www.iiste.org

Determination of Natural and Artificial Radionuclides in Soil Samples of Habigonj District, Bangladesh

Khondokar Nazmus Sakib Lecturer in Physics, Sylhet Cadet College, Sylhet, Bangladesh Email: sakib_58@yahoo.com

Abstract

The specific activities of natural and artificial radionuclides in 22 soil samples collected from Habiganj district in Bangladesh, have been Studied and evaluated. Experimental results were obtained by using a High Purity Germanium (HPGe) Detector and the radioactive standard sources supplied by IAEA were used to determine the efficiency. The measuring time of all samples is 5000 seconds. It was found that, the soil specific activity ranges from $5.27733 \pm 0.01534 - 18.8277 \pm 0.0155$ Bq/kg for Radium-226 (²²⁶Ra), $7.1355 \pm 0.00248 - 38.1423 \pm 0.00338$ Bq/kg for Thorium-232 (²³²Th) and 93.140877±0.006196 - 392.62765±0.007421 Bq/kg for Potassium-40 (⁴⁰K), with mean values of 11.09224 ± 0.01090 Bq/kg, 21.98392 ±0.00293 Bq/kg and 227.96598± 0.00676 Bq/kg respectively. It was also found that there is no artificial radionuclide (¹³⁷Cs) in any kind of samples of Habiganj district. In order to evaluate the radiological hazard of the natural and artificial radioactivity, Radium equivalent activity (Ra_{eq}), gamma absorbed dose rate, The external hazard index (H_{ex}), annual effective dose rate for different soil samples were calculated 58.513 Bq/Kg, 27.99008 nGy/h, 0.162327, 33.17704 µSv respectively. **Keywords:** Habiganj, HPGe detector; soil, Natural Radionuclides, Artificial Radionuclides, ⁴⁰K, ¹³⁷Cs, ²²⁶Ra, ²³²Th.

1. INTRODUCTION

Radiation is common phenomenon in our life but we are not concerned about this phenomenon. Radionuclides (radioactive element) can be divided into natural and artificial radionuclides. Radionuclides are present all over the world. We found various amount of radioactivity in all of the elements of our environment like air, soil, water, food, industrial materials etc. Although radionuclides are just a mare material of environment it reminds us the use in medical science, nuclear power plant, industry as well as the horrible day of Hiroshima & Nagasaki. Radiation may be artificial or natural, or radiation dose may be small or large, it creates some biological effects. For these reason the whole world has became aware of radionuclides and many splendid works has been done monitoring radioactivity. Geographical position & natural resources of Habiganj is in the favour of radioactivity, there is no such information about radioactivity in Habiganj is present due to lack of measurement. For this reason, concentration of radionuclides in 22 soil samples have been studied and evaluated.

2. MATERIALS AND METHODS

2.1. Description of study area

The district Habiganj is in the northeastern part of Bangladesh. Habiganj is located at 91°10'E-91°40'E longitude and at latitude 23°57'N-24°42'N. It is established as a district at 1 March 1984. It has 3 gas fields which are Habiganj, Bibiyana & Rashidpur gas field. Mineral sand is also found in Habiganj. The annual rainfall in this area is 3334 mm. Minimum and maximum temperature of Habiganj district varies from 13.6°C to 33.2°C. Rivers as well as streams and lakes are situated in Habiganj district. This district is vulnerable to both flood and drought.

2.2. Sampling and samples preparation

Soil samples were collected during 2011 from 22 locations in the municipal area of Habiganj district in the north east of Bangladesh. Samples were collected from a depth of 0 - 3 inch. Lands of slightly dry soil were chosen maintaining some criteria mentioned below:

- 1. The collection area should be undisturbed open terrain.
- 2. There should be very little or no runoff soil during heavy rain, particularly in rainy season.

