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Numerical Computation of the Complex Eigenvalues of
a Matrix by solving a Square System of Equations
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Abstract

It is well known that if the largest or smallest eigenvalue of a matrix has been computed
by some numerical algorithms and one is interested in computing the corresponding
eigenvector, one method that is known to give such good approximations to the eigen-
vector is inverse iteration with a shift. For complex eigenpairs, instead of using Ruhe’s
normalization, we show that the natural two norm normalization for the matrix pen-
cil, yields an underdetermined system of equation and by adding an extra equation,
the augmented system becomes square which can be solved by LU factorization at a
cheaper rate and quadratic convergence is guaranteed. While the underdetermined
system of equations can be solved using QR factorization as shown in an earlier work
by the same authors, converting it to a square system of equations has the added ad-
vantage that besides using LU factorization, it can be solved by several approaches
including iterative methods. We show both theoretically and numerically that both
algorithms are equivalent in the absence of roundoff errors.

1 Introduction

Let A be a large sparse, real n by n nonsymmetric matrix and B € R"*" a symmetric
positive definite matrix. In this paper, we consider the problem of computing the eigenpair
(z,A) from the following generalised complex eigenvalue problem

Az=ABz, zcC(C", z#), (1)

where A € C is the eigenvalue of the pencil (A, B) and z its corresponding complex eigen-
vector. We assume that the eigenpair of interest (z,A) is algebraically simple, so that g
the corresponding left eigenvector is such that [1, p. 136]

Bz #£ 0.

By adding the normalisation
zHBz =1, 2)
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to (1) and with v = [zT, A}, the combined system of equations can be expressed in the form
F(v) =0as

[ (A=AB)z | _
F(v) = [_;ZHBZ_F %] =0. 3)

Note that z/’Bz is real since B is symmetric and positive definite. This results in solving a
system of n complex and one real nonlinear equation for the (n 4+ 1) complex unknowns
v = [z,A]T. Note that, if z from (z,A) solves (3), then so does ¢z for any 8 € [0,277).
Hence, (3) does not have a unique solution. Another drawback of the normalisation (2) is
that z in z"Bz = zTBz is not differentiable. Therefore, we cannot just differentiate (3) and
apply the standard Newton’s method. In this article, we shall show how these drawbacks
can be overcome, at least for the B = I case.

Parlett and Saad in [2], studied inverse iteration with a complex shift ¢ = a 4 i where
« and B are real. They showed that by replacing the shifted complex system (A — oB)¢ =
B, with a real one, the size of the problem is doubled, where ¢ = @1 + i, ¢ = ¢P1 + i¢h2
for 1,2, 1,2 € R"and i = /—1 is the imaginary unit of a complex number. This
is because solving a complex linear system of equations takes twice the storage and is
roughly three times the cost of solving a real system [3]. When real arithmetic rather than
complex arithmetic is used, we lose any band structure in A and B [2]. The numerical
examples in [2], show linear convergence to the eigenvalue closest to the fixed shift.

Next, Tisseur in [4] considered the symmetric definite generalised eigenvalue problem
A¢p = AB¢, A € R as a special case of (1) where A is symmetric and B is symmetric
positive definite but with the real normalisation

tel®p = 1; for some fixed s,
S

where T = max(||A|, [|B]|), (see, for example, [4, p. 1049]) and e is the jth column of the
identity matrix. The real scalar 7 is introduced to scale F(w) and Fyy(w) when A and B are
multiplied by a scalar. In this case,

F(w) = [(iip)\—B)f]’ and Fy(w) = (A;?B) _154) .

