG ’ "
26 = (A56) G5 — [(‘126)(4) + (a26)(4)(T25,t)]626

dTM (b24)( )Tzs - [(b24)(4) - (b )(4)((627) t)]T24

= (bys)WTy, — [(bzs)(4) — (by: )(4)((027) t)]Tzs

dT26

= (bye)PTys — [(bze)(4) — (b3e) W ((Ga7), t)]Tzs
+(ay,) @ (T,s, t) = First augmentation factor
—(b5)®((G,7),t) = First detritions factor

Faster Than Light Particles (Hypothetical Particles Of Neuron Dna-Mind) And Consciousness(Total
Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity)

Module Numbered Five

The differential system of this model is now (Module number five)

ac ’ "

—28 (‘128)( )629 [(azs)(s) + (azs)(s)(sz t)]st
aG ’ "

—2 (‘129)( )Gza [(a29)(5) + (a29)(5) (To, t)]G29
dG30

=(a 30)( )G29 [(aso)(s) + (a3 )(5)(T29; t)]Gso
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deg

(bzs)(S)Tm [(bzs)(s) - (b )(5)((631) t)]TZS

dT: ’ "
29 = (bye) DTyg — [(bse)® — (b39) P ((G31), )| Tao

dTgo

= (b30) Ty — [(bso)(s) — (b3 )(5)((631) t)]Tso

+(ays)® (Tyo, t) = First augmentation factor
—(b3s)®((G31),t) = First detritions factor

Distorted Space And Time(St Warp) And Higgs Boson:

Module Numbered Six

The differential system of this model is now (Module numbered Six)

ngz

(asz)( )Gas — [(‘1’32)(6) + (a’3’2)(6)(T33. t)]Gaz

daG ’ "
22 (ass)( )Gsz [(‘133)(6) + (a33)(6)(T33,t)]G33

dG34,

= (a34)©Gs3 — [(a§4)(6) + (a4y)© (Tss, t)]G34

dT32

= (b3y)©Ty3 — [(bsz)(é) — (b3 )(6)((635) t)]Tsz

T2 = (b3y) Ty, — [(b35)© — (63)© ((Gs5), )] Tis

d
T84 = (by) T3 = [(B5)@ — (B52)@ ((Gs), £)] T
+(a4,)©® (T35, t) = First augmentation factor
—(b3,)©((G3s),t) = First detritions factor

Holistic Concatenated Equations Henceforth Referred To As “Global Equations”

Quantum Information

Quantum Mechanical behavior

Quantum Tunneling

Non adiabatic multi photon process in the strong vibronic coupling limit

Environmental Decoherence(Green House Effects for example)

Schrodinger’s wave function

Gravitational Lensing

Black holes

Faster than Light Particles (Neuron DNA- Mind, a signature less particles How do you classify that?

Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in

consideration psychic energy which is taken to be holistically conservational ,but individually and

collectively non conservative)

10. Consciousness( Total awareness- use ASCII and Information field capacity to find the total storage-
Please refer Gesellschaft- Gemeinschaft paper on the subject matter)

11. Higgs Boson

12. Distorted Space and Time

©CoNoOA~LNE

88



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

0 _ (g, (@5) V] (@) O (T, )] | (1) 22 (T, 0] [+(@5) O (T, 0] |
13 14 13
|+(aé’4)(4'4'4'4') (Tys, t) ||+(aé’8)(5'5'5'5') (T2, 8) ||+(a’3’2)(6'6'6'6') (T33,8) |
s _ (g,,)0g (@) V@)D (T 0] [+(@) 42 (T, O +(@) O T 0] |
Q14 13 7 14
| +(aérs)(4,4,4,4,) (T25v t) | +(a219)(5,5,5,5,) (ng, t) || +(a§3)(6,6,6,6,) (T33, t) |
55 _ (g, 06 (a15) P+ (afs) D Ty, 0) || + (@) ) (T17, 6) || +(a5) O3 (T4, 1)
a5 14
| +(aé,6)(4'4'4'4') (TZSl t) || +(aé,0)(5'5'5'5') (ng‘ t) || +(a1374)(6,6,6,6,) (T33, t) I

"

Where | (@l3) DTy t) || (@)D (Ty, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2'> (T, t)| , |+(a{7)(2'2') (T, t)l , |+(a{8)(2'2') (Ty7,t) | are second augmentation coefficient for category 1, 2 and 3

t)| are third augmentation coefficient for category 1, 2 and 3

[+(a50)®% (1,1, 0)], [+ (a3 ) C (T,

|+(a§4)(‘*""'4""') (Tys, t)| . |+(a;5)(4'4'4'4'> (Tys, t)| ) |+(a§6)(4'4'4'4'>(T25, t) | are fourth augmentation coefficient for category 1, 2 and 3

[+(a50) 5555 Ty, )] +(ase) 559 (T,

t)| are fifth augmentation coefficient for category 1, 2 and 3

|+(a§2)(6'6'6'6') (T3, t) | |+(a§3)(6r6r6'6'> (Ts3, t)l ) |+(a§4)(6'6r6'6'>(T33, t)| are sixth augmentation coefficient for category 1, 2 and 3

iy . (i) D[=(bi5)D (G, )] [~ (b)) (610, )] |- (b30) ®* (Gas, 1)
= (by3)"WTyy — | (b”)(4444)(627,t)H—(b )(5555)(631 t)”—(b )(6666)(6 » t)’ Tis
dT“ = (b)) VT, (b1 )(1)‘_(}9 DG, t)|| —(br: )(22)(619'13)H (b31) 3 (6,3, t)‘ T
14 13— _‘_ i) 4AA) (G, t)||_(b29 (5’5’5’5’)(631't)H—(b33 (6,6,6,6,)(G3S’t)|_ 14
s = (by5)OT. B[~ GV 6, 0] [~ b1)®? (610, O] [- (0 B (G D)] ] T
T [F 08 ) (6,0, ][~ (03 T (651, D[~ (05 @55 Gy D] |

Where | —(by3)V(G, 1) I,I—(b{4)(1)(6, t) |,|—(b{5)(1)(6, t) l are first detrition coefficients for category 1, 2 and 3

|=(530)®(Gys,

—(b1g)®¥ (G0, t)| are second detrition coefficients for category 1, 2 and 3

—(by,) 33 (G, t)| are third detrition coefficients for category 1, 2 and 3

|—(b§4)(4'4'4'4')(627, 25) B4 (G 1), | = (b)) @44 (G, t) | are fourth detrition coefficients for category 1, 2 and 3

|—(b§8)(5'5'5'5')(631, t)| . |—(b2”9)(5'5'5'5')(631, t)| , l—(b;o)(5'5'5'5')(631, t) | are fifth detrition coefficients for category 1, 2 and 3

|—(b§2)(6'6'6'6')(635, t)| , |—(b§3)(6'5'5'5')(G35, t)| , |—(b§4)(5'6'6'5')(635, t) | are sixth detrition coefficients for category 1, 2 and 3

(@16) | +(al) P (Ty7, O)|[+(af) P Ty, O |[+(ap) 22 (T4, D)
| +(ay,) @44 (T, 1) | +(ayy)C5555)(T,, ) H +(al,)®6666) (T, t) ‘

dG16

= ( 16)( )G17

89



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

40 (0, @) P[+(@) D (Ty7, 0| +ai) ) (T, || +(ag) &22(Ty, 0)|
17 16 —
|+(a§'5)(4’4’4’4’4) (Tys, t) ||+(a1279)(5,5,5,5,5) (Tyo, t) ||+(a13r3)(6,6,6,6,6) (Tss, t)l
s _ (g,,))g (@16)@[+(ai) D (T17, || +(@f) X (T, D][+(a5) O (T4, 0)|
ig 17 =
|+(a§'6)(4'4'4'4'4)(7125.t)| +(aélo)(5,5,5,5,5)(T29,t)H+(al3!4)(6,6,6,6,6)(T33,t)‘

t) | are first augmentation coefficients for category 1, 2 and 3

Where | +(ais) @ (T,

|+(a{3)(1'1') (T, t)l , |+(a{4)(1'13 (Tha, t)l , |+(a{5)(1'13 (Tha t)| are second augmentation coefficient for category 1, 2 and 3

| +(a0) 3 (Tyy, 1) I ) | +(az) @2 (T,

|+(a;4)(4'4'4'4'4) (Tys, t) H +(ays) 44D (T, are fourth augmentation coefficient for category 1, 2 and 3

|+(a;8)(5'5'5'5'5>(T29, t) I |+(a§9)(5'5'5'5'5)(T29, t)| , |+(a§0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for category 1, 2 and 3

|+(a§2)(5'6'6'6'6) (Ts3,t) I |+(a§3)(5'6'6'6'6) (Ts3, t)l , |+(a§4)(""6'6""'5)(T33, t)| are sixth augmentation coefficient for category 1, 2 and 3

dT16 = (bye) T, (b16)(2)‘_(b )(2)(619't)||_(b DM, t)H (b)) (G, t)| T
R S0P e o | R | iy
dT17 = (b)) T, (b17)(2)|_(b )P (Gyo, bi) (G, t)H () ®**) (G, t)| T,
N | A t>|\—(b )<55555)(631 O]~ 559Gy, 0] |
dT18 = (b1g)@T, (b1g )(2)‘_(17 )(2)(019't)||_(b DM, t)H (b) > Ga t)| T.
18 17 ‘—(b")(44444)(627 t)”—(b )(55555)(631 t)H_(b )(66666)(6 )’ 18

wherel —(b;6) @ (Gyo, t)l , |—(b{7)(2)(G19,t)| , |—(b{8)(2)(019,t)| are first detrition coefficients for category 1, 2 and 3

|=(b30) 33 (G,

(1) (G, t)| are second detrition coefficients for category 1,2 and 3

—(byy) 333 (G, t)| are third detrition coefficients for category 1,2 and 3

| —(b£4)(4'4'4'4'4)(627, t) I' | -

—(bye) 44D (G, t)| are fourth detrition coefficients for category 1,2 and 3

|—(b§8)(5'5'5'5'5)(631, t)l ,|—(b;’9)(5'5'5'5'5>(631, t)| , |—(b§0)(5'5'5'5'5) (Gs1,t) | are fifth detrition coefficients for category 1,2 and 3

|—(b§2)(6'6'6'6'6)(635, t)|,|—(bgg)(5'6'6'6'6>(635, t)| , |—(b§4)(5'6'6'6'6)(635, t)| are sixth detrition coefficients for category 1,2 and 3

y o (a50) @[ +(a2)® (T, 0|+ (af) > (T17, B)] | +(as) 1 Ty, 1)
“r2o0
= (@06 [ (@ O35 (7, 0|+ (@) 5559 (T, O [+ (@) Co55 9T, )] | 2
1 _ (q,)90 (@5) @[ +(ag) D (T, ||+ (@) 22 (117, )| +(ai) ) (114, 0)|
azy 20 T
‘+(a’2'5)(4'4'4'4'4'4)(T25,t)H+(a;'g)(s's's's's's)(ng, t)||+(al3/3)(6,6,6,6,6,6)(T33’t)‘
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(a52) P +(@5) (o0, O || H(@i) O3 (T, O] |+ (@) MV (T )] |
22
| +(a) @4t (T, t) I | +(ayy) 55555 Ty, ) | | +(ay,)©66666)(T,, t) |

dG
diz = (azz)(3)621 -

|+(a§0)(3)(T21, t) I |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a£6)(2'2'2)(T17' t)

| +(ay,)®*A(T,,, t)l , |+(a;8)<2'2'2)(T17, t) | are second augmentation coefficients for category 1, 2 and 3

|+(a{3)(1'1'1') (T1ar t) |,|+(a£4)<1'1'1') (Tya, )], +(ay ) B2 (Tyy, t)| are third augmentation coefficients for category 1, 2 and 3

’

(@) @444 (5, 0] [+(age) 44449 (T, 0
and 3

+(ay) @4 (T, t) | are fourth augmentation coefficients for category 1, 2

’

| +(a55) 55559 (T, D) | [ +(ape) 55555 (T, 1)

,|+(a§0)<5'5'5'5'5'5) (Tpo,t) | are fifth augmentation coefficients for category 1, 2 and 3

b

| +(a3,) 65559 (Tyy, 1) ]| +(a33) @405 (T, 1)

+(a3,)©66668) (T, t)| are sixth augmentation coefficients for category 1, 2 and

3
s _ YO 5) P~ 05)D (623, 0]|- D) **2 G0, O||- G0 |
- 20 21 20
a | = (b3) @449 (Gyr, 1) |[— (DY) 55559 (Gay, 1) || = (b5) 50009 (G, 1)
s _ g o (b3) @[~ (B3P (Ga3, D] |- (i) #*2 Gy, D) ||- by (6, 1) .
- 21 20 21
dt |-(bé’5)(4‘4‘4‘4‘4'4) (627, t) ‘ ’ _(bélg)(S,S,S,S,S,S) (631, t) ”_(bél3)(6,6,6,6,6,6) (635, t)|
s _ g o (63) [ = (53)® (G5, |- (1) #*2 (G10, )| |- (B15) (G, 1) .
= 22 21 22
a | = (b3) @49 (Gyr, )| [ = (b50) 55559 (Gay, 1) || = (D) 5000 (G, 1)

|—(b§0)(3)((}23, t)l,l—(bé’l)“)(cn, t) —(bz”z)(3)(623,t)| are first detrition coefficients for category 1, 2 and 3

’

|—(b1”6)(2'2'2)(619, t)l , I—(bb)(zfzfz)(clg, t)| . |—(b1”8)(2'2'2)(619, t)| are second detrition coefficients for category 1, 2 and 3

|=(b;) (G, 0)

| —(by) VG, t)l , |—(b{5)(1'1'1'>(6, t)| are third detrition coefficients for category 1,2 and 3

| —(bz4) a8 (Go7,t) I; | —(bzs) (4 42,44) (R))

—(bye) 44440 (G, t)| are fourth detrition coefficients for category 1, 2 and 3

b

I _(bé’s)(s,s,s,s,s,s) (G31,0) |, I _(bé’g)(s,s,s,s,s,s) (G31,0)

—(byo) 55555 (G, t)| are fifth detrition coefficients for category 1, 2 and 3

’

|=(b1)®559%8) (Gag, O) || = (b33) @555 (G4, 1)

—(by,) (666666 (G, t)| are sixth detrition coefficients for category 1, 2 and 3

b

Qos _ o g, _ | @0 L@ O T, O +@5) ) (T ]|+ (@) (T35, 0

= A24 25 24
dt [+ @A (T, || +afe) @222 (T, O] [+(a50) 532D (T, 6)|
dGos _ 0 g (@55) @ +(a5) W (Tas, D] [+(az0) &% (Tyo, D] [ +(a) @9 (T35, 0)|

= (azs 24 — 25
dt [+ (@O (Ty, || +afy) @222 (T, O] [+(a5) O3 (T, 0)|
LN £ e C AL G | 1 C G () RG]

= G26 25 — 26
dt | @) @D (T, O] [+(aie) @222 (T, )| [+(az) G229 (T, )|

Where |(a’z’4 (T, t)|,|(ag’5 @ (Tys,0)|,|(ays (4)(T25,t)| are first augmentation coef ficients for category 1,2 and 3

’
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[+(a) ®5) (T, 0)

,I +(aye) 5% (Tho, t) I ,I +(ay) 5% (Tpo, t) I are second augmentation coef ficient for category 1,2 and 3

|+(a’3’2)(6'6') (T33,t) |,|+(a’3’3)(6'6') (Ts3,t) I ,I +(aky)©%) (Tas,t) | are third augmentation coef ficient for category 1,2 and 3

b

[+(afs) M0 (T, O] [ +(af) M0 (T, 0)

+(a}s) (T, t)| are fourth augmentation coefficients for category 1, 2,and 3

b

[+(als) 2222 (T, )] |+ (afy) @222 (T, )

+(als) @23 (T, t)| are fifth augmentation coefficients for category 1, 2,and 3

[+(a5) ®*33) (T, O} |[+(ag) B339 (T, )

+(ayy) 3333 (T,y, t) | are sixth augmentation coefficients for category 1, 2,and 3

b

Tos _ 0 Sy B30V ® 67, O] |=05) 2 G0, O||- (B5) G5 0)] |
- 24 25 24
dt _ |—(b{'3)(1'1'1'1)(6, t)‘ ‘_(big)(z,z,z,z)((;lg’ t) H_ (b3 B333(Gys, t)‘ |
L ) | S CA I CHD) ICO IRy
- 25 24— 25
dt _ |—(b{'4)(1'1'1'1)(6, t)| |—(b{’7)(2'2'2'2)(619, t) ||_ (by) G333 (G, t)| |
L e AL Ca] | S CH IO SCAGRICGED]
- 26 25 — 26
dt | =BG, 0] [~ (i) 222 (Gro, ) || - (b5 P2 Gy, D)

’

Where I—(b£4)(4)(627, t) I , | —(by5)® (G ) |,| = (b6) P (Gyy, t) | are first detrition coef ficients for category 1,2 and 3

|—(b£8)(5'5')(631, ),|=(bye) 5% (G3, 1) I = (B50) 5% (G, t)| are second detrition coef ficients for category 1,2 and 3

’

|—(b§2)(6'6')(635, )],|=(b33) ) (Gas, 1) |,|—(b34) ) (G5, t) | are third detrition coef ficients for category 1,2 and 3

|—(b1”3)(1'1'1'1)(6, t) |,|—(b£4)(1'1'1'1)(6, t)| , |—(b£5)(1'1'1'1) (G, t)| are fourth detrition coef ficients for category 1,2 and 3

|—(b1”6)(2'2'2'2)(619, t) I, |—(b1”7)(2'2'2'2)(619, t) I, |—(b1”8)(2'2'2'2)(619, t)| are fifth detrition coef ficients for category 1,2 and 3

|— (by0) 3333 (Gys,t) |,|— (b51) G333 (G, ) |- (bs) 3333 (6,3, t)| are sixth detrition coef ficients for category 1,2 and 3

b

(@35) [+ (a5)® (T, ) || +(ag) #*) (Tys, ) || +(azy) @59 (T35, 0|
28
|+(a1’3)(1'1'1'1'1)(T14, t)| +(ay) 2222 (T, t) ”+(a/2r0)(3,3,3,3,3)(7~21, t)’

dG
728 = (azs)(S)Gm -

dGso (a,0)6 (a’29)(5)‘ +(a’2’9)(5) (To, t) H +(aé'5)(4’4’) (Tys, t) H +(aé'3)(6'6’6) (Ts3,t) | G
= a9 28 — b0
dt _|+(aﬁ)(1'1'1'1'1)(T14, t)||+(a£’7)(2'2'2'2'2)(T17, t)H+(a§'1)(3'3'3'3'3)(7121: t)l_
dGs, © (aéo)(s)‘ +(a§’o)(5)(Tz9, t) H +(azs 4)(T,g, t) H +(aj, (666)(T,,, 1) |
dt (aso) 29 ‘+(a1’5)(1‘1‘1‘1‘1)(7"14. t)H+(a1'8)(2'2'2'2'2)(T17't)H+(a£'2)(3'3'3'3'3)(7121, t)| 30