After removing the stones and vegetation, all soil samples were dried up at room temperature, sieved, placed in the plastic 400 cm³ containers and left for four weeks to reach radioactive equilibrium. Then the samples were weighted by a weighting balance supplied by Shanghai, Japan. Each soil sample weighted between 250 to 400gm is chosen for the experiment. Then all the samples were put into the cylindrical plastic pot of equal size, collected from local market. All the samples were then rested for at least 24 or 26 days. All samples were analyzed with gamma ray detector.

Fig.1. Map of Habigonj District,Bangladesh. This map indicates the location of the Upazilas studied. Retrieved from: https://www.google.com.bd/?gws_rd=cr,ssl&ei=-MXqVOSDG82i8AW684LYAQ#q=map+of+habiganj+district+bangladesh

Upazila	Sample Code	Specific Location		
1. Habiganj Sadar	HS1	Nurpur Govt. Primary School		
	HS2	Sabaspur Govt. Primary School		
	HS3	Gonganagar High School		
2. Chunarughat	CS4	Upozila Health Complex		
	CS5	Agrani High School		
	CS6	Ubahata Kudratia Madrasha		
3. Bahubal	BS7	Mirpur Girls High School		
	BS8	Bahubal Food Godoun		
	BS9	Lamatoly Govt. Primary School		
4. Lakhai	LS10	Kalaukh Sub Register Office		
	LS11	Puspomoy Govt. Primary School		
	LS12	Lakhil Food Godoun		
5. Azmirigonj	AS13	Azmirigonj College		
	AS14	Jolshukha Ghat		
6. Baniachong	BS15	Baniachong Adarsha High School		
	BS16	Adarsha Bazar Noukaghat		
7. Nobigonj	NS17	Nobigonj Degree College		
	NS18	Nadampur Mirazabari Govt. Primary School		
	NS19	Nabigonj Adarsha Govt. Primary School		
8. Madhabpur	MS20	Madhabpur Govt. Primary School		
	MS21	Saiduddin Degree College		
	MS22	Noagaon Regt. Private Primary School		

2.3. Experimental setup

Gamma spectroscopy system is applied to investigate soil samples. The spectrometry system consisted of a high

purity germanium (HPGe) detector, Pre-amplifier (supplied by Oxford instrument Inc. Nuclear measurement group, U.S.A), High voltage supplier (HV supply model ORTEC 459), Amplifier, MCA card memory containing a commercial software EMCAPLUS (silena) version 1.012 (supplied by silena, Germany). The contents of the memory after a measurement lasting 5000s can be displayed on a CRT screen of a monitor coupled with the PC. The digital recording of the content of each channel can be printed out through a printer (Model LQ-570+) supplied by EPSON,Japan. The resolution of the (HPGe) detector was found 2.80keV at FWHM of the 1332keV peak of ⁶⁰Co. The shielding arrangement surrounding the detector was fabricated in the form of a circular cylinder having 21 inch in height using lead and steel. The top was covered by round movable steel and a lead plate. ²²⁶Ra activity of the samples was determined by the help of its daughters (²¹⁴Pb and ²¹⁴Bi) and ²³²Th activity of the sample was determined by the help of its daughters (²¹⁴Pb, ²¹⁴Bi, ²²⁸Ac, ⁴⁰K and were then calculated using the following formula:

$$A = \frac{N \times 100 \times 1000}{P_{\gamma} \times \varepsilon \times W}$$

Where,

.....(1)

N=Net counts per second (c.p.s) = (sample c.p.s-back ground c.p.s)

 P^{γ} =Probability of radionuclide

 ε = Efficiency in%.

W=Weight of the sample in kg.

Table 2 : Average Radioactivity of different soil samples.