Tisseur [4], showed that the Jacobian F, (w) above is singular at the root if and only if A*
is a finite multiple eigenvalue of the pencil (A, B). The main result in [4] is Theorem 2.4 [4,
pp- 1044-1046]. It shows that if the linear system to be solved is not too ill conditioned, the
solver is not completely unstable, the Jacobian is approximated accurately enough and we
have a good initial guess very close to the solution, then the norm of the residual reduces
after one step of Newton’s method in floating point arithmetic. The main point is that both
[5] and [4] used two different differentiable normalisations, while in this paper we analyse
the natural extension of the distance norm, which is a non differentiable normalisation and
so leads to interesting theoretical questions.

Our approach for analysing the solution of (3) for v begins by splitting the eigenpair
(z,A) into their real and imaginary parts: z = z; +izy, A = a + i where z;,z, € R”,
and o, B € R. After expanding (3), we obtain a real system of (21 + 1) under-determined
nonlinear equations in (21 + 2) real unknowns v = [z3, 2z, «, ] T and it is natural to use the
Gauss-Newton method (see, for example, Deuflhard [6, pp. 222-223]) to obtain a solution.
By linearising the system of under-determined nonlinear equations, we obtain a system
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of under-determined linear equations involving the corresponding Jacobian. This idea has
been properly developed in an earlier work by the same authors [8]. Here, we show that by
adding an extra equation, the augmented system becomes square which can be solved by
LU factorization at a cheaper rate and quadratic convergence is guaranteed. We show both
theoretically and numerically that the algorithm presented in [8] and the present work are
equivalent in the absence of roundoff errors. The key result in this paper is Theorem 3.1
and Algorithm 1 is given. Throughout this paper, ||.|| = ||.||2.

2 Under-determined system of linear Equations for the computa-
tion of the complex eigenpair of (A, B)

In this section, we will expand the system of n complex and one real nonlinear equations
in (n 4+ 1) complex unknowns (3) by writing z and A as z = z; + iz and A = a +ip,
respectively. The reason for having an under-determined system of equations instead of a
square system of equations is because, expanding z"Bz =1 gives only one real equation,
since B is symmetric positive definite, while (A — AB)z = 0 results in 21 real equations.
This results in a real (21 + 1) under-determined system of nonlinear equations in (21 + 2)
real unknowns. This will then be followed by presenting the real under-determined system
of nonlinear equations and an explicit expression for its Jacobian. If you have read the
previous two papers in this series, skip this section and the next and move to the section
3, otherwise keep reading.

If weletz = z; 4 izy and A = « + i3, then the nonlinear system of equations (3) can be

written as
(A—AB)z = [A — («+iB)B](z1 +iz)
= (A —aB)z; + fBz; +i[(A — aB)z; — BBz4], 4)
and
2Bz = lele + ngzz.
Hence, (2) implies

1 1 1 1
_EZHBZ‘F E = —E(Z{le —|—ZgBZz) + E =0.

Since (A — AB)z = 0, we equate the real and imaginary parts of (4) to zero and obtain the
2n real equations

(A — aB)z1 + ﬁBZz =0, and (A — CKB)ZQ — ﬂBZ1 =0.

This means, F(v) consists of the 21 real equations arising from (4) and one real equation
—%(lele +2z1Bzy) + % =0;

(A — aB)z; + BBz,

F(v) = —PBBz; + (A — aB)z; =0, (5)
—1(zIBzy +21Bzy) + 1
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where F : R(?"*2) — R(2"1) The Jacobian, Fy(v) of F(v) with v = [z1,2z,,a.B]" has the
following explicit expression

(A —aB) BB —Bz; Bz
Fy(v) = —BB  (A—aB) —Bz; —Bz; |, (6)
—(Bz1)T  —(Bzp)T 0 0
and is a (2n + 1) by (2n + 2) real matrix. We define the real 2n by 2n matrix M as
_ [(A—aB) BB
M‘[ B (A—aB)|" @
Also, we form the 2n by 2 real matrix
. —BZ1 BZZ T
N = {_Bzz _BZJ = [-Bow Bowy], (8)

consisting of the product of B, = [g g] and the matrix of right nullvectors (given in the
next equation) of M at the root, where

o) me[z)

and O is the n by n zero matrix. The Jacobian (6) can be rewritten in the following parti-
tioned form