Where |+(a£8)(5) (Tyo, )], +(a36) ® (Too, ) |, |+ (az0)® (T, ) I are first augmentation coef ficients for category 1,2 and 3

And |+(a£4)(4'4') (Tys,t) +(@ye) 4 (Tys, t)| are second augmentation coef ficient for category 1,2 and 3

+ (ags)(4'4') (Tys, 1)

’ y

[+(a3)©%) (Ty3, 0|, [ +(a33) ©59 (T35, 0)

+(a3,) 659 (Tys, 1) | are third augmentation coef ficient for category 1,2 and 3

’

[+ @@l S (T, D)) [+(ag ) WD (T, 0

+(ays) PD(T,,, t)| are fourth augmentation coefficients for category 1,2, and 3

b
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b

[+(a1s) 2222 (T, )| | +(a;,) @**22 (T, 0)

+(ayg) #*222(T,,,t) | are fifth augmentation coefficients for category 1,2,and 3

b

| +(a;0)(3,3,3,3,3) (T21' t) H +(aé’1)(3,3,3,3,3) (T21, t)

+(ay,) 33333 (T,,, t)| are sixth augmentation coefficients for category 1,2, 3

T _ o ooy (b5) 7| =Bi) PG50, | =0 G O [- (B3) 9 G5 0)] |
- 28 29 — 28
dt _ ‘ —(b}5)LLID(G ¢) ‘ ‘_(big)(z,z,z,z,z)(alg’ t) H_ (b5)33333) (G, 1) ‘ |
AT _ g, _ | i) T8O Gar, O] [ 0i) (G D[ 0i) O Gap D) |
- 29 28 29
dt _ | — (b}, (G, t)| l—(b{'7)(2'2'2'2'2)(619, t) I l_ (b)) 33333 (G s t) |
T _ o, Jor (©50)®|=(050)® (31, )] [~ (05 **) (a7, D] |- (B5) @49 (G35, 1) |
- 30 29 30
dt | =BG, )| |- () 22222 Gy, )| [ - (b5) B33P (Gos, )]

where l‘ (b26)® (Gyy, t)| ,|—(b£9)(5)(631, t)l )

—(b30)® (634, t)| are first detrition coef ficients for category 1,2 and 3

’ ’

|—(b§4)(‘*"*')(627, O], |=(bys) 4 (Goy, )|, | = (by6) 4+ (G, t)| are second detrition coef ficients for category 1,2 and 3

|—(b§2)(6'6'6)(635, t)l,|—(b§3)(6'6'6)(635,t)|, —(b3,)©59 (G5, t)| are third detrition coef ficients for category 1,2 and 3

[=(b1) 1D (G, )| [~ (by) P2 (6, )

—(b;5)LLLL(G, t)| are fourth detrition coefficients for category 1,2, and 3

’

|—(bi'6)(2'2'2'2'2)(019, t) I,l —(by7)?2222 (G o, )|, | = (b1g) @222 (G, ) | are fifth detrition coefficients for category 1,2, and 3

b

|— (by0)B3333) (G s, 1) | |— (by)B3333)(Gys, 1) |,|— (by,)B3333) (G, 1) | are sixth detrition coefficients for category 1,2, and 3

4052 _ (o (a52) ] (@) O T3, 0] |+ (@30) 09 (T, O] [+ @) Ty, 0] |
= a3z 33 32
dt ‘ +(a113)(1,1,1,1,1,1) (Tys ) H+(airG)(Z,Z,Z,Z,Z,Z)(TU' t) ||+(aélo)(3'3'3'3'3'3) (Ty1, t) ’
s _ 0 o (a59) ] H(@5) ) (T3, O +(a3) O M0, O] | H (@) 40 (Tas 0] |
= \d3z3 32~ 33
dt _‘+(a1'4)(1'1'1'1'1'1)(T14, t)H+(a1’7)(2'2'2'2'2'2)(T17, t)||+(a§'1)(3'3'3'3'3'3)(sz t) I
dGs, (226 (a§4)(6)‘ +(a4) @ (Ts3, 1) ||+(a§'0)(5'5'5)(T29, t) H"‘(aéls)(4'4'4') (Tys, t)| G
= A3y 33 34
dt ‘ +(a1/5)(1,1,1,1,1,1) (Tys ) H+(airs)(z,z,z,z,z,z)(TU' t) ||+(a§'2)(3'3'3'3'3'3) (Ty1, t) I

|+(a’3’2)(6)(T33, t)H+(a§’3)(6)(T33,t)H+(a§’4)(6)(T33, t)| are first augmentation coef ficients for category 1,2 and 3

[+(a)e) 555 (T, £)

,I +(ahe) 9 (Tyo, t) I (@) S5 (T, t) | are second augmentation coef ficients for category 1,2 and 3

[+ (a5 @44 (Tys, )

+ (aéls)(4'4'4') (Tys, 1)

, (@) B4 (Tys, t)l are third augmentation coef ficients for category 1,2 and 3

| +(a’1’3)(1'1'1'1'1'1)(T14, t) |’ | +(a/1/4)(1,1,1,1,1,1) (T4t

+(as) @1, t)| - are fourth augmentation coefficients

b

| +(a/1/6)(2,2,2,2,z,z)(TU, t) |’ | +(a/1/7)(2,2,2,2,2,2) (Ty7,)

+(a)s)@22222(T,,, t)| - fifth augmentation coefficients

b

[+(a5) #2333 (T, O], [+(ag) B33339(T,,,0)

+(a§’2)(3'3'3'3'3'3)(T21,t)| sixth augmentation coefficients

b
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LT B G i C AL o) | TGN Sl ) | ST G T CHI) g
- 32 33 © 32
d =BG, 0)| [~ (i) #2222 (Go, D] |- (b5) #2223 (G, 1)
AT o (05) | 03) OG5, O || (050 539 (G50, 0] |- GG 0] |
- 33 32 33
dt [=GiN @D (G, )| [~ (b)) 222222 (Gro, )] [ - (b5) 523239 (G, )]
Tos _ sy, _ | B30 200 O Gan O (i) (Gar, |- i) (G, 0] |
- 34 33 © 34
d (=BG, )| [~ (i) 222222 (Gro, )] [ - (b5) 523239 (G, )]

|—(b§’2)(6)(635, t)l,l—(b§’3)<6)(G35, t)| ,I—(béﬁ,)(ﬁ) (Ggs,t)l are first detrition coef ficients for category 1,2 and 3

|—(b§’8)(5'5'5) (G31,t) |,|—(b§ﬁ3)(5'5'5)(631, t) | ,|—(b§’0)(5'5'5)(631, t)| are second detrition coef ficients for category 1,2 and 3

|—(b§ﬁl)(‘*'4'4')(627, t) | ,|—(b§'5)(4'4'4')(027, t) | ,|—(b§'6)(4'4’4’)(027, t)| are third detrition coef ficients for category 1,2 and 3

[=(bin) WD (G, )| [ = (by) C2D (G, )| | = (b)) WD (G, )| are fourth detrition coefficients for category 1, 2, and 3

|=(b6) 222222 (G, )], = (b)) #*222D) (G0, 1)

— (i) @22222 (G, t)| are fifth detrition coefficients for category 1, 2, and 3

b

|— (byy)B33333) (G, t) | |— (by)B33333)(G,,, t) |,|— (by,)333333)(G,,, t)| are sixth detrition coefficients for category 1, 2, and 3

Where we suppose
(A) (@)@, (@)@, (@)™, (), )™, (Y™ > 0,
i,j =13,14,15
(B) The functions (a/")®, (b;")® are positive continuous increasing and bounded.
Definition of (p,))®, (r)®:
(@)D (Tye 1) < (P® < (Ay3)®
BHPEG, 0 < )W < bH® < (B3)W
©)  limpye(@)® (T, t) = (p)W
limg-e (b{)® (G,0) = ()™
Definition of ( 4;5)™, (B;3)™:
Where | (A13)D, (Bz)D, (p)D, (r)® ‘ are positive constants and

They satisfy Lipschitz condition:

@)D (T4, 1) = (@YD (Tyg, )] < (eyg YD|Tyy = Tiyle(Fis) P

(b6, 6) — BNV (G, )] < (ki3 )D|G — G'[|e=(Fa2) Dt
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With the Lipschitz condition, we place a restriction on the behavior of functions

(@ D(T{,,t) and(a!) P (Tya,t) . (T, t) and (Ty,, t) are points belonging to the interval

[(Ry3)D, (M;5)D] . Itis to be noted that (a}") P (Ty,, t) is uniformly continuous. In the eventuality of the
fact, that if (M, )™ = 1 then the function (a;")™(T,4,t) , the first augmentation coefficient WOULD be
absolutely continuous.

Definition of (M5 )™, (ky3)® :
(D) (My3)D, (ky3)D, are positive constants

@® _mp®
(My3)D 7 (#y3)D

Definition of ( P;3)®, (045)® :

(E) There exists two constants ( P;5 )® and ( 0,5 )™ which together
with (M;3)D, (ky3)D, (A13)® and (B3 )™ and the constants
(@)™, @)™, D, BHW, )@, ()W, i = 13,14,15,

satisfy the inequalities
1 , . R ~
@O+ @D+ (A3)@ + (Piy)® (kis)P] <1

1
(My3)®

[ ()@ + (BDP + (Bi3)P + (Q13)® (ky3)P] <1
Where we suppose
(F) (@)®, (@)@, (@H)®, )@, )P, (B{)® >0, i,j=1617,18
(G) The functions (a;")®, (b/")® are positive continuous increasing and bounded.
Definition of (p;))®, (r;)®:
(@)D (T, 1) < @)@ < (Ays)?
(NP (Grot) < ()P < (B)P < (B16)?
H  limgyoe@)® (T7,0) = ()@
limg_e, (b )@ ((G10),t) = (1)@
Definition of ( A;4)®, (B16)®
Where | (A16)P, (B1s)®, ()P, (1)@ lare positive constants and

They satisfy Lipschitz condition:

|(a{')(2)(T1'7, t) — (al{’)(z)(Tn; )] < (1216 )(2)|T17 - T1’7|e_(M16)(2)t

(BN D (G10)',) = (B P((G19), )] < (16 )P1(G16) = (Gr9)'||le™ (1ot

With the Lipschitz condition, we place a restriction on the behavior of functions (a;")® (T}, t)
and(a;) @ (Ty7,t) . (T{,t) and (T, t) are points belonging to the interval [( ky6 )@, (My6)@] . Itisto
be noted that (a;")®(T,,, t) is uniformly continuous. In the eventuality of the fact, that if ( M, )® =1
then the function (a))®(Ty,,t) , the SECOND augmentation coefficient would be absolutely continuous.
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Definition of (M4 )@, (k1)@ :
() (M) P, (ki )@, are positive constants

@® @
(M16)® 7 (#16)@

Definition of ( P;3)@®, (Q,3)@® :

There exists two constants ( P;¢ ) and ( Q; )® which together
with (M) @, (k16 )@, (A16)Pand (B )P and the constants
@)@, (@)@, )@, P, @)@, ()@, i=16,17,18,

satisfy the inequalities

1 , . " ~
(7he)® [(@)® +@)® + (A16)P + (Pig)® (Jy6)P] <1

Foml GP+ 0D+ (Bi)® + (Q16)® (Rie)®P] <1
Where we suppose
() (@)@, (@)@, (@"H®, ()@, BN, /NP >0, i,j=2021,22
The functions (a/")®, (b/")® are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:
(@) (Tp0,0) < @)® < (Ay)®
(NP (Grat) < ()P < (BH® < (B, )®
limy, e (a])® (T, 1) = (p)®
limgeo (b)) (Go3,t) = (1)

Definition of (A, )®, (Bye )@ :

Where | (A,0)®,(Byo)®, 0)®, (1)@ | are positive constants and [i = 20,21,22

They satisfy Lipschitz condition:

(@) (T30, £) = (@)D Ty, )] < (ko )P Tyy — Thyle™ (200Dt
I(5) B (Gas',£) = (b)) (Gas, )] < (Fgg )P||Gaz — G ||~ (200Dt

With the Lipschitz condition, we place a restriction on the behavior of functions (a;")®(T;,, t)

and(a;)® (Ty1,t) . (T4, t) And (T4, t) are points belonging to the interval [( k20 )®, (M40 )®] . Itis to
be noted that (a;")® (T,4, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, )® =1
then the function (a))® (T,,,t) , the THIRD augmentation coefficient, would be absolutely continuous.

Definition of ( M, )®), (kye)® :
(K) (M )®, (k)@ are positive constants

@® _wp®
(M20)® 7 (M)
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There exists two constants There exists two constants ( P, )® and ( Q,, )® which together with
(M), (ky0)®, (A,0)Pand (B, )@ and the constants

(@)@, @)@, )P, )P, )P, ()P, i=2021.22,

satisfy the inequalities

1

T @ + @)+ (A20)® + (Pr)® (kpo)®] <1

1

(M20)® [ (bi)(3) + (bi’)(s) + (B20)® + (Q20)® (1220 P <1

Where we suppose
(@)@, (@)™, @)@, B)®, D™, BN >0, i,j = 24,2526
(M) The functions (a; )™, (b;")™® are positive continuous increasing and bounded.
Definition of (p))®, ()®:
(@) (Ty5,8) < @)@ < (Ap)®

BNP((G)8) < ()™ < BD® < (Bra)®

(N)  limg, e (ai)® (Ts, £) = ()@
limge ()™ ((Go), t) = ()@

Definition of (A, )@, (Byy )@ :

Where | (A,)®, (B )P, ()@, ()@ | are positive constants and [i = 24,25,26

They satisfy Lipschitz condition:

(@)D (T4, ©) — (@] )P (Tys, 0] < (Kpa )P|Tps — Tysle (M)t

I(BIN®((Gy7)', ) = (B P((G2), £)] < (kza YPNI(Ga7) — (Goy)'||e™(F2a) Pt

With the Lipschitz condition, we place a restriction on the behavior of functions (a;" ) (Tys, t)
and(a;") ™ (Tys,t) . (Tys,t) and (Tys, t) are points belonging to the interval [( &y, )@, (M,, )] . Itis to
be noted that (a;")® (T,s, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, )® = 4

then the function (a))® (T,s, t) , the FOURTH augmentation coefficient WOULD be absolutely
continuous.

Definition of ( My, )@, (kp4 )@ :
(Myy )@, (kpy )@, are positive constants

@® @
(M24)® 7 ([34)®

Definition of ( By, )™, (0,4 )™ :

Q) There exists two constants ( P,, )® and ( 0,, )™ which together with
(My, )™, (ks )®, (A,.)Pand ( B,, )@ and the constants
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(@)@, (@)@, ()@, BN, )@, ()™, i = 24,2526,
satisfy the inequalities

1

T @)W+ @)W+ (A2)® + (Pr)® (kea)®] <1

1 , R - A
(M24)® [ (bi)(4) + (bi)(4) + (Bp)® 4+ (Q24)® (k)W <1

Where we suppose
ai ,a; , 4 ) i ) i 1] i > 1] L]= ) )
(@)®, @)®, (@H)®, (1), (BH®, (BN >0, i,j=282930
(S) The functions (a;")®, (b/")® are positive continuous increasing and bounded.
Definition of (p,))®, ()®:
(@i ) O (Ty9,0) < @) < (Azs)®

(BN ((Gs), ) < ()P < (DD < (By5)®

M limp,oe(a)® (T, 1) = (p)®
limgooo (b)) (Gs1,8) = (1)®

Definition of (A,g )™, (B,g )™ :

Where [( A5 ), ( Bys )®, (0)®, (1)®| are positive constants and [i = 28,29,30

They satisfy Lipschitz condition;

(@) ® (Tso,£) = (a") (Tpo, )] < (Fegg YO |Tpg — Tole™ (M)t
" r " 7 ’ (M (5)
15 ((G31)",6) — (BN P ((G31), )] < (Feog YO|(Gay) — (Gay)'||e™M2e)®t

With the Lipschitz condition, we place a restriction on the behavior of functions (a;")® (T;q, t)
and(a;")® (Tye,t) . (T30, t) and (Tye, t) are points belonging to the interval [(kag)®, (M) ] . Itisto
be noted that (a;")® (T, t) is uniformly continuous. In the eventuality of the fact, that if ( M,5 ) =5

then the function (a;")® (T,o,t) , theFIFTH augmentation coefficient attributable would be absolutely
continuous.

Definition of ( M,g )™, (kpe ) :
(Myg)®, (kpg)®, are positive constants

@® _mp®
(Mag)(® 7 (Mp8)®)

Definition of ( Py )®, (0,5 )™ :

There exists two constants ( P,g )® and ( 0,5 ) which together with
(Mg )®, (ky5)®, (A,8)Pand (B,g )™ and the constants
(@)®, (@)@, ()@, (B)H®, ()™, )®,i=28,29,30, satisfy the inequalities

1

(M25)® [ (ai)(S) + (aD(S) + (Ayg)® + (Pyg)® (’228 ®<1
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_r
(Mag)(®)

[ BB + GNP + (Bys)® + (025)® (k)] <1

Where we suppose

(@)@, (@)@, (@)@, B)@, 1)@, (b)) >0, i,j=323334

(W)  The functions (a;")®, (b;")® are positive continuous increasing and bounded.
Definition of (p,)©, (1;)®:

(@) ©(T33,0) < ()@ < (4;,)©

BO(Gss) ) < ()@ < (B < (B3p)©

X) LMy (@)©® (Tss, £) = (p)©
limg e (b)) ((G3s), £) = (11)©

Definition of ( A5, )®, (B;,)® :

Where | (A3,)®,(B3,)®, (p)®, (1)©® ‘ are positive constants and [i = 32,33,34

They satisfy Lipschitz condition:

(@) © (T4s, £) = (@) O (Ts3, £)| < (kgp )(©|Tss — Tiale™ (M)t

(bY@ ((G35)', £) — (B]) O ((Gss), )] < (a2 YO|(Gas) — (Gas)'||e™ (M)t

With the Lipschitz condition, we place a restriction on the behavior of functions (a)© (T, t)

and(a;")(® (T3, t) . (T43,t) and (Ts3, t) are points belonging to the interval [( ks, )©, (M5, )©] . Itisto
be noted that (a;")(® (T;3, t) is uniformly continuous. In the eventuality of the fact, that if ( M5, )® =6
then the function (a;")® (T3, t) , the SIXTH augmentation coefficient would be absolutely continuous.