M —BzW B2W1:| _ |:_( M N:| ) (10)

Fu(v) = [— (Boyw)T 0 0 B,w)T o
with M, N defined in (7) and (8) respectively. Note that because at the root,

Ao W (] - [AT b o

this implies that w or its nonzero scalar multiple is a right nullvector of M. In the same
vein, we find

[(A__'BgB) (A ﬁ_B“B)} [_zil} N [_‘E?A_—aflgjil_-f;;;z}} -0

and wj or its nonzero scalar multiple is also a right nullvector of M at the root.

Theorem 2.1. Assume that the eigenpair (z, A) of the pencil (A, B) is algebraically simple. If zq
and z, are nonzero vectors, then ¢ = {t[w],0,0], T € R} is the eigenspace corresponding to the
zero eigenvalue of Fy(v) at the root.

Proof: See [8] [
Corollary 2.1. : If the eigenpair (z, ) of (A, B) is algebraically simple, then the Jacobian Fy(v) in
(10) is of full rank at the root.

Proof. See [8]. O
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Next, in order to solve the under-determined system of nonlinear equations (5), we need
to linearize F(v) = 0. After linearizing F(v) = 0, we have to solve the following under-
determined linear system of equations

F, (v avH) = —F(vh)), (11)

The following result which we state without a proof will be used in the later part of
this paper.

Lemma 2.1. : [7, p. 6] Let Fyy (W) be of full rank. If
Fy(w)Aw = F(w),
is an under-determined linear system of equations, then its least squares solution
Aw = —Fu (W) [Fo(w)Fy (W) ] 'F(w),
is orthogonal to the nullspace of Fy(w).
Proof. See [8] O]

Next, we state the following result which was proved in [9] and shows that the solu-
tion Av(%) obtained by solving the underdetermined system of nonlinear equations (11) is
equivalent to those obtained by solving a square, augmented linear system.

Lemma 2.2. : Let nY) be the exact nullvector of Fy(v\K)). The solution Av\X) can be obtained via:

(a). solving the under-determined linear system of (2n + 1) real equations for the (2n + 2) real
unknowns Av® (11) and updating vt = v 1 Av(K) or

(b). solving the square linear system of (2n + 2) real equations

A = [F(VO("”} | 12)

FV(V(k))
a7

and updating v(&+1D) = v(&) 1 Av(6). (Here, we neglect round off errors).
Proof. See [9]. O

The next section contains useful theoretical expressions that will help us in section 3 of
this paper.

2.1 Theoretical form for the Nullvector of the Jacobian (6)

In the proof of Lemma 2.2 at the tail end of last section, we made use of the exact nullvec-
tor (which we do not compute in practice) of the Jacobian (6). In this section, we give a
theoretical expression for the exact nullvector of the Jacobian (6) when not at the root. To
do this, we rewrite the under-determined linear system of equations (11) in a compressed
form, present two important theoretical relationships: (18) and (19) for the exact nullvector
of the Jacobian.
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Note that the matrix M defined by (7) is singular at the root. However, this section is
anchored on the assumption that when v is not at the root, M is nonsingular. First, we
define the 2n by 2n matrix J as (see, for example [10])

=% ) 13)
and note that
o[ 2]
defined by (9). The matrix J satisfies the following properties:
1L.JI =]
2. ]T] = I, where I, is the 21 by 2n identity matrix.
3. J? = —L,.
4. J commutes with M and By, i.e., JM = MJ and JB; = B]J.
5. For w € R, wIB,Jw = w!JB,w = 0.
6. Let u be an unknown vector that solves Mu = B,w. By premultiplying both sides by

J we obtain JMu = JB,w and hence MJu = JBow by the commutativity of M and J.
Therefore,
Mu = Bow, implies M(Ju) = JBow. (15)