Definition of ( M, )(©, (k3 )© :
(M3,)®, (ks,)®, are positive constants

@® _wp©
(M32)® 7 (M35 )

Definition of ( B, )®, (05, )® :

There exists two constants ( P;, )® and ( 05, )(® which together with
(M35)®, (k35,)®, (A3,)@and ( Bz, )© and the constants

(@)@, (@)@, (6)®@, (6D, @)@, ()@, i =32,3334,

satisfy the inequalities

1 , N ~ ~
(F12)® [(@)® + @)@+ (A5) @+ (P3)® (k3z)®] <1

1

(M33)(® [ (b)© + (bil)(ﬁ) + (B3)® + (032)® (ks )®] <1

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying
the conditions

99



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

Definition of G;(0),T;(0) :

G(O) < (Pya)PemPt T76,0) = 67 > 0]

Ti(t) < (Qs3 )(1)e(n7113)(1)t , T;,(00=T">0

Definition of G;(0),T;(0)

Gi(t) < (P )(2)9(1\716)(2% , G(0)=G)>0
Ti(t) < (Q16)Pe™)Pt | T,(0) =T >0
Gi(t) < (Pyo )(S)Q(MZO)(3)t , G(0)=G)>0
Ty(6) < (Qp )P0t T(0) =T >0

Definition of G;(0),T;(0) :

Gi(O) < (Py ) et T7G,0) = 67 > 0]

Ty(t) < (g )Pe™)Pt IT(0) =T > 0

Definition of G;(0),T;(0) :

Gi(O) < (Pye )P0t 7G,0) = 67 > 0]

Ty(t) < (Qg)®eM2)®t - IT,(0) =T > 0

Definition of G;(0),T;(0):

() < (Py ) Ve 7G,0) = 67 > 0]

Ty(t) < (032) @)t I1,(0) =T > 0

Proof: Consider operator A™ defined on the space of sextuples of continuous functions G;, T;: R, — R,
which satisfy

Gi(O) = Gio , Ti(O) = TiO ’ Gio < (ﬁls )(1) :Tio = (Qn )(1):
0 < Gy(t) — GP < (Pyy )WeMis)™e
0 < Ty(0) = T < (Qu3 )V M)

By
G_13(t) = Gfs + fot [(a13)(1)G14(s(13)) - ((a13)(1) + a1’3)(1)(T14(5(13)),5(13))) G13(5(13))] d5(13)
Gia(t) = GO, + fot [(‘114)(1)613(5(13)) - ((ah)(l) + (‘11’4)(1)(7'14(5(13))' 5(13))) G14(5(13))] ds(13)

Gi5(t) = Gps + fot [(a15)(1)G14(5(13)) - ((ais)(l) + (ails)(l)(TM(S(m)),5(13))) G15(5(13))] ds(3)

100



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

Ti3(t) =T + fot [(b13)(1)T14(5(13)) - ((b13)(1) - (b{%)(l)(G(S(B)),5(13))) T13(5(13))] ds(13)
Tia(t) =Ty + fot [(b14)(1)T13 (5(13)) - ((b1’4)(1) - (bﬂ)(l)(c(s(ls))‘ 5(13))) T14(5(13))] ds(13)

= t ' "

Tis(t) = Tps + |, [(b1s)(1)T14(S(13)) - ((b1s)(1) - (bls)(l)(G(S(m)),5(13))) T15(S(13))] ds(13)
Where s(,3) is the integrand that is integrated over an interval (0, t)

Proof:

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which
satisfy

G;(0) = GL'O' T;(0) = Tior Gio < (1316 )(2) 'Tio < (Ql6 )(2)'

0 < Gy(t) — GP < (Prg )Pe M)

0<Ti(0) = T < (Qug)PelMe)

By

G_IG(t) = Gfe + fot [(‘116)(2)617(5(16)) - ((a;G)(Z) + ai’e)(z)(Tn(S(m)); 5(16))) 616(5(16))] ds(16)
Gi7 () = Gy + fot [(a17)(2)616(5(16)) - ((a17)(2) + (a1’7)(2) (T17(S(16))15(17))) 617(5(16))] ds(1e)
6718(t) = Gfs + fot [(a18)(2)617(s(16)) - ((ais)(z) + (airs)(z) (T17(S(16)): 5(16))) Gig (5(16))] ds(16)

Ti(t) = Tis + fot [(blé)(Z)T17(S(16)) - (bia)(z) - (bils)(z)(G(S(le))'S(le)) T16(S(16))] ds(1e)

( )
Ty, () =TS + fot [(b17)(2)T16(S(16)) - ((b{7)(2) - (b1”7)(2)(6(5(16))» S(16))) T17(S(16))] ds(16)
)

T t ! n

Tig() = Tis + | [(b18)(2)T17(S(16)) - ((bls)(z) - i) @(6(sae) Sae)) T18(5(16))] ds(16)
Where s(46 is the integrand that is integrated over an interval (0, t)

Proof:

Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which
satisfy

Gi(0) =GP, T;,(0) =T, G? < (Py)®, TP < (Qz0)®,
0 < Gi(t) — GP < (Pry )Pe(M20)t

0<Ti(t) = T2 < (Qy )(3)9(1%0)(3%

By

Goo(t) = G3p + fot [(‘120)(3)621(5(20)) - ((aéo)m + a’z’o)(3)(T21(5(20)): 5(20))) Gzo(s(zo))] ds (o)

521(75) = Gg1 + fot [(a21)(3)020(5(20)) - ((aé1)(3) + (a’2'1)(3)(T21(5(20)),5(20))) 621(5(20))] ds(zo)
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Gor(t) = G35 + fot [(‘122)(3)621(5(20)) - ((alzz)m + (alzlz)(S)(Tm(S(zo)): 5(20))) 622(5(20))] ds(20)

Tyo(t) = T3 + fot [(bzo)(3)T21(s(20)) — ((B3)® — (bé’o)(s)(G(s(zo))‘ 5(20))) Tzo(s(zo))] ds 20

T () = T201 + fot [(b21)(3)Tzo(5(20)) - ((bh)(s) - (bé’l)(3)(G(s(20)),5(20))) T21(5(20))] ds (20
T2 (t) = Tg; + fot [(bzz)(s)Tn(S(zo)) - ((béz)m - (bélz)(3)(6(5(zo))'5(20))) Tzz(s(zo))] ds(20)
Where s,y is the integrand that is integrated over an interval (0, t)

Consider operator <A™ defined on the space of sextuples of continuous functions G;, T;: R, — R, which
satisfy

G;(0) =GP, T;(0) = T2, G? < (P )@, T < (Q0)®,
0<Gi(t)—GY < (Py, )(4)e(M24)<4)t

0<T(t) = TY < (Qqq )Pe(M2s Bt

By

Goa(t) = G34 + [ [(a24)(4)625(5(24)) - ((a;4)(4) + a4) @ (Tas(s2ay), 5(24))) 624(5(24))] ds(a)
Gys(t) = G5 + fot [(azs)(4)624(5(24)) - ((aés)(4) + (a)e)® (T25(5(24)),s(24))) 625(5(24))] ds(z4
Gas(®) = G + [ [(@20) PG5 (5)) = ((@5)® + (@56) @ (Tas(520)),S2m) ) Gao(52) | dsiaay

To(t) = T2y + fot [(b24)(4)T25(5(24)) — (3@ = (bz)® (G (5(24))» 5(24))) T24(5(24))] ds(24)

Tos(t) = Tgs + fot [(bzs)(4)T24(5(24)) - ((bés)@) — (bys)® (G (5(24))» 5(24))) T25(5(24))] ds(24)

= t I "
Ty6(t) = T3 + fo [(bzs)(4)T25(5(24)) - ((bza)(4) - (bze)(4)(6(5(24));5(24))) T26(5(24))] ds (za)
Where s(,4 is the integrand that is integrated over an interval (0, t)

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which
satisfy

G;(0) =G, T;(0) =T?, G? < (Pg)®,T? < (Q,5)®,
0<G;i(t) —GY < (P )(S)e(ﬁze)<5)t
0<Ti(t)-T? < (0, )(5)e(ﬁze )

By

Gog(t) = Ggg + fot [(azs)(S)ng(S(zs)) - ((aés)(s) + alzls)(s)(Tzla(S(zs)),5(28))) G28(s(28))] ds(2g)
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Goo(t) = G + J, [(azg)(s)st(S(ZS)) - ((a'zg)(s) + (a'z'e)(s)(tha(S(zs))’5(28))) 629(5(28))] dS(28)
Gao(t) = G3 + J, [(a30)(5)G29(s(28)) - ((aéo)(s) + (@50)® (Tzo(s28)), 5(28))) 630(5(28))] ds(zs)
Tos(t) =TS + [ [(bzs)(S)ng(s(zg)) - ((bés)(s) — (b75)®(G(s28))s 5(28))) T28(5(28))] ds(2s)

Too(t) =TS + [ [(bzg)(S)Tzs(S(ZS)) - ((bée»)(s) — (b79)®(G(s28))s 5(28))) T29(5(28))] ds(2s)

T t ! n
T50(0) = Ts(')o + fo [(b30)(5)T29(S(28)) - ((bso)(s) - (bso)(s)(G(S(zs)): 5(28))) T30(S(28))] ds(28)
Where s(,¢) is the integrand that is integrated over an interval (0, t)

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which
satisfy

Gi(0) =GP, T;(0) =T, G) < (P3,)®, TP < (Q32)®,
0 < Gi(t) — G? < ( Py, )®e(Ma2)t
0<Ti(t) = T® < (0sp ) ©Oe(M32)t

By

Goo(D) = G5, + [ [(a32)(6)533(5(32)) - ((aéz)(é) + a'srz)(G)(Tss(S(w))'5(32))) 632(5(32))] dS(s2)
Gas () = 6% + [ [(@35)@65a(532)) — ((a5)@ + (@5)© (Tsa(532)): 5329 ) Gaa (S32) | e
Gaa(t) = G54 + [(‘134)(6)533(5(32)) - ((‘134)(6) + (@50 (Ts3(s32)). 5(32))) 634(5(32))] ds(32)

Ty (t) = T3, + fot [(bsz)(G)T33(5(32)) — ((b3)© - (bérz)(ﬁ)(G(swz))'5(32))) T32(5(32))] ds(32)

T33(t) = Tgs + fot [(bss)(G)T32(5(32)) - ((b§3)(6) - (bég)(ﬁ)(G(swz))'5(32))) T33(5(32))] ds(s2)

= t ’ i
T34 (t) = T3, + fo [(b34)(6)T33(5(32)) - ((b34)(6) - (b34)(6) (6(5(32)),5(32))) T34 (5(32))] ds(32)
Where s(3,y is the integrand that is integrated over an interval (0, t)

(@) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t 5 Vy5 )0
Gi3(t) < G5 + fo [(a13)(1) (Gf4+(P13 YPeMas) 5(13))] dsaz) =

1 0 (a1) P (P13)D 1) D¢
(1 + (a13)Vt)GY, + W(e( 13)07t 1)

From which it follows that

(P13)M+69,

i ol (- ).
(Gys(t) — GPp)e~ (M)t < L1 (B YD 4 GO, )e %)+ (P )“)l

(My3)D
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(G?) is as defined in the statement of theorem 1
Analogous inequalities hold also for Gy4,Gis, Ti3, T1a, Tis

(b) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t =~ i, - )(2)
G16(t) < G + | [(a16)(2) (Gf7+(P16 )©eMae) 5(16))] dsge) =

2 0 (a )(2)(13 )(Z) [73PNO)
(1 + (a16)( )t)617 +W(e( 16 )\t _ 1)

From which it follows that
(P16)@D+69,

o (et
(G16(t) — Glo)e (e )Pt < ((1(\1/116))(2) [(( Pis)® + Gy )e b * (B )(2)]

Analogous inequalities hold also for Gy, G5, T16, T17, T1g

(@) The operator A®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t 5 0 )3)
Goo(t) < G3o + [(azo)(s) (631"‘( Py )PeH20) 5(20))] dsco) =

3 0 (a20)®(P20)® on Yt
(1 + (azo)( )t)GZ]_ + W(G( 20) - 1)

From which it follows that

(P20)®+69,

((Py)® + 681)e<_ G4 ) + ( Py )(3)l

- @ _ (a0®
(Go(t) — G3p)e~ (M0t < (MZO ©

Analogous inequalities hold also for G, , G2, T20, To1, T2z

(b) The operator <A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t 5 4 )4
Goa(t) < G343 + [ [(a24)(4) (G§5+( Pyy )WeMet) 5(24))] dse) =

D0 o @D (g @
(1 + (a24)( )t)st + W(e( 24) — 1)

From which it follows that

(P24)®+695

(Goa(t) — G2 e~ (Mas e < Laz) 8 (( Py )® + st)e< 63 ) + (P )(4)l

(M4 )®)

(G?) is as defined in the statement of theorem 1

(c) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t 5 g )5
Gos(t) < G + fo [(azs)(s) (Gg9+(P28 )Ee(Mze) 5(28))] ds(ze) =

5 0 (a28) (Pr3)® M0 YOt
(1 + (azg)( )t)ng + W(e( 28) - 1)
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From which it follows that

_(P2g)5)+689

(( Py )® + Ggg)e( 6o ) + (P )(S)l

(0 Y p-(Flps )t (a2e)®
(G2(t) — Gag)e 28 S(Mzs)(s)

(G?) is as defined in the statement of theorem 1

(d) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

t =~ Vizr )(6)
G32(t) < G, + [ [(‘132)(6) (G§3+(P32 )(©e(Hs2) 5(32))] ds@y) =

6 0 (az2)©(P35)(©® Mzo )(©)
(1 + (a32)( )t)G33 + W(e( 32 )\t _ 1)

From which it follows that

_ (P32)(©)+645

—(M3,)® © 5 < ) 5
(G32(t) — Gp)e™(Ms2) Ve o a2 — ((Ps2)® + G§3)e 6% +(P3,)®

~ (M33)®)

(GP) is as defined in the statement of theorem
Analogous inequalities hold also for G,s , Gy6, T24, Tas, Tag

. i @® @
It is now sufficient to take ()@ () D

< 1 and to choose

(P3)® and ( Q45 )@ large to have

((ﬁm(lhcj’)
o | - | .
(6:) (Pi)® + ((P3)® + Gjo)e € < (Py3)®

(M13)D

[ _( (Q13 )(1)+T?>
(( Q13)® + Tjo)e R + (013)P| < (043)®

Chi
(M13)®

In order that the operator A™ transforms the space of sextuples of functions G; , T; satisfying GLOBAL
EQUATIONS into itself

The operator A™ is a contraction with respect to the metric

d ((G(n, T®), (6@, T(z))) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’13)(1)t,max |Ti(1) ) - Tl.(z) (t)|e_("713)(1)t}
i tER4 teER4

Indeed if we denote

Definition of G, T :

(G, T)=AMG,T)

It results

105



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

|G~1(;) - Gi(2)| = fot(a13)(1) |G1(i) - 61(2) e (M12)Vs013)¢ (M12)saz) dsiz) +
[ @62 = 62 e Psu e~ Vs 4
(ails)(l)(Ti(i)' 5(13))|Gl(;) - Gl(g)|e_(ﬁ“)(l)s(“)e(ﬁ“)(l)s(“) +
" " — (M=) D M) D

Gf§)|(a13)(1)(7"1(i),5(13)) - (a13)(1)(T1(f),s(13))| e~ (M) sz g (Mrs) *a3}ds(13)
Where s(,3) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|6 — @]e~(Fr Wt <

1 , ~ ~ ~
Ao (@)@ + @)@ + (A + (Pi) P (Rin) V) (60,705 6@,7@))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a}5)™® and (bj5)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P;3)®e™19)™t gnd (Qy5) e (1Mt
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it
suffices to consider that (a/)® and (b;)V,i = 13,14,15 depend only on T,, and respectively on
G (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G, (t) = Gioe[—f(f{(ai)“)—(ai')(l)(T14(S(13))'5(13))}615(13)] >0

T, (t) > TeC®DY) > 0 fort>0

Definition of ((W13)(1))1, ((ﬁm)m)z and ((W13)(1))3 :

Remark 3: if G5 is bounded, the same property have also G,, and G5 . indeed if

Gi3 < (My3)@ it follows d;’% < ((My3)®), = (1) Gy, and by integrating

Gia < ((ﬂ13)(1))2 =Gy + 2(a14)(1)((/1\7113)(1))1/((114)(1)

In the same way , one can obtain

Gis < ((/M13)(1))3 = Gps + 2(a15) PV ((M13) ™), /(a15)™

If Gy, or G5 is bounded, the same property follows for G5, G;s and Gy5, G14 respectively.

Remark 4: If G5 is bounded, from below, the same property holds for G,, and G5 . The proofis
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T;5 is bounded from below and lim,_,., ((b;)® (G(t),t)) = (b;,)™® then T,, — oo.