The equation Mu = B,w stems from expanding the shifted system (A — cB)y = Bz, into
its real and imaginary parts as in [2] for ¢ = & + i and z = z; + iz,. For ease of notation
and for the rest of this section, we shall drop the superscripts %) and write w# = w + Aw

T T
where wt = w1, replace w(¥) and [Azgk) , Azgk) | with w and Aw respectively e.t.c. As

earlier stated, we assume that the 21 by 2n matrix M is nonsingular except at the root. For
the rest of this section, our aim is to give an explicit theoretical expression for the nullvector
of (6).

Let the exact nullvector n of

M —BQW BzJW
FV(V) - |:—<BQW)T 0 0 :| s

be defined as n = [anv, Ny, nﬁ], where n,, € R?", n, and ng are real scalars, Jw and M are
defined respectively by (14) and (7). Hence,

M  —Byw Bjw '1’1” )
—(Bow)T 0 0 3
ng

then after expanding the matrix-vector multiplication, we obtain

My, — 1,Bow + ng(BaJw) = 0 (16)
wTanw =0. (17)
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From (16), Mny = n,Bow — ng(B2Jw), using the fact that ] commutes with B, and M, and
using (15) with B, = I, we obtain

nw = npu — ngju. (18)

Since w is By-orthogonal to n,, by virtue of (17), taking the B;-inner product of both sides
of the above with w yields

w!Byny = n, (W Bou) — nﬁ(wTBZJu) =0.

We may choose
e =w! ByJu, and ng = w!Bu, (19)

since we never normalise n. Hence, ny is given by (18) with n, and ng by (19). So we have
a formula for ny, in terms of w and u obtained from (15). Therefore,

n=[nl, g, ng| = [(nyu — nﬁ]u)T, (WIByJu), (w'Byu)].

We emphasise that in practice, we would never compute the solution of (15). It will be
used for purely theoretical purposes since we know that the Gauss-Newton solution, Av,
is orthogonal to n.

3 Square System of Equations for The Numerical Computation
of the Complex Eigenvalues of a Matrix for B =1

In the preceding section, we presented two main important theoretical relationships, (18)
and (19). In this section, we will make use of these relationships in our discussion but only
in the special case in which B = I. Moreover, in Section (2), we saw that the solution to the
under-determined system of nonlinear equations (5) for the numerical computation of the
complex eigenpair (z, A) of the pencil (A, B) can be solved by the Gauss-Newton method
via QR factorization. It was also stated in Lemma 2.1 that the minimum norm solution to
the resulting linear system of equations is orthogonal to the nullspace. However, in Section
2, we used the result of Lemma 2.1 to add an extra equation to the under-determined linear
system of equations, so as to obtain a square one. This is because, at each iteration of

the computation, n®TAv®) = 0 and so it does not change the solution, even though the
square linear system of equations gives a unique solution because the augmented Jacobian
is nonsingular.

Nevertheless, as mentioned in the last section, we would never compute n in practice,
but Theorem 2.1 guarantees the existence of a unique nullvector ¢ at the root. We will use

$*) defined by ¢ = [zgk), _ng)/ 0,0] as an approximation to the exact nullvector n and
show that the solution obtained by solving (11) is equivalent to the solution obtained by

solving
F, (v(%) F(v(K)
v (k) — _

in the absence of round off errors. To do this, we will show that cp(k)TAv(k) = 0 for each k,
where Av(%) is given by (11) and this is the key result in this section.

This section is structured as follows, we begin by adding the extra equation n(¥) TAvR) =
0 to (11) in order to obtain the square linear system of equations (12). The main result in
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this section is Theorem 3.1, and Algorithm 1 is presented for computing the algebraically
simple eigenpair of A. Note that since M has been shown to be singular at the root in
section 2, this section is anchored on the assumption that when v is not at the root, M is
nonsingular, but this is acceptable since we use the construction here to prove a theoretical
result about the correction Av%) while not at the root.