Definition of (m)™ and ¢, :
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Indeed let t; be sothatfort > t;

(b1)® = (BND(G (D), 1) < &, Ty (£) > (MWD

Then 2% > (a,,)® ()@ — &, Ty, which leads to
@ (@
Ty, = (M) (1 —e 51t + The 1t If we take t such that e 51t = % it results
1
@ ()@ ) - .
Ty = (w) t= logf By taking now &; sufficiently small one sees that T,, is unbounded.
1

The same property holds for Tys if lim,_,. (b}5)® (G(t),t) = (bjs)P
We now state a more precise theorem about the behaviors at infinity of the solutions

@® @
(M16)® 7 (M16)@

It is now sufficient to take < 1 and to choose

(Pis)® and ( Q.4 )@ large to have

[ <(P16 )(2)+G?>
(a)@ ~ N \— R
o |(Pi)® + ((Pe)® +Gf)e < (P)@
[ (@16)(2)+T?
Gl 0.6)® +T? _( T} ) . @ H. @)
1)@ (( Q16 ) +T; )e Y + (Q16)"| < (Q16)

In order that the operator A4 transforms the space of sextuples of functions G; , T; satisfying

The operator A is a contraction with respect to the metric
d (((6:9)®, (T19)®), ((610)@, (T16)@)) =

sup{max |Gl-(1)(t) - Gi(z)(t)|e'(’q16)(2)t,max |Ti(1) ®) - Ti(z) (t)|e'("7’16)(2)t}
i teER+ teER+

Indeed if we denote

Definition of Gyo, Tre © ((Gro, T1o ) = AP (Gyo, Tyo)

It results

|51(é) _ Gi(2)| < fot(alé)(Z) |Gl(;) _ Gl(g)|e—(’Mls)(Z)s(m)e(’1\7116)(2)5(16) dse +
J@IPI6R = 6 e (Mo 0 e o504

@O (1 s00)|657) = 67 Jem e Ve o ¢

" " —(M+)@ )2
Gl(é)l(am)(z) (T1(71)'S(16)) _ (a16)(2) (T1(72),S(16))| e~ (M16)*5(16) o (M16) 5(16)}ds(16)
Where s(44) represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|(G19)(1) - (G19)(2)|‘3_(T\7[16')(2)t <
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a5 (@@ + (@@ + (A1)@ + (P @ (ki) @) (((G10) D, (119D (619)@, (1))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a}s)® and (bj%)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P;o)@e(™10®t and (Q,)@e(Mie®t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a))® and (b;)®,i = 16,17,18 depend only on T,, and respectively on
(G19)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) =0and T; (t) = 0

From 19 to 24 it results

G; () > G?e[_ L l@)@=(a]"YP(T17(5(16)) 516 }d516) | >0

T, (6) = TeC-CDP) > 0 fort> 0

Definition of ((M;6)®),, (M;6)®), and ((M;6)®), :

Remark 3: if G4 is bounded, the same property have also G;; and G;g . indeed if

Gy < (M;4)@ it follows % < ((My)@), = (a17,)® Gy, and by integrating

Gy < ((mlﬁ)(Z))z = Gy, + 2(‘117)(2)((ﬂ16)(2))1/(a17)(2)

In the same way , one can obtain

Gig < ((m16)(2))3 = Gis + 2(a18)(2)((/l\7[16)(2))2/(ais)(Z)

If G;; or G5 is bounded, the same property follows for G, , G153 and G,4, G, respectively.

Remark 4: If G;¢ isbounded, from below, the same property holds for G;;and G;g. The proof is
analogous with the preceding one. An analogous property is true if G;, is bounded from below.

Remark 5: If T4 is bounded from below and lim,_,., ((b;)® ((G10) (1), 1)) = (b},)® then T;, — co.
Definition of (m)® and ¢, :
Indeed let t, besothatfort >t,

(b17)(2) - (b{’)(z)((Gw)(t)rt) < gy, Tig (B) > (m)(z)

Then S22 > (a;,)@ (m)® — &, T, which leads to
(a179)Pm)®@ —g,t 0 ,—gyt —g,t 1.
Ty, = (57) (1 —e™%2% + T,e ®2" If we take t such that e7%2t = S it results
2
(2) (2) . .. .
Ti7 = (M) t= logsi By taking now &, sufficiently small one sees that T;, is unbounded. The
2

same property holds for Tyg if lim,_., (b15)® ((G10)(0),t) = (big)?

We now state a more precise theorem about the behaviors at infinity of the solutions
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3 NG
It is now sufficient to take (f# , (f") < 1 and to choose
(M20)® "’ (Mz0)®)

(P,0)® and (Q, )@ large to have

[ <<ﬁ20><3>+c?>
(a)® - R B = R
(M;O)m (P20)® + ((Py)® + Gjo)e j < (P,))®
[ (220)®+17
(M20)® (( Q200 +Tj )e / + (Q2) < (Q2)

In order that the operator A transforms the space of sextuples of functions G; , T; into itself

The operator A®) is a contraction with respect to the metric
d (((622)™, (Ty3)®), ((6:0)®, (Ty)®) ) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘("7’2°)(3)t,max |Ti(1) ) - Ti(z) (t)|e_("72°)(3)f}
i tER+ tER4

Indeed if we denote
Definition of Gy3, To3 :( (Gg3), (Tz3) ) = A®((G23), (Tz3))
It results
| G 5i(2)| < fot(azo)(S) | 6L — Gz(f)| o~ (M20)Ps20) o (M20)Ps(20) dsa0) +
[y @50 @65) — 657 [e™ Moo seme(Meo) s 4
(@) (TSP 0653’ = G5 e~ o0 P

G21(@5)P (T, 5e0) — (@) P (T2, s00)| e 2050 (20T 5e0ds 4y,

Where s, represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 — G@|e=(1:0P¢ <

m;w((azo)m + (a50)® + (A20)® + (Pr0)® (kp)®)d (((623)(1)» (To3)@; (G3)@, (T23)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (ay,)® and (by,)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,0)®e ™20t and (D)@ e M0t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a/)® and (b;)®,i = 20,21,22 depend only on T,, and respectively on
(G,3)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.
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Remark 2: There does not existany t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G, (t) = Gioe[_ f;{(ag)m—(a{')(”(721(5(20))'5(20))}‘15(20)] >0

T, (0) = TP > 0 fort>0

Definition of ((M,0)®),, ((M20)®), and ((My0)®), :

Remark 3: if G,, is bounded, the same property have also G,, and G,, . indeed if

Gao < (My0)® it follows % < (My0)®), = (a31)® Gy, and by integrating

Gy1 < ((7\7[20)(3))2 =G31 + 2(“21)(3)((7\7120)(3))1/(61’21)(3)

In the same way , one can obtain

Gaz < ((’MZO)G))?, =G, + 2(a22)(3)((W20)(3))2/(a§2)(3)

If G5, or G, is bounded, the same property follows for G,,, G,, and G,,, G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,, and G,, . The proof is
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T,, is bounded from below and lim,_., (b{")® ((G,3)(£),t)) = (b51)® then T,y — oo.
Definition of (m)® and &, :

Indeed let t; be so that for ¢t > t4

(b21)® = (b )P ((G23) (D), 1) < 3, T (8) > (M)®

Then d;% > (ay,)®(mM)® — £;T,, which leads to

@) ()@ .
T, = (M) (1 —e~%t) + T e %3t If we take t such that e3¢ = % it results
3
@) ()@ ) . .
T, = (w) t= logsi By taking now &5 sufficiently small one sees that T,, is unbounded.
3

The same property holds for Ty, if lim;_, (535)® ((Go3)(), t) = (b3,)®
We now state a more precise theorem about the behaviors at infinity of the solutions

@®  _ep®

Ty )® " (Hp)® 1 and to choose

It is now sufficient to take

(P,,)® and (Q,, )™ large to have

((f’m(“w?)
(4) ~ ~ T (o ~
@0 N (P)® + ((Po)® +GP)e “ < (P)®

(M34)®
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(Q24 )(4)+T?

(1(51);(1) l(( QZ4 )( ) + To)e ( T? ) + (Qz4 )(4) = (@24 )(4)

In order that the operator <A™ transforms the space of sextuples of functions G; , T; satisfying IN to itself

The operator A™ is a contraction with respect to the metric
d (G, (7)), ((6:)P, (T)®) ) =

sup{max |V (t) - Gi(z)(t)|e‘(M24)(4)t,max T (@) - 1,? (t)|e_("724)(4)t}
i teR+ teER4

Indeed if we denote

Definition of (G,,), (T57) :  (((G27), (T27) ) = AD((Gy), (7))

It results
|G(1) G(2)| < f (a )(4) |G(1) Gz(é) e—(1\724)(4)5(24)6(1\724)(4)5(24) dsca +
f{(a24)(4)|G(1) Gz(i)|e-(Wz4)(4)5(24)e—(ﬁm)ms(u) +
@) D(TL, 500) |62 — 62 |e~ 2P0 ¢ (F2)Ps20) 1.

GZ(Z)K )(4)(']" A 5(24)) _ (a24)(4)(T 5) 5(24))| e-(Mz4)( )5(24) (T 5(24)}d5(24)
Where s(,4 represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|(627)® = (G,7) P e~ 20t <
A (@D + (@)@ + (2@ + (PP (T ®)d (62D, (1:)ND; (6P, (1))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (ay,)™ and (by,)™® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,,)®e™20®t gnd (Q,,)®e(M20)®t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a))® and (b;)™,i = 24,25,26 depend only on T,s and respectively on
(G,7)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) = 0

From 19 to 24 it results

G (t) = GL-OQ[_ f(f{(alf)(“)—(a{')(‘*)(Tz5(5(24)),5(24))}d5(24)] >0
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T; (t) = Tioe(_(bl!)wt) >0 fort>0

Definition of ((M,4)®),, (M24)™*), and (M,4)®), :

Remark 3: if G,, is bounded, the same property have also G,s and G, . indeed if

Gya < (Myy)™@ it follows % < (Mp)®), = (a35)® 6,5 and by integrating

Gas < ((7\7[24)(4))2 = Ggs + 2(“25)(4)((7\7[24)(4))1/(“’25)(4)

In the same way , one can obtain

a6 = ((7\7124)(4))3 = Gs + 2(a26)(4)((7\7[24)(4))2/(0"26)(4)

If G,5 or G, is bounded, the same property follows for G, , G,¢ and G,, , G,5 respectively.

Remark 4: If G,, isbounded, from below, the same property holds for G,s and G,¢. The proof is
analogous with the preceding one. An analogous property is true if G5 is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,. ((b/")® ((G,,)(t),t)) = (bys)™® then T,5 — oo.
Definition of (m)™® and ¢, :

Indeed let t, besothatfort >t,

(b25)® = ()W ((G27) (), 1) < &4, Toa () > (M@

Then d;% > (a5) @ (mM)® — &,T,5 which leads to

@@
Tys = (w) (1 —e~5t) + The % If we take t such that e5+f = % it results
4
(a25) ™ (m)@® 2 : - .
T,s = (f) t= logg— By taking now ¢, sufficiently small one sees that T, is unbounded.
4

The same property holds for Tyq if lim;_,,, (b36)® ((Go7)(), t) = (b3e)®

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS
inequalities hold also for G, , G390, T2s, T29, T30

@® _p®

It is now sufficient to take 1 )® (1) < 1 and to choose

(Pg)® and (Q,g )™ large to have

[ <( ﬁzg)(s)w?)
@® | ~ R B _
(IVlzls)(s) (st)(s) + (( Pg )(5) + G].O)e “ < (P )(5)
[ (228)+1)
) 105, ® 410 _( T) 5,19 < (0,,)®
NG ((st) +T-)e J + (Q2s) < (Q2s)
(Mg)(3) J

In order that the operator A transforms the space of sextuples of functions G; , T; into itself
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The operator A®) is a contraction with respect to the metric
d (((Gs)™, (To)®), (60, (T3)@) ) =

sup{max |¢™V(t) - Gi(z)(t)|e‘(M28)(5)t,max T (@) - 1,? (t)|e_("728)(5)t}
i teR4 teER4

Indeed if we denote
Definition of (G3,), (T31) : ( (G31), (T51) ) = Uq(s)((Gsl), (T31))
It results
|G’2(§) _ 61(2)| < fot(azg)(S) |GZ(;) _ Gz(g) e—(/1\7128)(5)5(28)6(7\7128)(5)5(28) ds(zg) +
(Tl (T
[ ®)6E = 62 ]e~(Meo) Dstam = (Ma0) Vs 4.
(alzls)(s)(Tz(;)' 5(28))|GZ(§) - Gz(?|e_(WZS)(S)S(ZB)e(ﬁzs)(S)S(ZS) +
2 " 1 " 2 —(M,0)®) P,4)5)
Gz(g)l(azs)(s)(Tz(g)'5(28)) _ (azs)(s)(Tz(g)rS(zs))l e (M2g) 5(28)e(M28) 5(28)}d5(28)
Where s(,gy represents integrand that is integrated over the interval [0, t]
(28)
From the hypotheses it follows

|(G31)(1) - (031)(2)|3_(M28)(5)t <

1 , —~ ~ ~
W((azs)(s) + (ahg)® + (Aze)® + (Prg)® (Kpg)®)d (((631)(1), (T50)D; (G5)?, (T31)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed (ayg)™ and (bys)™ depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,g)®e™28)®¢ and ( Qq)®e(M20)™t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a))® and (b;)®,i = 28,29,30 depend only on T,, and respectively on
(G31)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) = 0

From GLOBAL EQUATIONS it results

G, (t) = GL,Oe[‘f(f{(ag)(s)‘(afl)(s)(T29(5(28))'5(28))}‘15(28)] >0

T, (t) = TeCEDPD) > 0 fort>0

Definition of ((M5)®),, ((M26)®), and ((Mz6)®), :

Remark 3: if G,g is bounded, the same property have also G,q and G;, . indeed if
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Gag < (Mag)® it follows % < (Me)®), = (a39)® G, and by integrating

Gyo < ((’1\7128)(5))2 =G3y + Z(azg)(s)((’1\7128)(5))1/(%9)(5)

In the same way , one can obtain

G3o < ((/Mzs)(s))3 = G3o + 2(“30)(5)((7\7[28)(5))2/(“’30)(5)

If G,4 or G5, is bounded, the same property follows for G,g, G3, and G,g, G,q respectively.

Remark 4: If G,g is bounded, from below, the same property holds for G,o and G;,. The proof is
analogous with the preceding one. An analogous property is true if G,qis bounded from below.

Remark 5: If T,g is bounded from below and lim;_. ((b;")® ((G31)(t),t)) = (bsg)® then T,y — o.
Definition of (m)® and &5 :

Indeed let t5 be so that for t > tg

(b20)® = (BN P ((G31) (1), 1) < &5, T () > (M)

Then d;% > (ay9)® (M) — £5T,4 which leads to

) (m)(5)
Tyo = (w) (1 — e™5st) + Toe st If we take t such that e =65t = % it results
5
(az9)®m)® 2 . .. i
T = (f) t= logg— By taking now &5 sufficiently small one sees that T, is unbounded.
5

The same property holds for To if lim;_e (b55)® ((G31)(©),t) = (be)®
We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for Gss, G34, T52, T33, T34

@®  _ep©
(M32)(®) ’ (M37)()

It is now sufficient to take < 1 and to choose

(P;,)® and (Qs, )© large to have

- (P32 )(6)+G?
@@ |, p g P
(Malz)(s) (Psz)(s) + (( Ps; )(6) + GJ'O)e ! < (Pa )(6)
r (Q32 )(6)+T?
©® | A _( 7(’) 0 0
D50 @+1e L T 4 (009 < (0@

In order that the operator A transforms the space of sextuples of functions G; , T; into itself

The operator A® is a contraction with respect to the metric

4 (6D, (T:)D), (6P, (T3)) ) =
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sup{max |¢™V(t) - Gi(z)(t)|e‘(ﬁ32)(6)t,max T (@) - 1,? (t)|e_("732)(6)t}
i teR+ teER4

Indeed if we denote

Definition of (Gss), (Tas) ©  ((Gas), (Tzs) ) = A ((Gas), (Tss))

It results

1653 = G| < J3(a22) @ |63 — G |e™ a2 Vo0 (Ma2) V562 @5y +

[y (@) @653 = 65 e™ (o2 some (M2 P 4

(@) O (T 5|65 = G o™ 72 e

621(@5) O (TS, 562) = (@)@ (TR, sa)| €™ Ms2) S22 @521y ds )
Where 555,y represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|(Gss)(1) - (635)(2)|e_(ﬁ32)(6)t <

1 , ~ ~ ~
5w (@)@ + (@)@ + (A)@ + (P32)® (ks) @) (((G59)©, (Ts9) V5 (G39)@, (T3)P))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (aj,)® and (b3,)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (Ps;)©®e™s2®¢ gnd (Qs,)©®e(Ms2)t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a))® and (b;)®,i = 32,33,34 depend only on T,;; and respectively on
(Gs5)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) = 0

From 69 to 32 it results

G, (t) > GL-Oe[_ fol@)® =@ )@ (Tsa(sa2))s62))s62)] >

T, () > TPe(-0D) > 0 fort>0

Definition of ((’1\732)(6))1; ((7\7’32)(6))2 and ((W32)(6))3 :

Remark 3: if G4, is bounded, the same property have also Gs; and G5, . indeed if
Gsy < (M32)® it follows ds% < ((M3,)®), — (a33)®G3; and by integrating

G333 < ((7\7132)(6))2 = 6393 + 2(a33)(6)((T/I32)(6))1/(a’33)(6)
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In the same way , one can obtain
G3a = ((7\7132)(6))3 = G354 + 2(“34)(6)((7‘\432)(6))2/(%4)(6)
If G35 or G, is bounded, the same property follows for G;,, G5, and Gs,, G respectively.