Consider the problem of solving the under-determined linear system of equations (11)
for the (21 + 2) real unknowns Av = [Aw’, Aa, AB]. It was stated in Lemma 2.1 that the
minimum norm solution to an under-determined linear system of equations is orthogonal
to the nullspace. It is an application of this result that yields the following important
relationship,

0=n"Av = nVTVAw +na A +ngAB, (21)

where we have dropped the superscript *) in a, 8,1, w and v. We begin by writing the
linear system of equations (11) in expanded form as

Aw
M —w Jw . —Mw
—wT 0 0} ﬁg —[;<WTW_1)} (22)

or,

MAw — Aaw + ABJw = —Mw

1 1
—wiAw = EWTW 5
After rearrangement, the first equation reduces to
Mw ' — Aaw + ABJw = 0. (23)

By multiplying both sides of the second equation by 2, we obtain:
2wliAw +wiw = 1.

This in turn reduces to
wl (w4 2Aw) = 1. (24)

Since w© = w + Aw, 2Aw = 2wt — 2w and w + 2Aw = 2w — w, then w! (W + 2Aw) =
wl (2wt —w) = 2wlw" — wl'w. Consequently,

wliwt = %(WTW +1). (25)

The combined set of equations (23) and (25), which is the simplified form of (22), can be
expressed as:

M —w Jw ‘Z+ . 0 2%
-wl 0 0] Ag _[—é(wTW—i-l)]' (26)

Now, if we expand along the first row of (26), then

Mw ' = Aaw — ABJw. (27)
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This means that we could solve (26) by solving
Mu=w, and MJu=]w,
(by Property 6 of J after (14)), for u, after which the solution of (27) is given by
= Aau — ABJu. (28)

If we add the nullvector # to the last row of (22) with B = I and using (21), then

M —w Jw Aw —Mw
-wl 0 0 Ax| = [F(wiw—1)|.
nl  n, ng AB 0

One can also add # to the last row of (26) to yield
M —w Jw ]| [w' 0
—wl 0 0 A | = [—3(wiw+1)]. (29)
nl,  n, ng AB nlw
By expanding the middle row of (29), wIw*t = J(wTw +1). But from (28), w" = Aau —
ABJu. This implies that, by taking the inner product of both sides with w, yields
wiw = Ax(wlu) — AB(W!Tu) = %(WTW +1).

Using the definition (19) for n, and ng with B = I, we obtain

ngAa — n, A = L (w w+1), (30)

where the unknown quantities Ax and Ap are to be determined, so we need an extra equa-
tion to be able to do so. Note that by using ny = n,u — ngJu, and (19) we can simplify

na,w = n,quw — nﬁuT]Tw
=nu’w+ nﬁuT]w

= (w'Ju)(u'w) + (w'u)(u'Jw)

= —(w'J u)(u'w) + (w'u)(u'Jw)
= —[(0w)"u ]( u) + (w'u) [u (Jw)]
—(wiw)(whu) + (whu)(u"wy)

=0.
Now, after expanding along the third row of (29), we have

w4 Ao+ ngAp = nk(w -+ Aw) + nyAa + ngApB
=nlw+ (nf,Aw + n, A + ngAB)

=0
T

=N, W

=0.
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If we substitute the expression (18) for n,, and (28) for w into the left hand side, then one
obtains
0=npw' +nuAa+ngAp
= [nau” —ng(Ju)"] [Axu — ABJu] + nuAa + ngAp. (31)

Furthermore, by expanding the first term on the right hand side, using the properties of J,
then

[0’ — ng(Ju)"] (Aau — ABJu) = nyAau"u + ngABu’J Ju
= muda[u]| + ngApulf?
= (naDa+ ngAB) |lul®.
Consequently, (31) becomes
(na A+ ngAp) |u||® + n A + ngAp = (1+ lu||?) (oA + ngAp) = 0.

Observe that because u is real, (1 + ||u/|?) is nonzero. Accordingly, after dividing both
sides by (1 + ||u||?), then
nyAa +ngAp = 0. (32)

We combine the two equations (30) and (32) below
ng —ng| [Aa] _ [F(wiw+1)
n, mng | |AB] 0 ’

and compute Ax, AB simultaneously. The matrix on the left hand side is always nonsingu-
lar except at the root (in which case all entries are zero). Observe that

wliTAw = —wlJAwW
= —wiJ(w" —w)
= —wiw + wliJw
=-—wiJw",
where we have used the fact that w/Jw = 0 for all w, so that (32) can now be applied to
simplify w'JTAw as
wiTAw = —wlJw?
= —w!J(Aau — ABJu)
= —w! (AaJu + ABu)
= —[Ax(w'Ju) + AB (W u)]
= — [naAa + ngAB|
=0. (33)

Notice that we have used the property J*> = —I, to arrive at the third to the last step above
and the definition (28) for w*. Therefore, we have proved the key result

w!JTAW = 0.

The above analysis leads to the following fundamental result.
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Theorem 3.1. Let ¢©) = [(Jw)”,0,0] be an approximation to the exact nullvector n®) of the
Jacobian
k M —w Jw
F(vY) = [ —w’ 0 0 ]

fork=0,1,2,3,---.

(a). The augmented Jacobian matrix

M -w Jw
-wl 0 0 |, (34)
Jgw)™ 0 0

is nonsingular at an algebraically simple eigenvalue of Az = Az.

(b). The (unique) solution of

M —w Jw Aw —Mw
-wl 0 0 Aa | = [F(wiw—1)], (35)
gw)I 0 0 AB 0
is identical to the least squares solution of the under-determined system
[ M —w ]w} aw _[ ~Mw } 56
—wT | T wTw — .
wi 0 0 AB s(ww—1)

Proof:

(a). Attheroot ¢ = n and since the real (2n 4 1) by (21 + 2) Jacobian (6) has been shown
to be of full rank in Corrolary 2.1, so adding the (21 + 2)th row, n! to the Jacobian
(6) increases the row rank by one (since the nullvector, # is orthogonal to every row

of Fy(v)). Hence,
rank ( [F;(Tv)] > =2n+2.

Therefore, the matrix in (34) is nonsingular at the root.

(b). Recall that Av() = [AwT, Aa, AB]. By using (33), this implies

q)(k)TAv(k) = (Jw)TAw = wiJTAw = 0.
Hence, showing that both (35) and (36) are equivalent fork =0,1,2,3,-- - ..

The above result means that instead of solving (11) or (36) via QR factorisation at a cost
of approximately #n? floating point operations, we could use LU factorisation to solve
(35) more efficiently at a cost of approximately 227°. We now present Algorithm 1 for
computing the algebraically simple complex eigenpair of A.
Stop Algorithm 1 as soon as
|avi®) || < tol.

We consider the same example as in [8] with the same starting guesses but with a different
algorithm: Algorithm 1. For comparison sake, we present the result table in that paper for
ease of reference as follows.
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Algorithm 1 Eigenpair Computation using Newton’s method

Require: A, w0 = [zgo),zéo)],v(o) = [W(O),a(o),,l%(o)]T, kmax and tol.
1: fork =0,1,2,... until convergence do
2:  Compute the LU factorisation of

M —w Jw ]
—wl 0 0
qgw) 0 0
3:  Form )
—Mw
a = Twiw—1)
0

4 Solve the lower triangular system Lc®) = d®) for ¢(%).

5. Solve the upper triangular system UAv*) = ¢ for Av(¥),
6: Update vt = v(K) 1 Ay(0),
7: end for

Ensure: V(kmax) — [W(kmax),w(kmax)’ﬁ(kmax)]T.