Remark 4: If G;, isbounded, from below, the same property holds for G;; and G;,. The proof is
analogous with the preceding one. An analogous property is true if G55 is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,. ((b;")® ((G35)(t),t)) = (b33)® then Ty; — oo.
Definition of (m)® and & :
Indeed let t4 be so that for t > tg

(b33)® — (b{’)(6)((635)(t)' t) < &6, T3z (£) > (mM)©®

Then d?: > (a33) @ (m)® — g,T,; which leads to
(a33) @ m)©® —ggt 0 ,—&qt —ggt — 1
T35 = — (1 — e %) + T35e7%6" If we take t such that e 26" = L results
6
(a33)©m)® 2 . . . i
T33 = (f) t= logg— By taking now g4 sufficiently small one sees that T;5 is unbounded.
6

The same property holds for Ty, if lim,_,, (535,)©® ((Gs5)(t), t(£),t) = (b54)®
We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions

_If we denote and define

Definition of (a,)®, (6,)®, (1)@, (1,)V :

@ ), (0,)D, (1D, (1) four constants satisfying

~(0)® < —(a13)W + (a1) P — (@15) P (T4, ) + (1) P (T4, ) < —(0)@
~(@)® < =(bix)® + (b)) ~ (b15) V(G 1) — (b1 (G, 0) < —(z)W
Definition of (v))®, (v2)™, ()@, (ux)®, v, u®

(b) By (v;)® >0, (v,)® < 0 and respectively (u,)® > 0, (u,)® < 0 the roots of the equations
2 2
(@)D (VD) + (@) DvD — (a;5)® = 0and ()P ()" + (2)Pu® — (b;3)P = 0

Definition of (7,)®,, (¥,)@, (i1))W, (&1,) D :

By (1,)® >0, (7,)™ < 0 and respectively (i;)® > 0, (1) < 0 the roots of the equations
(@)D (D) + (@OVD — (@) =0 and (Br)P(®)” + () PuD = (bi)® =0

Definition of (m,)®, (m,)®, (1))@, (1) D, (V)@ :-
(C) If we deflne (ml)(l) ] (mz)(l) ) (:ul)(l)l (/42)(1) by

(mz)(l) = (Vo)(l)’ (ml)(l) = (Vl)(l)' if (Vo)(l) < (V1)(1)
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m)® = (v)D, (m)N® = FD ,if (v < (v) P < (7)D,

GO
and |(v))® =
14

(mz)(l) = (V1)(1)' (m1)(1) = (Vo)(l): if (171)(1) < (Vo)(l)
and analogously
(12)® = W)@, ()@ = W)W, if )™ < (u)®

)P = WD, (u)® = @)D, if w)® < (we)® < @)@,

T
and | (ug)® = o
14

(12)® = @)D, ) = W)™, if (@)™ < (ue)™® where (u)®, (@)™
are defined respectively

Then the solution satisfies the inequalities

G2e(EDW-01W)t < (1) < (et

where (p,)™ is defined

6136((51)(1) (p13) D)t < Gua(0) < GY%e (51)(1)r

(m )(1) (1)
(@167 [((5 YD (1) D)t _ —(5)® 0 —(Sy)®
el(S1 p1) V)t _ 5= (S2) t]-I-G e~ G2Vt < G () <
((m1)(1)((52))(1)0-(1713)(1)-(52)(1)) 15 15(0)
1 I !
(ag5)~G13 [e(sl)(l)t_e—(als)(l)t] + Gfse_(aﬁ)(l)t)

(m2)D((s)W-(af5) D)

T103e(R1)(1)t < Ti5(t) < T103e((R1)(1)+(713)(1))t |

1) (1) (1)
™ )(1) T13 eR)Vt < T 13(t) < (1) T10 (RDW+(r13) V)t

(b15) DTy (R)Wt —(bhe) D¢ 0 -l o)De
()P (RYD-(b15)D) [e ' —e ] +Tosem s SRUHORS

(a15) V1 [ (R)D+(ry3) D) _ —(Rz)(l)t] 0 ,—(R)Dt
ED(EDD +rip) D+ @) ™) L ¢ *hise

Definition of (5))@, (5,)®, (R)W, (R,)V:-
Where (S)® = (a;3)® (my)® — (aj5)™
($2)® = (a5)® = (p15)™
(R)® = (b13)® ()™ = (b15)®
(Rz)(l) = (bis)(l) - (7’15)(1)

Behavior of the solutions

_If we denote and define
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Definition of (6,)®,(0,)®, (t))®, (1)@ :
d) 6,)@,(0,)?, (1)@, (1,)® four constants satisfying
—(02)@ < —(a16)@ + (a1)® — (a1) P (Ty7, 1) + (@17 P (Ty7, 1) < —(0)@
~(12)? < =(b1e)® + (b1)® = (b1 P ((Gro),t) = (BN P ((Gro), ) < — (1)@
Definition of (v;)®, (v,)®, (1)@, (uy)® :
By (v,)® >0, (v,)® < 0 and respectively (1)@ > 0, (u,)® < 0 the roots
(e) of the equations (a17)(2)(v(2))2 + (6)Pv® — (a; )P =0
and (b)) @ (u®)” + (1) Pu® — (by)® = 0 and
Definition of (7,)®,, (1,)®, (i1,)@, (1)@ :
By (1,)® > 0, (v,)® < 0 and respectively (i1;)® > 0, (1,)® < 0 the
roots of the equations (a;,)® (1/(2))2 + (6,)Pv® — (q,;)P =0
and (b17)(2)(u(2>)2 + (1) Pu® — (b, )@ =0
Definition of (m;)® , (m,)®, (1)@, (up)® -
(f) 1f we define (m)®, (m,)@, (W)@, (u)® by
(mz)(z) = (Vo)(z)' (ml)(Z) = (Vl)(z): if (Vo)(z) < (Vl)(Z)

(my)@ = (v)®, (Mm@ = )P ,if V)@ < (V)?® < (1)@,

0
and |(v))® = %
17

(m)® = (1)@, (m)® = W)@, if )P < (v)®
and analogously
(12)® = )@, (1)@ = ()@, if (u)® < (u)®

(12)® = )@, (1)@ = @)?, if (w)® < (we)® < @)@,

0
and | (u)® = %

(1)@ = W)@, (1)® = W)@, if @)? < (up)®

Then the solution satisfies the inequalities
Goﬁe((sﬂ(z)—(ﬁm)(z))t < Gi(t) < G?Ge(sﬂ(z)t
(p)@ is defined

G3e(S0 P10 < G, (£) < — GReelS0 "

(m )(2) (2)
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(a18)@GY @)_ ©) (5,72 —(5.@)
((m1)<2>((soé?—(pl;)s(ﬁ—(Sz)m) el 1) — e t] + Gloe™ T < Gig(0) <
(a18)PGY

S @Dt (! @ 0 (@@
M) D (51D —(a,) @) [e( 1)t _ a=(ag) t] + Gige (aig) t)

T8e®0 Pt < 73, (6) < T, Dm0

— @ 1 @ @
(@ Tise®™8 < Tyq () < (12)@ Tl e( RO+ (16 )t

(1) P16
)P (R)P - (b15)@)

[e(Rl)(z)f — e_(bis)mt] + Tfse_(biS)(Z)t < Tig(t) <

(419 D19 (R)P+(r16) D)t _ —(Rz)(z)t] 0 —(R))P¢
12) @ ((R) @ +(r16) D +(R2) D) € € + Tige

Definition of (S;)®, (S,)@, (R))®, (Ry)®):-
Where (5,)® = (a)®(m)® — (a;)®
(Sz)(z) = (a18)(2) - (p18)(2)
(Rl)(Z) = (ble)(z)(ﬂz)(l) - (bie)(z)

(Rz)(z) = (bis)(z) - (7'18)(2)

Behavior of the solutions

_If we denote and define

Definition of (6,)®, (6,)®, (t))®, (1,)® :

@ )@, (0,)®, (1P, (1,)® four constants satisfying

~(02)® < —(a30)® + (a31)® ~ (a5)® (To1, ) + (a531) P (T2, 8) < —(0)®
—(@)® < =(b30)® + (020)P = 20)P (G, 1) — (b3)P((G23), t) < —(7)®
Definition of (v,)®, ()@, (u)®, (u)® :

(b) By (v;)® >0,(v,)® < 0and respectively (u,)® > 0, (u,)® < 0 the roots of the equations
(‘121)(3)(1/(3))2 +(0)Pv® — (a0)® = 0

and (b,))®(u®)” + (1)Pu® — (b,)® = 0 and
By (1,)® > 0, (#,)® < 0and respectively (i1;)® >0, (1,)® < 0 the
roots of the equations (a,1)® (v®)” + (6,) v — (a;0)® = 0
and (bzl)(3)(u(3))2 + (1) Pu® — (b)) =0
Definition of (m,)®, (m,)®, (u)®, (u)® :-

(©) 1f we define (my)®, (m)® , (u)®, ()@ by
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(m)® = (v)®, ()@ = W)@, if ()@ < (v)®

m)® = ()®, (mN® = TN®,if 1)@ < V)@ < [T,

0

Gzo
0

Go1

and |(vy)® =

(mz)(3) = (V1)(3)' (m1)(3) = (Vo)(3): if (‘71)(3) < (Vo)(s)

and analogously

(#2)(3) = (uo)(3)’(#1)(3) = (ul)(B)v if (uo)(3) < (ul)(S)

— , _ T3
(12)® = @)@, ()® = @)P,if W)® < (W) < (@)®, and|(ue)® = %

(1)@ = W)@, )@ = w)®, if (@) < (ue)®

Then the solution satisfies the inequalities
Ggoe((sl)(3)_(p2°)(3))t S Gpo(t) < Ggoe(sl)(g)t

(p)® is defined

1

G95e(D V=@t < Gy (1) < —25 69Dt

(m® (mz)®
SEREIE ()2)23(:63)0@_(5 5e) (0=t — g=0e | 1 e~ < Gy (1) <
' (022)23)090 i :

[eGDPt _ g=@:)Pt) 1 0 o=(a2)Pty

m2)®((51)®-(a),)®)

TZOOe(Rl)(3)t < Ty(t) < Tzooe((Rl)(3)+(T20)(3))t |

1

3 1 @) @
(u)® TZOOe(Rl) F<Ty(t) < WTZOOQ((Rl) +(r20)*)t

(b22)P1
() ((R)B-(1],)P)

eVt — e=@Ve] 4 10 e=@ P < T (6) <

(a22) P13, [ ((R)®+(20)®)t _ —(Rz)(3)t] 0 ,-(R)®t
B (R +r20) D+ (R)®) 1 ¢ *+Taze

Definition of (5;)®, (5,)®, (R,)®, (R,)®:-
Where (5,)® = (a30)® (my)® — (a}e)®
(52)(3) = (azz)(s) - (Pzz)(3)
(Rl)(3) - (bzo)(s)(ﬂz)@ _ (béo)(s)

(Rz)(3) = (béz)m - (7’22)(3)

Behavior of the solutions
1f we denote and define

Definition of (6,)® , (6,)®, (t))®, (r,)® :
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d) ()@, (0)®, (1)@, (r,)® four constants satisfying

—(0)® < —(a5)™ + (as)™ — (@)) @ (Tys, ) + (afs) ™ (Tzs, 1) < —(0)@
—(1)W < =(b5)® + (by5)™ — (bé’zx)(zn(((;n)’ t) - (bé%)(4)((627)’ t) < —(1)®
Definition of (v;)®, (v,)®, (u))®, (uy) @, v®, u® :

(e) By (v{)® >0,(v,)® < 0 and respectively (u;)® > 0, (u,)® < 0 the roots of the equations
(@)@ D) + @)DV — ()@ = 0
and (b,5)®(u®)” + (1) @u® — (b,,)® = 0and

Definition of (7,)®,, (7,)®, (7))@, (1)@

By (1)® > 0, (,)® < 0and respectively (i1;)® >0, (1,)® < 0 the
roots of the equations (a,s)® (v(4))2 + (0,)Dv® — (@)@ =0
and (bs)@(®)" + (1) Pu® — ()@ = 0
Definition of (m)®, (m)™®, (u)®, ()™, (ve)® :-

() 1f we define (my)®@, ()@, (u)®@, ()@ by
(m)® = W)@, ()@ = W)W, if )™ < (v)®

(M)W = ()@, (m)® = )W, if )@ < W)@ < Y@,

0
and [(vy)® = %
25

(mz)(4) = (V4)(4)' (ml)(4) = (Vo)(4): if (‘74)(4) < (Vo)(4)
and analogously
()@ = W)™, ()™ = W)™, if (ue)® < (u)®

)™ = W)@, (1)@ = @)™, if (W)@ < (ue)™® < (@)™,
TO
and | (ug)® = o
25

(12)™ = W)™, ()™ = ()™, if (@)™ < (up)® where (uy)®, ()™
are defined by 59 and 64 respectively

Then the solution satisfies the inequalities
ng;e((sl)“)_(p“)“))t < Gou(t) < Gg4e(51)(4)t

where (p;)™® is defined

1 ®_ (4) 1 (€))
ng4e((51) (P20t < G,s(t) < WG§46(51) ¢
(a26)¥ 63, D@ =2)®)t _ —(s)®t 0 ,—(5)Wt
((ml)m((sl)“)—(p24)<4>—(sz)<4>) [0 e — o=V | 4 500" < Ge(0) <
(a26)(4)Gg4 [ (51)(4)t _ _(a’ )(4)t] 0 _(a’ )(4),:)
@ (5P~ ®) 1€ e el + GageT 20
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T204e(R1)(4)t < T24(t) < T204e((R1)(4)+(T24)(4))t |

_t T2049(R1)(4)t STou() < (;T204e((R1)(4)+(T24)(4))t

(u)@W 12)®

(b26) M1,
M)W (RDW-(bs6)®)

[e(Rl)(4)t — e‘(bée)(@t] + Tzoae_(bée‘)(”t STh(t) <

(a26) 1, [ ((R)@+(r) @)t _ —(Rz)(‘”t] 0 —(R) @t
FD PR @+ P+ @) (€ ' ¢ * Tose

Definition of (5))®, (5,)®, (R)™, (R,)®:-
Where (S)® = (az4)® (m)® — (az4)®
($2)® = (a26)™® — (P26)™
(R = (b)) ® (ux)® — (b3)™
(R)™ = (b36)® — (1)

Behavior of the solutions
If we denote and define

Definition of (,)®, (65)®, (,)®, (1,)® :

@ ()P, (0)®, (1), (1,)® four constants satisfying

—(0)® < —(a5e)® + (a39)® = (a35) ) (Tz9, 1) + (a35) P (Tz9,t) < —(0)®
—(12)® < =(b35)® + (b39)® = (b75) P ((G31), t) = (b39) P ((Gs1), t) < —(2)®
Definition of (v)®, (v;)®, (u)®, (uy)®, v, u®

(hy By (v;)® >0, (v,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the equations
(@) O (V)" + (60 — (a,6)® = 0
and (bye)® (u®)” + (1) Pu® — (bye)® = 0 and

Definition of (¥,)®,, (#,)®, (@,)®, (i1,)® :

By (1)® > 0, (#,)® < 0and respectively (;)® >0, (1,)® < 0 the
roots of the equations (a,o)® (1/(5))2 + (0)Pv® — (a,)® =0
and (bzo)®(u®)” + (1) Pu® = (b)® = 0
Definition of (m,)®, (m3)®, (1), (), (vp)® :-

(i) If we define (my)®, (M), (u)®, (1) by
(mz)(s) = (Vo)(s)' (ml)(S) = (V1)(5); if (Vo)(s) < (Vl)(S)
(mz)(s) = (V1)(5); (m1)(5) = (171)(5) Jif (Vl)(S) < (Vo)(s) < (171)(5),

0
and [(v))® = %
29

(mz)(s) = (V1)(5): (m1)(5) = (Vo)(s): if (171)(5) < (Vo)(s)
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and analogously
U2)® = W)™, (w)® = W)®, if (ue)® < (u)®

W) = W), (1)® = @), if @)™ < (w)® < @)@,
0
and | (ug)® = %
29

(1) = @)@, (1)® = W) ®,if @) < (ue)® where (u)®, (@)®
are defined respectively

Then the solution satisfies the inequalities
Go5e((DP-w200)t < G (1) < (95Dt

where (p;)® is defined

) (p,)® ®)
WGZs e(SP =200 < Go5(t) S o ® (5) Gge Dt
(a30)®63 S (0 Nt (5,5 0 (5Ot
((m1)(5)((51)(5)—(Pz:)s(s)—(Sz)(s)) [e(( O — g ]+G3°e C S Gao(®) <
(a30))6Y, < Y(5)¢ NN 0 —(al ¢
TP (0P (el ) [0 — @] 4+ Gfpemeiw
|T2083(R1)(5)t S Toe(t) < T2°8e((R1)(5)+(T28)(5))t ‘
o TPse POV < Ty (6) < g Thye (R0t
Uy
(b30)®T5, Rt —(L B¢ 0 . —(bl )¢
O (kO ®) R R R OE
(a30)TS, NG OISR OR 0 —(RYOt
(ﬂz)(s)((Rl)(s)"'(T28§?5)+(R2)(5)) [e(( 1) +(1r28) ) —e (R2) ]+ T3Oe (R2)

Definition of (5,)®, (5,)®, (R1)®, (R,)®:-
Where (5)©® = (az6)® (m3)® — (a3e)®
(52)® = (a30)® — (P30)®
(R)® = (b28)® (12)® — (b35)®
(R)® = (b30)® — (130)®

Behavior of the solutions
If we denote and define

Definition of (6,)®, (6,)®, (1))@, (1,)© :
() (@)@, (0,)®, (1)@, (,)® four constants satisfying
_(02)(6) < _(a’32)(6) + (aés)(ﬁ) - (aélz)(ﬁ)(T% ,t) + (as; (6)(T33 1) < _(01)(6)

—(1)©® < —(b5,)® + (b33)© — (bélz)(G)((G%): t) — (b33 (6)((635): t) < —(1)®@
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Definition of (v;)©, (v,)©®, (u)®, (u,)®,v®,u® :

(k) By (v,)® >0,(1,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the equations
(a5) @ (@) + @)V — (a5)@ = 0
and (by3) @ (w®)” + (1) Ou® — (b,)© = 0 and

Definition of (7,)®,, (1,)®, (i1,)®, (1)@ :

By (7,)® > 0, (#,)® < 0and respectively (ii;)® >0, (,)© < 0 the
roots of the equations (a;3) (V(e))z +(0,)Ov® — (a3,)©® =0
and (b33)(6)(u(6))2 + (1) Ou® — (by,)©® =0
Definition of (m;)® , (m,)©, (1)@, (1)@, (v4)© :-

(I) If we define (my)®, (m,)®, (u)®, ()@ by
(mz)(ﬁ) = (Vo)(ﬁ)’ (ml)(G) = (Vl)(ﬁ)' if (Vo)(ﬁ) < (V1)(6)

(M) = ()@, (m)© = @)@, if v)® < (v)© < (T)®,
and |(vy)© = &2

(m)® = @)®,(m)® = ()@, if @)@ < (v)®
and analogously
1)@ = ()@, (1) ® = )@, if (u)® < (u)®

1)®@ = W)@, (1)@ = @)@, if (W)@ < (ue)® < (@),
and | (uy)© = 22

(1)@ = W)@, (1)@ = (ue) @, if (@)@ < (up)©® where (uy)®, (1,)®
are defined respectively