k a® BE T IwE D —w® | [ AFD —A®) T jav®] [ [EH)]
0 | 0.00000e+00 | 250000 3.8¢+00 7.8e-01 3.9¢+00 | 3.6e+01
1| 2.34253e-01 | 1.75371 1.8e+00 2201 18e+00 | 7.8¢+00
2 [ 1.18745e-01 | 194460 81e-01 14e-01 8201 | 1.7e+00
3 | 4.47044e-02 | 2.06484 25601 7.0e-02 26601 | 34e-01
4 | 8.82702e-03 | 212479 3.1e-02 17e-02 35e02 | 37e-02
5 | 24811404 | 213905 4804 5.2¢-04 71e-04 | 7.1e-04
6 | 1.80714e-05 | 2.13950 126-07 25607 2807 | 28e-07
7 | 1.81999e-05 | 2.13950 21e-14 2.9¢-14 3.6e-14 | 60e-14

Table 1: Values of %) and B using the algorithm in [8]. Columns 6 and 7 show that the
results converged quadratically for k = 3,4,5,6 and 7.

Example 3.1. Consider the 200 by 200 matrix A bwm200. mtx from the matrix market library [11].
It is the discretised Jacobian of the Brusselator wave model for a chemical reaction. The resulting
eigenvalue problem with B = Iwas also studied in [2] and we are interested in finding the rightmost
eigenvalue of A which is closest to the imaginary axis and its corresponding eigenvector.

In this example, we take a® = 0.0, %) = 2.5 in line with [2] and took z\*) = 1/2|[1|| and
Zgo) = @1 /||1]|, where 1 is the vector of all ones. We stopped Algorithm 1, when

|aviP || < 5.6 x 10714,

The results of Table 2 agree with those of Table 1 but with little disparities in the last two columns.
This indeed show that the solution obtained by solving the under-determined system (11) is equiv-
alent to those obtained by solving the square system (35), the disparities in the eighth and nineth
rows are caused by round off errors. It also shows that the algorithm presented in [8] which involves
solving an under- determined system of linear equatioins and Algorithm 1 are equivalent which is
our aim.
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k a® O Iw® D —w® | [ AT — AW T [av® ] [ [[F®))|

0 | 0.00000e+00 | 2.50000 3.8e+00 7.8e-01 39e+00 | 3.6e+01

1 | 2.34253e-01 | 1.75371 1.8e+00 2.2e-01 1.8e+00 | 7.8e+00

2 | 1.18745e-01 | 1.94460 8.1e-01 1.4e-01 82e-01 | 1.7e+00

3 | 447044e-02 | 2.06484 25e-01 7.0e-02 2601 | 3.4e-01

4 | 8.82702e-03 | 2.12479 3.1e-02 1.7e-02 3502 | 3.7e-02

5 | 2.48114e-04 | 2.13905 48e-04 52e-04 7.1e-04 | 7.le-04

6 | 1.80714e-05 | 2.13950 1.2e-07 2.5e-07 28e-07 | 2.8e-07

7 [ 1.81999¢-05 | 2.13950 1.3e-14 84e-14 85e-14 | 6.3e-14

8 | 1.81999e-05 | 2.13950 1.0e-14 48e-14 49e-14 | 53e-14

Table 2: Values of a¥) and B¥) of Example 3.1. Columns 5 and 6 show that the results
converged quadratically for k = 3,4,5,6 and 7.

Conclusion

In this work, we have shown both theoretically and computationally with a numerical
example that the solution obtained by solving an under-determined linear system of equa-
tions and a square system are equivalent in the absence of round off errors. This means
that instead of solving (11) or (36) via QR factorisation at a cost of approximately 3—32113
floating point operations, we could use LU factorisation to solve (35) ‘more efficiently” at a
cost of approximately 7. It will be interesting to see what can be proved to link the real
square system of equations with the original complex one, that is (3); at least in the case
B=1
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