Then the solution satisfies the inequalities
G,e(0 -0t < G, (1) < Ge

where (p)© is defined

(6)_ (e) (6)
G, e( =)t < G, (1) < GLe('t

)(6) (6)
(a34)©)63, DO -3 )t _ (5Ot 0 —(52)©t
((m1)<6>((sl)“)—(p32)<6>—(sz)<6>) (0@ — om0 | 4 65,0760 < Gy () <
(a30) 963, (51)®t —(ah)®t 0 _—(al)®¢
M) ©® ()& —(ak)(®) [e 1 — e \a34 ] + Gzue 934

T3026(R1)(6)t ST5(0) < Tsoze((Rl)(G)"'(r”)(s))t

(6) (6) (6)
(u1 )<6)T326(R1) t<T (t)< )(6)T32 ((Rl) Hrs2) e

(b39) 1S, (Rl)(ﬁ)t
() O ((R)O-(1],)®)

- e_(bé“)(@t] + T304e_(bé4)(6)t S T3 (t) <
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(a34)©TL (6 (6 —(R.)() TN G)

(/,Lz)(e‘)((Rl)(:)4+(T323;%6)+(R2)(6)) [e(un) +(r32) )t _ o—(R2) t]+T3o4e (R2)®t

Definition of (5,)©, (5,)®, (R))®, (R,)©:-
Where (5,)(© = (a3;)® (m,)© — (a3)©
(5 = (a3)® — (p3)©
(R)® = (b32)© (1)@ — (b3,)®

(Rz)(@ = (b§4)(6) - (7”34)(6)

Proof : From GLOBAL EQUATIONS we obtain

av® , . . ,
T (a13)® — ((‘113)(1) — (a1)® + (af3)® (Tu, t)) — (@) (Tyq, OV — (ay,) Vv
Definition of vV :- y@® = G3

G14

It follows

2 av@® 2
~ (@) P D) + (@) Dv® = (@)P) < Z= < — (@) VD) + (@) Vv - (a) @)

From which one obtains

Definition of (7))@, (vo)® :-

6?9 _
(@) For0 <|(v)® = G—g < ()W < ()W

)(1)+(C)(1) (Vz)(l)e[_(a14)(1)((V1)(1)_(V0)(1)) t]
1+(0) el @D (DW= @) ] ’

_ W)@

€y} 1 = W) =Wo)
L O ) D—() D

©®

it follows (vo)® < v (1) < (v) P

In the same manner , we get

)(1)+(5)(1) (Vz)(1)e[—(a14)(1)((vl)(l)_(vz)(l)) t]

_ )W-p)®
1+(€)(1)e[‘(“14)(1)(@1)(1)‘(VZ)(D) t] ’

(€] G D =
v s O = o ™=a®

From which we deduce (vo)® <v®(t) < (v,)W

0
(b) If 0< (v)D < (v = % < (7)™ we find like in the previous case,
14

(Vl)(l)+(C)(1)(VZ)(1)e[—(a14)(1)((v1)(1)—(Vz)(l)) f]
1+(C)(1)e[—(a14)(1)((1’1)(1)—(1/2)(1)) t]

)@ < < v <

@)D +(OD @, Wel~@D(EDD-m2D) ]

< (v)®
1+(C)(1)e[‘(a14)(1)((il)(l)_(vz)(n) t] < (V)
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0
(© If 0< )@ < @)D <|(v)® =22, we obtain
14

D +(OD @y el - @D (EDV-m2) M) ]
1+ (@ Wel @D (@D - W) ]

)W < vD(e) < < (v)®

And so with the notation of the first part of condition (c) , we have

Definition of v (¢t) :-

(mz)(l) < ‘V(l)(t) < (ml)(l): V(l)(t) _ G13(®)
G14(t)

In a completely analogous way, we obtain

Definition of u®(¢) :-

1) < uD(O) < @)@, | @ =2
T14(8)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (ai5)® = (ai)®, then (a1)® = (a,)™ and in this case (v;)® = (7,)® if in addition (vy)® =
(v))® then v (t) = (vo)™ and as a consequence G,5(t) = (vo) MGy, (t) this also defines (vo)™ for the
special case

Analogously if (bj5)® = (bj})D, then (t;)® = (1,) and then

(u)® = (@) PVif in addition (ug)® = (u;)® then Ty5(t) = (ug) P Ty, (t) This is an important
consequence of the relation between (v;)™® and (v,)®, and definition of (uy)™®.

we obtain
dv(@ , , . .
a (a16)(2) B ((alﬁ)(Z) - (a17)(2) + (a16)(2)(T17» t)) - (a17)(2)(T17, v — (‘117)(2)‘/(2)
Definition of v® :- @ = G1e
G17
It follows

2 dv@® 2
~ (@) + (6)PvP = (a,0)@) < Z= < = ((@NP (VP)” + (0) VP = (a,6)@)

From which one obtains

Definition of (¥,)®, (v)@ :-

0
(d) For0< (v))@ =it < (v)@ < (1)@
17

(Vl)(2)+(C)(2) (Vz)(z)e [—(a17)(2)((v1)(2) —(Vo)(z)) f]
1+ (0@ el @@ (@DP-00) @) ]

_ vDP-)®@
(o) ®-(v)@

v@(t) > Clo®
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it follows (vo)® < v@(¢t) < (v))@

In the same manner , we get

(vl)(z)+(C)(z)(vz)(z)e[-(a17)(2)((V1)(2)—(VZ)(Z)) t]
1+(©) @l @NP(ED@ - @) ]

_ P-)®@

@ )P -()®
V(L) < T )@ -(7,)@

, ((‘:)(2)

From which we deduce (v)® <v®(t) < (#,)@

0
Gie

€@ 1f 0< )@ < (v))@ =2
G17

)P +(0) @ (vy) @@ P (DD -v2)?) o]
140 @l @B (DD -0)@) ]

< (1,)® we find like in the previous case,

(v)® < < v <

D+ D @y @l @D (DD -w2?) ]
1+(C)(2)e[_(a”)(Z)((vl)(Z)_(T’Z)(Z)) t]

< @)@

0
(M 1f 0< (W)@ < @)@ < ()@ =3¢, we obtain
17

TDD+©@ (VZ)(z)e[—(au)(z)((vl)(z)_(vz)(Z)) t]
1+(©)@e [—(a17)(2)((71)(2)-(72)(2)) f]

)@ < v®@®) < < (v)®

And so with the notation of the first part of condition (c) , we have

Definition of v®(¢) :-

(mz)(z) < V(Z)(t) < (,',nl)(z)l V(Z)(t) _ G16(®)
G17(t)

In a completely analogous way, we obtain

Definition of u®(¢) :-

(#2)(2) < u(Z)(t) < (Ml)(z), u(z)(t) — T16(t)
T17(t)

Particular case :

If (ai)@ = (ai,)@, then (6,)® = (0,)® and in this case (v;)® = (¥,)@ if in addition (vy)® =
(v1)@ then v@(t) = (v4)® and as a consequence G,4(t) = (vo) @Gy, (t)

Analogously if (bi5)® = (b1))@, then (t,)® = (t,)® and then

(u)® = (1) @if in addition (uy)® = (u;)@ then Ti¢(t) = (up) P Ty, (t) This is an important
consequence of the relation between (v;)® and (v,)®

From GLOBAL EQUATIONS we obtain

av®
T (az0)® — ((aéo)m — (a5)® + (@) (Tay, t)) = (@4 (Ty1, OV — (ay1) BV

Definition of v® :- @ = G20
G21
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It follows

2 av® 2
~ (@)@ (V)" + (09O = (4;0)®) < 2= < = (@)D (VD) + (@) VD = (a,0)®)

From which one obtains

G _
(@) For0 < (v))® = ﬁ <)@ < @)@

- 3) B g3
v () > (V1)(3)+(C)(3)(VZ)(3)e[ @0 (®-w0®) ©)® = W)@ —(vg)®
T @l @@ (e0®P-00®) ’ ) D-)®
it follows (vo)® < v®(t) < (v))®
In the same manner , we get
_ - BB =@,)3
v (1) < TD@+(O@ @@l @2 (TP -m2D) O = TP —(e)®
T @@l @P (@ -02P) ! ) @-)®

Definition of (¥,)® :-

From which we deduce (v,)® < v®(t) < (7,)®

0
() If 0< (v)® < (v)® = % < (1,)® we find like in the previous case,
21

_ 3 3,3
(Vl)(3)S(Vl)(3)+(c)(3)("2)(3)e[ (@D (e0P-02 )

< vO®(@) <
14(0)@el @@ -02)3) ] sV =

) D 4O 7y Pl @0 O (DD -m2)
14(0)® el @D@(T® -2 ) ]

< )@

0
(© 1f 0< W)@ < (TP < (v)® =22, we obtain
2

1
@D+ @)Dl @@ (EDP-02) ]
1+ (@@ el @D (EDE -T2 )]

v)® < v®(p) < < (vp)®

And so with the notation of the first part of condition (c) , we have

Definition of v®(¢t) :-

(m)® < vO() < ()@, | v () = 2L
G21(1)

In a completely analogous way, we obtain

Definition of u®(t) :-

(#2)(3) < u(3)(t) < (/11)(3)1 u(3)(t) _ T20®)
T21(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.
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Particular case :

If (ayy)® = (ay;)®, then (6,)® = (6,)® and in this case (v;)® = ()@ if in addition (vy)® =
(v))® then v® (1) = (v,)® and as a consequence G, (t) = (Vo) G, (1)

Analogously if (b5,)® = (b5)®, then (1,)® = (1,)® and then

(uy)® = (@)@ if in addition (ug)® = (uy)® then T,o(t) = (ug)® T, (t) This is an important
consequence of the relation between (v;)® and (v,)®

: From GLOBAL EQUATIONS we obtain

d (4) ! ! n rn
:;t = (‘124)(4) - ((a24)(4) - (azs)(4) + (024)(4) (Tys, t)) - (azs)(4) (T, t)V(4) - (azs)(4)v(4)

Definition of v® :- p@® = G2e
Gzs

It follows

2 av® 2
~ (@)@ (V)" + (0)v® = (4;)?) < Zm < = (@) P (V®)” + (@) VD = (a,0)®)

From which one obtains

Definition of (7)), (vo)® -

63 _
(d) For0 <|(v))® = ﬁ < ()W < (1)@

WD+ D vy @el~@29D (D ®-00) @) ]

()@ = W =)®
41(C)@el @28 P (DD -0 @) ] ’

)]
v () = T o) @=(v)@

it follows (vo)® < v®(t) < (v))@

In the same manner , we get

(71)(4) +(OW (Vz)(4)e[—(azs)(4)((71)(4)—(72)(4)) f]
4+(®(4)e[‘(“25)(4)(@1)(4)‘(VZ)(“)) t] ’

_ W)W
— wW-p)®

v@®(@) < €)@

From which we deduce (vo)® <v®(t) < (v,)®

0
() If 0< ()™ < (V)W = % < (1)@ we find like in the previous case,
25

W@+ )@l @25 (W -w2) @) ]
1+ @el~@29 P (@DW-02®) ]

()W < < v®(@) <

T D+(O® @)Dl 029D (T D-02)?) ]
1+(O)@el~@2 W (EDW-m2®) ]

< (@)™

0
(M 1f 0< (W)™ < @T)® <|(v)® =2 , we obtain
25

(Vl)m+(C7(4)(V2)(4)e[—(azs)(“)((vl)@)_(vz)(@) B
1+(5)(4)g[_(aZ5)(4)((71)(4‘)_(V2)(4)) B

()™ < v(p) < < (V)@

And so with the notation of the first part of condition (c) , we have

129



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

Definition of v®(¢t) :-

Go4(t)
(mx)® < v () < (m)®, |vW () = 2=
Gs(t)

In a completely analogous way, we obtain
Definition of u®(¢) :-

1) < u® @ < W)@, |u®(@) =25
T2s5(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :
If (ay,)® = (ays)™@, then (6,)® = (0,)® and in this case (v;)® = (#,)@ if in addition (vy)® =

(v))™W then v (1) = (v,)™® and as a consequence G,,(t) = (vo) W G,s(t) this also defines (v,)® for
the special case .

Analogously if (by,)® = (bys)®, then (1)@ = (1,)® and then

(u)® = (@,)@if in addition (uy)® = (u)® then T,,(t) = (uy) @ T,5(t) This is an important
consequence of the relation between (v;)™® and (v;)®, and definition of (u,)®.

From GLOBAL EQUATIONS we obtain

d (5) , , ,
:;t = (azs)(s) - ((aés)(s) - (azg)(s) + (azls)(s) (Tz9, t)) - (‘1%9)(5) (Tpo, )V — (a29)(5)V(5)
Definition of v(® :- y(® = Gz
Ga9
It follows
2 av(® 2
~ (@) (VD) + (@) OvO = (0;9)®) = L= < = ((@20) P (V)" + (G)OVE = (229)®)

From which one obtains

Definition of (7,)®, (vo)® :-

63 _
@ For0<|()® =2 < 1) < (7)®

V(S)(t) > (vl)(5)+(c‘)(5)(vz)(s)g[—(aze)(5)((1/1)(5)—(1/0)(5)) t] (C)(S) _ ) O () ®
T sr@®e" @ (-0 )] ’ v ®-)®
it follows (vo)® < v®(¢) < (v))®
In the same manner , we get
»® ) < (71)(5)+(E)(S)(vz)(5)e[‘(az9)(5)((71)(5)—(72)(5)) ] (C_‘)(S) _ @) —(v)®
a 54+(0)® el (@20 (@DO-2®)) ’ () ® (7))

From which we deduce (vy)® < v®(t) < (75)®
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0
(h) If 0<()® < (v)® = % < (7,)® we find like in the previous case,
29

) O+ () D~ @29 (0DF-2)) ]
14(0)®)el @2 (0D -0 ®) ]

v)® < <vO(@) <

T+ @) Pel"@ O (DO-02))

< (v,)®
1+(O®el@P(EDO-0®) = ()

0
(i) 1f 0<)® < @) <|(v)® =2 , we obtain
29

@O+ @)Dl @2 (D -2)

< (v.)®
1@ ®el @@ (EE-2@) ] (o)

v)® < vO®@) <

And so with the notation of the first part of condition (c) , we have
Definition of v®(¢) :-

(mz)(S) < V(S)(t) < (ml)(s): V(S)(t) _ G28®)
G2o(t)

In a completely analogous way, we obtain
Definition of u®(¢) :-

1) < w0 < W)@, | @ =725
T29(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (a3s)® = (aho)®, then (0,) = (0,)® and in this case (v)® = ()@ if in addition (v,)® =
(vs)® then v (1) = (v,)® and as a consequence G,g(t) = (Vo) G,4(t) this also defines (v,)® for
the special case .

Analogously if (by5)® = (b5)®, then (1,)® = (1,)® and then
(uy)® = (,)®if in addition (ug)® = (u;)® then T,g(t) = (uy)® Ty (t) This is an important
consequence of the relation between (v;)® and (#,)®, and definition of (u,)®.

we obtain
av(® (6) 1 () G) 1 (6) 1 3(6) (6) (6)1)(6)
" = (a52)@ = (@) © — (@5)@ + (a5)© (T3, ) ) = (%)@ (T35, VO = (az) v
Definition of v(© :- v(© = &2

G33

It follows
2 av(®) 2

~ (@)@ (V@) + (0)Ov©® = (43)@) < = < = (@) O (V@) + (@) OV © = (a;,)®)

From which one obtains
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Definition of (#,)(®, (v,)® :-

. 6o _
() For0 <|(vy)® = G_Z)Z < (1)® < (7,)®

V(B)(t) > (vl)(6)+(C)(6)(Vz)(s)g[—(a33)(6)((1/1)(6)—(1/0)(6)) t] (C)(ﬁ) _ 1) —(v)©®
- 14+(0) @) el (@3 @00 O~ ) ’ ) O-(v)®
it follows (v)©® < v®(t) < (v)©®
In the same manner , we get
v®(t) < O +(OO @l @ V@0 O-02 ) o (O© = I=00®
T 1(0©el @ (00 ©-m2@) ! ) ©-)®

From which we deduce (v,)©® <v©(t) < (¥,)©®

0
K If 0<)® < (v)® = % < (1,)©® we find like in the previous case,
33

W) O +(0)O) (v @l (@3 O (@O -2) (D) o]
1+(C)(s)e[—(a33)(6)((Vl)(ﬁ)—(vz)(ﬁ)) f]

(v)® < < v®(t) <

(vl)(e)+(C—)(e)(Vz)(e)e[—(agg)(ﬁ)((171)(6)—@2)(6)) ]
14(0)®)e [-(az3) (O (@1)(O-7,)(0)) ¢]

< (1,)©®

0
() 1f 0< )@ < @)@ <|(v)® = 22| , we obtain
33

@O+ @)@l @3 (@D O-m2)@)
140 @@ (ED©-m2))) ]

(v)® < vO(r) < < (v))®@

And so with the notation of the first part of condition (c) , we have
Definition of v (¢t) :-

(mz)(fi) < (© ) < (m1)(6): v(© (t) = G32(t)
G33(t)

In a completely analogous way, we obtain
Definition of u®(t) :-

(#2)(6) < u(G)(t) < (/'41)(6)! u(6)(t) — T32(t)
T33(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (a4y)® = (a45)@, then (6,)® = (6,)® and in this case (v;)©® = (1)@ if in addition (v,)©® =
(v)® then v® (1) = (v,)® and as a consequence Gs,(t) = (vo)© G35(t) this also defines (v,)©® for
the special case .

Analogously if (b3,)© = (b5)®, then (7,)® = (1,)© and then

(u)® = (i1;)@if in addition (14)©® = (u;)® then Ts,(t) = (uy)®@Ts3(t) This is an important
consequence of the relation between (v;)® and (¥,)(®, and definition of (u,)®.
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We can prove the following

Theorem 3: If (a} ) and (b]")™® are independent on ¢ , and the conditions

(ais)(l)(ah)(l) - (a13)(1)(a14)(1) <0

(ais)(l)(ah)(l) - (a13)(1) (a14)(1) + (a13)(1) (P13)(1) + (ah)(l) (p14)(1) + (P13)(1)(P14)(1) >0
(i) P (bi)® = (b1) P (1) >0,

(bis)(l)(bh)(l) - (b13)(1) (b14)(1) - (b1’3)(1) (7”14)(1) - (bh)(l)(”m)(l) + (r13)(1) (r14)(1) <0
with (p33)®, (11,) @ as defined, then the system

If (a]YPand (b")® are independent on t, and the conditions

(a1)@(ai7)® = (a16)P(a;)® <0

(a16)@(ai)P = (a16)@(a17)@ + (a16) P (16)® + (a17) P 0:17)P + P16) P (P17)@ > 0
(b16) @ (b17)® — (1)@ (by,)® >0,

(b16) P (b1 )P — (b16) P (b17)® — (b1e) P (1)@ = (b1 )P (1)@ + (e) P ()@ < 0
with (p16)@, (1,,)@ as defined are satisfied , then the system

If (a])®and (b}")® are independent on t , and the conditions

(a%0)® (a51)® = (az0)® (az)® < 0

(a30)P (@30 = (a20)® (3210 + (a20)® (P20)® + (25)® P21)® + (P20)® (P21)® > 0
(b30)® (b5)® = (b20) P (b,)® >0,

(b50)® (b51)® = (b20) P (b21)® = (b30)® (121)® = (b3)P ()P + (120) P (121)® < 0
with (py0)®, (1,,)® as defined are satisfied , then the system

If (a/)®and (b]")® are independent on t , and the conditions

(a34) ™ (as5)™® — (az4)® (azs)™® < 0

(a54)®(ah5)™ = (a24)® (@25)™ + (@)@ (02)® + (@55) ™ 025)® + 2)® (D25)™ > 0
(b3)® (b35)® = (b2) @ (b,5)™ >0,

(b5) @ (D35)® = (b22)® (b25)™ — (b3) @ (125)® = (b35) P (125) @ + (r24) P (1) < 0
with (pya)®, (5)® as defined are satisfied , then the system

If (a/)®and (b}")® are independent on ¢ , and the conditions

(a%8) ™ (a59)® — (az8)® (az0)® < 0

(alza)(s)(a’w)(s) - (azs)(s)(azg)(s) + (azs)(s) (pzs)(s) + (aé'a)(s) (ng)(s) + (pzs)(s)(ng)(s) >0
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(b36)®) (b39)®) = (b35)® (b2)® > 0,

(b8)® (030)® = (b3)5 (b29)® = (b3g)® (129) = (b9) P (129)® + (128) P (129) < 0
with (p,5)®, (1,0)® as defined satisfied , then the system

If (a/")®and (b}")® are independent on ¢ , and the conditions

(aéz)(@(aés)(@ - (a32)(6)(a33)(6) <0

(a52)@ (a53)© = (a32) @ (a33)©@ + (a32) @ (32)@ + (@33) @ 33)© + (032)© (p33)© >0
(b52)® (b33)® = (b32) @ (b33)@ > 0,

(b52) @ (033)(© — (b32) @ (b33)® — (b5,) @ (133)@ — (b33)© (r33) @ + (r3) @ (133)©® < 0
with (p35)®, (133)® as defined are satisfied , then the system

(a13) VG614 = [(@1)® + (@) P (T10)]Gr1z = 0

(a1) VG613 = [(@1)® + (@) P (T10)]Gra = 0

(a35) MGy — [(ais)(l) + (ails)(l)(TM)]Gﬁ =0

(b13)(1)T14 - [(b{3)(1) - (b{%)(l)(G) 1Ti13=10
(b14)(1)T13 - [(bia,)(l) - (b{;)(l)(G) 1Tia=0
(b1s) DTy = [(b1s)® = (bi5)P(G) [Tys = 0

has a unique positive solution , which is an equilibrium solution for the system
(a16)(2)617 - [(ais)(z) + (ailﬁ)(z)(Tn)]Gm =0
(@179)P616 — [(@)P + (@)P(T1)]6Gr7 = 0
(a16)@Gy7 — [(ais)(z) + (ails)(z)(Tn)]Gm =0
(b16)PTy7 = [(b16)® = (bi6) P (G19) IT16 = 0

0

(b17)PT16 = [(b1)® = (b15)P (G19) 1T17
(b18)(2)T17 - [(bis)(z) - (bils)(z)(Gw) ITig =0
has a unique positive solution , which is an equilibrium solution for

(azo)(3)G21 - [(alzo)(3) + (aélo)(3)(T21)]Gzo =0

|
o

(a21)(3)020 - [(a,21)(3) + (aé’l)(3)(T21)]G21 =

|
o

(azz)(3)621 - [(alzz)@) + (aé'z)(3)(T21)]G22 =

(b20)®Ty1 = [(b30)® — (b50)®(G23) 1Ta0 = 0
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(b21)(3)T20 - [(bél)(s) - (béll)(g)(GZS) ]T21 =0
(bzz)(3)T21 - [(béz)m - (bz”z)m(czs) 1T, = 0

has a unique positive solution , which is an equilibrium solution
(‘124)(4)625 - [(a’24)(4) + (a§’4)(4) (Tzs)]Gz4 =0

(azs) WGy — [(aés)(‘*) + (aéls)(4)(Tzs)]st =0
(azs)(4)625 - [(alze)@) + (aéle)(4)(T25)]Gze =0

(b24)(4)T25 - [(b£4)(4) - (b2”4)(4)((627)) T4 =0
(b25) I Tzq = [(b35) ™ = (b35)P((G27)) 1T55 = 0
(bze)(4)T25 - [(bés)m - (béle)m((Gn)) ITo6 = 0
has a unique positive solution , which is an equilibrium solution for the system

(azs)(S)ng - [(alzs)(s) + (alzls)(s) (ng)]st =0

(az9)® G — [(a’z9)(5) + (a)e)® (T29)]Gz9 =0

(az0)® Gy — [(also)(s) + (als'o)(s)(ng)]Gw =0

(bzs)(S)T29 - [(bés)(S) - (béls)(s)(Gn) ITs =0

|
o

(b29)(5)T28 - [(bé9)(5) - (bélg)(s)(Gn) 1Ty =
(b30)®Tz9 — [(b30)® — (b56) (G31) 1T30 = 0

has a unique positive solution , which is an equilibrium solution for the system

|
o

(‘132)(6)633 - [(a’32)(6) + (aélz)(é)(T%)]Gsz =

|
o

(as3)©Gs, — [(aé3)(6) + (a§’3)(6)(T33)]G33 =

(a34)(6)G33 - [(a’34)(6) + (a§'4)(6)(T33)]G34 =0
(b32)(6)T33 - [(béz)(ﬁ) - (bélz)(ﬁ)(@s) T3, =0
(b33)(6)T32 - [(b§3)(6) - (béls)(ﬁ)(@s) 1T33=0

(b34)©Ts3 — [(b5)® — (b5)©(G35) 1T54 = O
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has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution G5, G4 if

F(T) = (ai2)® (a1)™® — (a1) P (a1)® + (af2) P (@) P (Tra) + (afs) P (afs) P (Toy) +
(ails)(l) (T14)(a£’4)(1)(T14) =0

(@) Indeed the first two equations have a nontrivial solution Gy¢, G,; if

F(Tyo) = (ais)(z) (‘117)(2) - (a16)(2) (a17)(2) + (aie)(z) (a£'7)(2)(T17) + (ai7)(2) (ailé)(z)(Tn) +
(ails)(z) (T17)(a£’7)(2)(T17) =0

(a) Indeed the first two equations have a nontrivial solution G,g, G, if

F(Ty3) = (aéo)(S)(ah)(S) - (azo)(S)(au)(S) + (alzo)(3)(aé’1)(3)(T21) + (aé1)(3)(a§’0)(3)(7121) +
(alzlo)m(T21)(a§’1)(3)(T21) =0

(a) Indeed the first two equations have a nontrivial solution G,,, G,5 if

F(Ty;) =
(a34) @ (a35)® — (az4) @ (az5)® + (ahs) @ (ass) P (Tzs) + (a55) P (@5) @ (Ty5) + (a5) @ (Ta5) (ass) P (Tzs) =
0

(a) Indeed the first two equations have a nontrivial solution G,g, G,4 if

F(T3) =

(aég)(s) (aé9)(5) - (azs)(s) (a29)(5) + (aés)(s)(ag‘;)(s) (Tyo) + (aég)(S) (aéls)(s) (Tyo) + (aé’s)(s)(ng)(aé'g)(S) (Tyo) =
0

(a) Indeed the first two equations have a nontrivial solution G;,, G35 if

F (Tss) =
(aéz)(()) (a§3)(6) - (asz)(@ (a33)(6) + (aéz)(@ (ags)(s) (Ts3) + (aés)(@ (aélz)(@ (Ts3) + (aélz)(@ (T33)(a§'3)(6) (T33) =
0

Definition _and unigueness of Ty, :-

After hypothesis £(0) < 0, f(e0) > 0 and the functions (a;")"(T,,) being increasing, it follows that there
exists a unique Ty, for which f(Ty,) = 0. With this value , we obtain from the three first equations
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_ (a15) P61y
[(@]) D +(af’s)D(11,)]

(a13) V614

Gz = )
13 [(@13) D +(aiy) D (17,)]

GlS

Definition_and uniqueness of Ty, :-

After hypothesis £(0) < 0, f(o) > 0 and the functions (a;")®(T;,) being increasing, it follows that there
exists aunique Ty, for which f(T;;) = 0. With this value , we obtain from the three first equations

_ (a18)@ Gy,
[(alg)@+(alg)@(T7,)]

(a16)®G17

G = )
16 [(a16)P+(al) P (T3,)]

618

Definition _and uniqueness of T;; :-

After hypothesis £(0) < 0, f(e) > 0 and the functions (a!")*(T,,) being increasing, it follows that there
exists a unique Ty; for which f(T5;) = 0. With this value , we obtain from the three first equations

(a22)P6z1

(a20)®6y1 —
[(a32)®+(a)(754)]

G = 1
20 = Ty ® + (P (15 )]

622

Definition and uniqueness of T;s :-

After hypothesis £(0) < 0, f(o0) > 0 and the functions (a;")*(T,s) being increasing, it follows that there
exists a unique Ty for which f(T;5) = 0. With this value , we obtain from the three first equations

— (a26) PG5
[(@36)®+(a5s) P (135)]

_ (a24) W65
[(az)P+@gp®(135)]

Goa

GZ6

Definition_and unigueness of T;q :-

After hypothesis f(0) < 0, f(e0) > 0 and the functions (a{’)(s)(ng) being increasing, it follows that there
exists a unique T,y for which f(T;5) = 0. With this value , we obtain from the three first equations

(a30)®629

(a28) V629 —
[(a30)®+(az0)®(735)]

G = ! n * i)
28 [(a26)®+(az) 5 (T35)]

G30

Definition _and uniqueness of T35 :-

After hypothesis £(0) < 0, f(o0) > 0 and the functions (a;")® (T;3) being increasing, it follows that there
exists aunique Ts; for which f(T35;) = 0. With this value , we obtain from the three first equations

_ (a34)®G33
[(a34)(©)+(azy)®)(133)]

_ (a32)'®633
[(a}2)®)+(afy)©(135)] '

G32

G3a

(e) By the same argument, the equations 92,93 admit solutions G5, G, if

9(G) = (b1) P (b1)® = (b13) P (1) —

[(b1) P (i) (6) + (b1) P (b15) P (G)]+(b13) V(G (b)) P (6) = 0

Where in G(Gy3, G4, G15), G13, G5 Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G, taking into account the hypothesis ¢(0) > 0, ¢ () < 0 it follows that there

exists a unique Gy, such that ¢(G*) =0

(f) By the same argument, the equations 92,93 admit solutions G, G, if

@(Gyo) = (bis)(z)(bb)(z) - (blﬁ)(Z)(b17)(2) -
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[(bie)(z)(big)(z)(Gw) + (b17) P (b)) @ (G19)]+(b1”6)(2)(619) (b)) P (Gy9) =0

Where in (G14)(G1g, G17, G15), G16, G1g Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G, taking into account the hypothesis @(0) > 0, ¢() < 0 it follows that there
exists a unique Gj, such that @((G19)*) =0

(g) By the same argument, the concatenated equations admit solutions G, G, if
9(Gy3) = (béo)(s)(bél)@) - (bzo)(B)(bu)(B) -
[(B30)® (b)) P (G23) + (b31)® (b36) P (G23) |+ (b56) P (G23) (b51) P (G23) = 0

Where in G,3(Go, G121, G23), G0, G2, must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G, taking into account the hypothesis ¢(0) > 0, (o) < 0 it follows that there
exists a unique G5, such that ¢ ((G,3)*) =0

(h) By the same argument, the equations of modules admit solutions G,,, G,5 if
(Gy7) = (bé4)(4)(bés)(4) - (b24)(4)(b25)(4) -
[(B3)® (b35)® (G27) + (b35) ™ (b32) P (G2 |+ (b5) P (G27) (b35) P (G27) = 0

Where in (G,7) (G4, G35, G26), Go4, G2 Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G5 taking into account the hypothesis ¢(0) > 0, (o) < 0 it follows that there
exists a unique G, such that ¢ ((G,7,)*) =0

(i) By the same argument, the equations (modules) admit solutions G,g, G, if

@(G31) = (b35)® (39)® = (b2e)® (b20)® —
[(b26)® (b29) P (G31) + (b20)® (b28) ™ (G31) | +(b3s) P (G31) (b35) P (G31) = 0

Where in (G31)(Gyg, Go9, G30), G2g, G3o Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G4 taking into account the hypothesis ¢(0) > 0, () < 0 it follows that there
exists a unique G4 such that ¢((G3,)*) =0

(j) By the same argument, the equations (modules) admit solutions G5, G35 if

¢(G3s) = (béz)(@(bés)@ - (b32)(6)(b33)(6) -
[(D32)© (b35)® (G35) + (b33) @ (b3)® (G35)]+(b55)© (G35) (b55) @ (G3s5) = 0

Where in (G35)(Gsy, G33, Gs4), Gsa, G34 Must be replaced by their values It is easy to see that ¢ is a
decreasing function in G55 taking into account the hypothesis @(0) > 0, ¢ () < 0 it follows that there
exists a unique G35 such that 9 (G*) =0

Finally we obtain the unique solution of 89 to 94
G1, given by ¢(G*) = 0, Ty, given by f(T;,) = 0 and

Gr. = (a12) D63,
13

* (a15)M63,
= . Gl =
(1) D+@mD(11,)] 15

@l W+l D(1,)]
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T* — (b13) V1], Ty = (b15) V17,
13 v g

T 0= (M) T [l W-miH D (6]

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

Gi7 given by ¢((G19)") = 0, Ty given by f(Ty;) = 0 and

G = (a16)PGy, G = (a19) @63,
17 (@i @+@i)@(Ti,)] T TP [@ig) P+ @ (Ti,)]
b4 )@ T* baa) DT
Ty, = (b16)'“' T, T = (b1g)**' T3,

[(b16) P -/ (G19)7)] T b1 P -0 @ (619)")]
Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

G3, given by 9((Gp)") = 0, Ty, given by £(T5;) = 0 and

Gr = (a20)®634 Gro = (a22)®63,
20 7 (@)@ +(@h)®(13)] T T2 T [(ah )@ +(ah)®)(13,)]
« b20) Ty . b )BT

Ty, = (b20)*'Ty1 Ty, = (b22)"*' Ty

(05 -030) P (6237 T [3)®- 03P (6237
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G35 given by ¢(G,7) = 0, T35 given by f(T55) = 0 and

G: = (a24)W63s Gr = (a26)®635
247 (@)@ +@h)@(135)] 1 T2 T [(ape) W+ (ade)D(135)]
. _ (b2) T35 . _ (b26) W55
T34 = ) v Toe = :

[CARECARI(ZHY] [(056) P =(b36) D (G27))]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G3o given by ¢((G31)") = 0, T5 given by f(T55) = 0 and

Gt = (a28)®634 G = (a30)®630
287 [(az)®+@i)®(130)] 1 T30 [(ak)®+(af)O(150)]
Ty, = (b28) BT L T, = (b30)®T3,

T [P -3 P (6300 [(036) )15 P (63
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G35 given by @((Gss)*) = 0 , T35 given by £(T3;) = 0 and
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Gr. = (a32)®633 G: = (a34)®635

327 @b @+@©(r35)] 1 T3 [(@h) ©+(agy) O (153)]

T* - (b32)(6)T§3 T* — (b34)(6)T§3

32 T 0 ©-0in©((635))] 1 T3 T 05 ©O-05 DO (635)")]

Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a;")* and (b;")®®
Belong to C™W( R,) then the above equilibrium point is asymptotically stable.

Proof:_Denote
Definition of G;, T; :-
GL=GL*+(GIl VTi=Ti*+Ti

a(b )(

0
(““) (T72) = (q1a)® (G*) = sy

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

G , *

713 = —((a13)(1) + (p13)(1))613 + (a13) PGy — (q13) VG5,

G , *

—dt“ = —((a14)(1) + (p14)(1))@114 + (a19) PGz — (q14) V614 T1y

G , *

e —((@1)® + (15) V) Gy5 + (a15) PGy — (915) VG5 Toy

dT , *
—2 = —((b1)™ = (1)) T1s + (1) VT + X 15(509( Ti3G))
dT , .
= —((b1)® = (1) )Ty + (b1a) DTz + T2 15(50)() TiaGy)
dT , *
= = —((bis)™ = (115) )Ty + (b15) DTy + T1215(505)() Tis Gy)

If the conditions of the previous theorem are satisfied and if the functions (a;)® and (b/)® Belong to
C@(R,) then the above equilibrium point is asymptotically stable

Denote
Definition of G;, T; :-
Gl=G:+Gl lTi=Ti*+Ti

6(b )( )

““”) — (1) = @)@ | ((Gyo)") = sy

taking into account equations (global)and neglecting the terms of power 2, we obtain

dG ’ *
Tw = _((a16)(2) + (pm)(z))Gle + (a16) PGy — (Q16)(2)G16T17

dG , .
Tﬂ = _((‘117)(2) + (P17)(2))G17 + (a17)(2)G16 - (Q17)(2)G17T17
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mi—is = —((a1e)® + (16) @) Gig + (a18) P Gy7 — (918) P GigTyy

dg? = —((h1e)® = () @) Ty6 + (b16) P Ty + X216 (s16)( Tr6 Gj)
dT” = —((b1)® = (i DP)T17 + (1) PTi6 + Xj216(s07 (1 17 G))
T2 = —((bie)® = (1)) Ty + (b1g) DTy + 21216 (5001 () Tis G )

If the conditions of the previous theorem are satisfied and if the functions (a;)® and (b;")® Belong to
C®(R,) then the above equilibrium point is asymptotically stabl

_Denote
Definition of G;, T; :-
GL=GL*+(GIl VTi=Ti*+Ti

a(b )

6(a21) (T31) = (Q21)(3) ((G 3)") = Sij

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

dSZO = ((aZO)(3) + (on)(s))Gzo + (a20)®Gyy — (420)PG30Toy
% = —((@5)® + (021)®)Gyy + (a21) P Gz — (421) P63, T4
di(j% = _((aéz)(g) + (Pzz)(s))Gzz + (azz)(3)G21 - (Q22)(3)652T21
20 = (0500 = (120) ) Tag + (b0)P T + X200(s 20/ T50 )
Tt = (050 = (20 @) Ty + ()P Ta0 + 5 200(s21)) T51Gy)
T2 = —((b32)® = (22) @) T + (b32) DT + X2200(50220() T526)

If the conditions of the previous theorem are satisfied and if the functions (a;" ) and (b;)® Belong to
C™W(R,) then the above equilibrium point is asymptotically stabl

_Denote
Definition of G;, T; :-
GL=G;+(GIL !Ti=Ti*+Ti

a(b )

a(“zs) L (T30) = (g)® L (Ga) ) = sy

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

dG24,

pFra ((a24)(4) + (P24)(4))G24 + (a24)(4)G25 - (QZ4)( )Gz4T25
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dG , X
_d:5 = _((azs)(4) + (pzs)(4))((325 + (a25) P Gyy — (q25) G35 Tos
dG

d26 = _((aze)(4) + (Pze)(4))G26 + (aze)(4)G25 - (Q26)( )stTzs
dT , X

d? = _((b24)(4) - (T24)(4))T24 + (b24)(4)T25 + 2?224(5(24)(1')7124([“1])
dT , X

—25 = —((b35)® = (135)P)Ty5 + (b25) P Tos + X3854(s25)(j T55G))

dT , X
—d:6 = —((b36)™ — (r26) @) T + (b)) P To5 + 2?224(5(26)(1')T26Gj)

If the conditions of the previous theorem are satisfied and if the functions (a!')® and (b;")® Belong to

C®(R,) then the above equilibrium point is asymptotically stable
Denote
Definition of G;, T; :-

G; = G} + G T, =T +T;

a(b )( )

a(azg) ( T39) = (q20)® ((G3)7) = s34

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

% = _((aés)(s) + (st)(s))st + (a28)® Gz — (426) G35 T2o
d;ng = ((a29)(5) + (P29)(5))(G'29 + (a29)(5)(G'23 - (ng) 629']1‘29
% = _((aQO)(S) + (p30)(5))G30 + (a30)(5)G29 - (CI30)(5)G3*0T29
2o = —(056)®) — (126) ) Tag + (b26) @ T20 + 5 s6(5 200 T35 G)
ﬂl = —((b39)® = (r20) ) T2 + (b29) PTyq + ¥32.6(52o)() T9G;)
T30 = —((b50)® = (r30)®) T30 + (b30) T + X3006(S20)(1) T30 Gy )

If the conditions of the previous theorem are satisfied and if the functions (a;")® and (b;")® Belong to

C©@(R,) then the above equilibrium point is asymptotically stable
Denote
Definition of G;, T; :-

G; =G + G T, =T +T;

a(b )

6(a33) (T) = (qz3)® ((635) ) = sy
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Then taking into account equations(global) and neglecting the terms of power 2, we obtain

dG 1 3
dt32 = _((a32)(6) + (P32)(6))G32 + (a32)(6)G33 - (Q32)(6)632T33
aG ' 3
—d:3 = —((a33)(6) + (p33)(6))(Gg3 + (a33)(6)(G32 - (q33)(6)G33T33
dG 1 3
dt34 = _((a34)(6) + (P34)(6))G34 + (a34)(6)G33 - (Q34)(6)634T33
daT , ’
=2 = —((b3)© = (1) @) T3z + (b32) @ Ta3 + Ti232(52) () T32G;)
daT , ;.
=2 = —((b33)© = (133) @) Ta3 + (b33) T3z + Ti232(533) () T33G;)
daT , ) y
= ~((03)® = (13)©) T34 + (b3) @ T3 + X232 (560)() T34 G))

The characteristic equation of this system is

(DD + (i)™ = (i) (DD + (@)™ + (1) D)

(DD + (@)D + (1)) (@) D64 + (@10) P (@12) V61 )]

(DD + Bi® = (10D )s0a,a0Tis +b1a) Vsan 0T )

+ (DD + @)@ + G2 P)(@13) V655 + (01)D (1) D6y

(WD + B1D = (DD )say,anTia + bra) VsananTis)

(WD) + (@)D + (@) + P1)D + P @) WD)

(WD) + (b1 D + BiDD = ()P + (D) HD)

+ (WD) + (@) + (@) + 1)@ + 1) D) D) (15) D615
+((/1)(1) + (a1)® + (P13)(1)) ((a15)(1)(Q14)(1)Gf4 + (a14) P (ay5)® (Q13)(1)Gl*3)

(WD + (i) ® = (1) )sa,asTis +bra) Vsaz,asTis )} =0

+

(DP + Bi)® = ()DH(DP + (@)@ + (10)?)
(WD + @)@ + (1) P) @) D61, + (@) P (06?616 |
(W@ + B1® = () ®)san,anTis +Bi)Psas,anTi)

+ (((A)(z) + (ai7)(2) + (p17)(2))(q16)(2)Gi6 + (a16)(2)(CI17)(2)Gi7)
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(DD + B10)P = 1) @)sanaeTir + i) Psae,aeTis)

(W) + (@)@ + @D + 1)@ + (@) W)

(D) + (Bi)@ + Bi)P = ()P + ()P) HP)

+ (D) + (@)@ + (@DP + P1)P + P1)P) NP) (415)PGrg
(D@ + @10)® + P16)®) (1)@ (@7)PGi7 + (a17) P (1) P (G16) PGig)

(((/1)(2) + (bie)@ — (7"16)(2))5(17),(18)Tf7 +(b17)(2)s(16),(18)T1*6)} =0

+

(WP + G5 = D)D) (DD + (@)® + (022)®)

(D + (@) + P20)®) (@20) D631 + (220D (000D 630 )]

(WS + (b30)® = (2005051 +B2) P50, 20T )

+ (WP + @) + P21)®)(@20)P G0 + (2200 (420) V631 )

(DD + B30)® = 0)D)sen,0 T + B2)Pseo,eoTh)

(WD) + (@)@ + @) + @:00P + (0:)P) WD)

(W) + (i@ + B3P = ()P + (1)) D)

+ (WD) + (@)@ + (@)D + 020D + P2)®) WD) (42)P 62
+H(DP + (@)D + 020P) ((a2)P (@)D 631 + (2P (0:)P (420) P60

(((A)B) + (béo)m - (Tzo)(3))5(21),(22)T;1 +(b21)(3)5(20),(22)T;0)} =0

+

(WP + B3 = ()P (DWW + (@)@ + (P26)®)
(DD + (@50@ + 20)®) (425)P 635 + (a25)® (024) 963
(DD + B3P = (22)D)s(25)2)Tss +(b25)D 520,25 T5s)

+ (((/1)(4) + (ahs)® + (st)(4))(Q24)(4)G§4 + (a24)(4)(q25)(4)655)
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(DD + B30® = (20)D)s@5)20T5s + B25) P50 T )
((W®) + (@)D + (@) + @)@ + (25)P) DD

(D) + (B30® + (B3)® = (2@ + (25)®) @)
+ (D) + (@)@ + (@)@ + P2a)® + 025)P) DD) (426) PG
(DD + (@)@ + ©2P) ((226)® (425) G35 + (225)® (26) P (024) D G34)
(O + B30® = (205025060 T35 +(b25) V5,26 T3 )} = 0

+
(DO + B3)® = )OS + (@5)® + (30)®)

(D + (@) + 126)®) (420) PG5 + (a26) (426) G35 )|

(D + B30 = (26)D)s(20) 20 T35 +(b25) V528,20 T0)
+ (DS + (@5) + (26) ) (A20) P G35 + (a26) ) (426) G35 )

(DD + B5) = (28) D)5 2912 Tso + (b2) @5 289,20) T )

(W) + (@) + (@) + (20) + (020)P) (DD)

(WD) + ()@ + (b3)® = (2P + (12)®) (D)
+ (D) + (@) + (@59 + B2) + 020)P) DD (30) PGz
HD® + (a38) + P26)®) ((@30)P(420)P G35 + (a20) P (030) (G26) P G35)

(((/1)(5) + (b3e)® — (Tzs)(s))5(29),(30)T;9 +(b29)(5)5(23),(30)T2*8)} =0

((/1)(6) + (b§4)(6) - (T34)(6)){((A)(6) + (a§4)(6) + (P34)(6))
(W + (@)@ + 32)®) (@)@ 65 + (@) ()63, )|
(((/1)(6) + (b3)® — (T32)(6))5(33),(33)T3*3 +(b33)(6)5(32),(33)T§3>

+ (((/1)(6) + (a5)© + (Pss)(@)(%z)(@G;z + (a32)(6)(Q33)(6)G§3>

145



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

(D@ + 5)@ = (525560755 + b3) V62,62 T2
(W) + (@)@ + (@)@ + P3)@ + (3)@) D)

((DO) + (B3)© + (B2)© = (13)©@ + (13)@) W)
+((DO) + (@)@ + (5)@ + 0:2)@ + (035)@) D) (45 G4
(DO + (a5)@ + 0:2)@) (a5 (35) G55 + (255) @ (a34)© (432)©63)

(((/1)(6) + (b3)® — (7"32)(6))5(33),(34)T§3 +(b33)(6)5(32),(34)T§2>} =0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this
proves the theorem.

Acknowledgments:

The introduction is a collection of information from various articles, Books, News Paper reports, Home
Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article Abstracts, Research papers, Abstracts Of
Research Papers, Stanford Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with
Professors, the internet including Wikipedia. We acknowledge all authors who have contributed to the same.
In the eventuality of the fact that there has been any act of omission on the part of the authors, we regret
with great deal of compunction, contrition, regret, trepidation and remorse. As Newton said, it is only
because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been
made to look slightly further. Once again, it is stated that the references are only illustrative and not
comprehensive

REFERENCES

1. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”. Tensor,
Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80" birthday

2. FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures” pages 172-
188

3. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) .
Knowledge Management, Organizational Intelligence and Learning, and Complexity, in: The
Encyclopedia of Life ~ Support Systems ((EOLSS), (Eolss Publishers, Oxford) [http://www.eolss.net

4. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr.,, W.-K. Tao, M. Chin, and Y. J
Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with aerosol,
atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204,
doi:10.1029/2005JD006097

5. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical structure of
numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006

6. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated
oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314, Published
12-Aug 2010

7. Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and Company,

146


http://pcp.lanl.gov/papers/EOLSS-Self-Organiz.pdf
http://dx.doi.org/10.1038/nature09314

Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

pp. 87-88, ISBN 0-7167-4345-0

8. Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097 (22
December 2005) | doi: 10.1038/43810964a; Published online 21 December 2005.

9. F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy

10. Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0

11. Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8

12. Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07-047360-
9., Chapter 12 page 433

13. E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.1ISBN 0-7167-
2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear bombs, until
heat is allowed to escape.

14. Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210-1., Chapter 5
page 126

15. Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett
Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392

16. Cockcroft-Walton experiment

17. Earth's gravitational self-energy is 4.6 x10™ that of Earth's total mass, or 2.7 trillion metric tons.
Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLOQO), T. W. Murphy, Jr. et
al. University of Washington, Dept. of Physics (132 kB PDF.).

18. There is usually more than one possible way to define a field energy, because any field can be made to
couple to gravity in many different ways. By general scaling arguments, the correct answer at everyday
distances, which are long compared to the quantum gravity scale, should be minimal coupling, which means
that no powers of the curvature tensor appear. Any non-minimal couplings, along with other higher order
terms, are presumably only determined by a theory of quantum gravity, and within string theory, they only
start to contribute to experiments at the string scale.

19. G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle™, Physical
Review D14:3432-3450 (1976).

20. A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang Mills
Equations”, Physics Letters 59B:85 (1975).

21. F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory", Physical
Review D 30:2212.

22. Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics 51:189-241
(1988).

23. S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974).

24. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31-36, http://www. Physics
today . org/vol-42/iss-6/vol42no6p31_36.pdf

25. Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton University
Press, p. 51, ISBN 0-691-01017-X

147


http://www/

Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

26. Eriksen, Erik; Vayenli, Kjell (1976), "The classical and relativistic concepts of mass",Foundations of
Physics (Springer) 6: 115-124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670

27. Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics: Electromagnetic
models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics, Physics and
Philosophy (Dordrecht: Springer): 65-134

28. Whittaker, E.T. (1951-1953), 2. Edition: A History of the theories of aether and electricity, vol. 1: The
classical theories / vol. 2: The modern theories 1900-1926, London: Nelson

29. (Miller, Arthur 1. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early
interpretation (1905-1911), Reading: Addison-Wesley, ISBN 0-201-04679-2

30. Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séninaire Poincarél; 1-22

31. Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?". Physics World.

32. lves, Herbert E. (1952), "Derivation of the mass-energy relation”, Journal of the Optical Society of
America 42 (8): 540-543, DOI:10.1364/JOSA.42.000540

33. Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York:
Dover. ISBN 0-486-29998-8.

34. Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy equivalence",
American Journal of Physics 50 (8): 760-763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764

35. Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of Science
Part B 40 (2): 167-173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002

36. Hecht, Eugene (2011), "How Einstein confirmed EO=mc2", American Journal of Physics 79 (6): 591—
600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223

37. Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of Physics 58 (4):
348-349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168

38. (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13. Berkeley:
University of California Press. pp. 236-237.

39. "consciousness". Merriam-Webster. Retrieved June 4, 2012.

40. Robert van Gulick (2004). "Consciousness". Stanford Encyclopedia of Philosophy.

41. Farthing G (1992). The Psychology of Consciousness. Prentice Hall. ISBN 978-0-13-728668-3.

42. John Searle (2005). "Consciousness”. In Honderich T. The Oxford companion to philosophy. Oxford
University Press. ISBN 978-0-19-926479-7.

43. Susan Schneider and Max Velmans (2008). "Introduction”. In Max Velmans, Susan Schneider. The
Blackwell Companion to Consciousness. Wiley. ISBN 978-0-470-75145-9.

44. Given Gireldere (1997). Ned Block, Owen Flanagan, Guven Giueeldere. ed. The Nature of
Consciousness: Philosophical debates. Cambridge, MA: MIT Press. pp. 1-67.

45. J. J. Fins, N. D. Schiff, and K. M. Foley (2007). "Late recovery from the minimally conscious state:
ethical and policy implications”. Neurology 68: 304-307.PMID 17242341.

46. Locke, John. "An Essay Concerning Human Understanding (Chapter XXVII)". Australia: University of
Adelaide. Retrieved August 20, 2010.

148



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

47. "Science & Technology: consciousness". Encyclopedia Britannica. Retrieved August 20, 2010.

48. Samuel Johnson (1756). A Dictionary of the English Language. Knapton.

49. (C. S. Lewis (1990). "Ch. 8: Conscience and conscious". Studies in words. Cambridge University
Press. ISBN 978-0-521-39831-2.

50. Thomas Hobbes (1904). Leviathan: or, the Matter, Forme & Power of a Commonwealth, Ecclesiastical
and Civill. University Press. p. 39.

51. James Ussher, Charles Richard Elrington (1613). The whole works, Volume 2. Hodges and Smith.
p. 417.

52. James Hastings and John A. Selbie (2003). Encyclopedia of Religion and Ethics Part 7. Kessinger
Publishing. p. 41. ISBN 0-7661-3677-9.

53. G. Melenaar. Mnemosyne, Fourth Series. 22. Brill. pp. 170-180.

54. Boris Hennig (2007). "Cartesian Conscientia”. British Journal for the History of Philosophy 15: 455-
484,

55. Sara Hein&maa (2007). Consciousness: from perception to reflection in the history of philosophy.
Springer. pp. 205-206. ISBN 978-1-4020-6081-6.

56. Stuart Sutherland (1989). "Consciousness". Macmillan Dictionary of Psychology.
Macmillan. ISBN 978-0-333-38829-7.

57. Justin  Sytsma and Edouard Machery (2010). "Two conceptions of  subjective
experience”. Philosophical Studies 151: 299-327. DOI: 10.1007/s11098-009-9439-x.

58. Gilbert Ryle (1949). The Concept of Mind. University of Chicago Press. pp. 156-163.1SBN 978-0-226-
73296-1.

59. Michael V. Antony (2001). "Is consciousness ambiguous?". Journal of Consciousness Studies 8: 19-44.
60. Max Velmans (2009). "How to define consciousness—and how not to define consciousness". Journal
of Consciousness Studies 16: 139-156.

61. Ned Block (1998). "On a confusion about a function of consciousness”. In N. Block, O. Flanagan, G.
Guzeldere. The Nature of Consciousness: Philosophical Debates. MIT Press. pp. 375-415. ISBN 978-0-
262-52210-6.

62. Daniel Dennett (2004). Consciousness Explained. Penguin. pp. 375.

149



Journal of Natural Sciences Research Www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) pLLy
\Vol.2, No.4, 2012 ISTE

First Author: 'Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics,
Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on
‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University,
Shimoga, Karnataka, India Corresponding Author:drknpkumar@gmail.com

Second Author: ?Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics,
Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided
over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups
and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the
country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit
several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent
publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri,
University of Mysore, Karnataka, India

Third Author: *Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department
of Studies in Computer Science and has guided over 25 students. He has published articles in both national and
international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging
ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry,
Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer
science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India

150



This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org

The 1ISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalITOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

m EB O INDEX (\@‘ COPERNICUS
I N T E RN A TTITIT ON AL

INFORMATION SERVICES
ULRICHSWES,  JournalTOCs @

N A ;
. E'z B Elektronische
lBAS(E T— Q0@ Zeitschriftenbibliothek O

open
> )
OCLC v)

The world’s libraries. — U cDigitalLibrary —
Connected. WorldCat e

Ny

'- ¥
GEORGETOWN UNIVERSITY
LIBRARY



http://www.iiste.org/
http://www.iiste.org/Journals/