Upazila	Code	²¹⁴ pb	²¹⁴ pb	²¹⁴ Bi	²¹⁴ Bi	²²⁸ Ac	²²⁸ Ac	⁴⁰ K
		(295.21keV	(351.92keV	(609.31keV	(1120.07keV	(911.07keV	(969.1	(1460.
) Bq/kg) Bq/kg) Bq/kg) Bq/kg) Bq/kg	1	8 keV)
							keV)	Bq/kg
1 11 1	LIC 1						Bq/kg	
 Habiganj Sadar 	HS1							
Sadar	HS2 HS3							
2.	CS4							
2. Chunarugha	CS4 CS5							
t	CS5 CS6							
3. Bahubal	BS7							
5. Danubai	BS8							
	BS9							
4. Lakhai	LS10	2	1	4	5		56	65
T. Dukhui	LS10		:53	136	865	333	239	067
	LS11 LS12	00	002	.00	03	00	00	0.0
5.	AS13	3.3728 ± 0.000795	5.5063 <u>+</u> 0.002531	14.4078 <u>+</u> 0.00364	15.6495 <u>+</u> 0.038695	23.4884 <u>+</u> 0.003331	19.12920 <u>+</u> 0.0023956	227.96598 <u>+</u> 0.006765
Azmirigonj	AS14	∞ +	τ 1+	78	- 2 6	- 48	20 -	598
6.	BS15	372	206	.40	649	488	292	96;
Baniachong	BS16	3	5.5	14	15.	23.	9.1	27.
7. Nobigonj	NS17						-	7
0 3	NS18							
	NS19							
8.	MS2							
Madhabpur	0]						
	MS2							
	1							
	MS2							
	2							

3. RADIATION HAZARD INDICES CALCULATION

The distribution of ²²⁶Ra, ²³²Th and ⁴⁰K is not uniform. Uniformity with respect to exposure to radiation has been defined in terms of radium equivalent activity (Ra_{eq}) in Bq/kg to compare the specific activity of materials containing different amounts of ²²⁶Ra, ²³²Th and ⁴⁰K. It is calculated using the following relation (UNSCEAR, 2000):

 $Ra_{eq} = C_{Ra} + 1.43C_{Th} + 0.07C_{K}$

where C_{Ra} , C_{Th} and C_K are the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in Bq/kg, respectively. While defining Ra_{ea} activity according to Eq. (2), it has been assumed that 370 Bq/kg of 226 Ra or 259 Bq/ kg of 232 Th or $4810 \text{ Bq/kg of }^{40}\text{K}$ produce the same gamma dose rate.

The external gamma absorbed dose rate in the air at lm above ground level was calculated from the measured activities of 226 Ra, 232 Th and 40 K in soil assuming that the other radionuclides, such as 137 Cs, 90 Sr and the 235 U series can be neglected as they contribute very little to the total dose from environmental background. The calculations were performed according to the following equation (UNSCEAR, 2000) :

 $D = 0.462C_{Ra} + 0.604C_{Th} + 0.042C_{K}$ (3) where *D* is the dose rate in nGy/h and C_{Ra}, C_{Th} and C_K are the specific activities (Bq/kg) of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively.

The external hazard index, Hex, is defined as (UNSCEAR, 2000):

 $H_{\rm ex} = C_{\rm Ra}/370 + C_{\rm Th}/259 + C_{\rm K}/4810$ (4)

where C_{Ra} , C_{Th} and C_{K} are the specific activities (Bq/kg) of ²²⁶ Ra, ²³²Th and ⁴⁰K, respectively. The value of this index must be less than unity in order to keep the radiation hazard insignificant. The maximum value of H_{ex} equal to unity.

To estimate annual effective dose rates, the conversion coefficient from absorbed dose in air to effective dose (0.7SvGy^{-1}) and an outdoor occupancy factor (0.2) proposed by UNSCEAR, 2000 are used. Therefore, the annual effective dose rate (mSvy⁻¹) was calculated by the formula (UNSCEAR, 2000):

 $D_{\rm eff}(Sv) = D(nGy/h) \times (24 \times 365)(h) \times 0.7 \times 0.2$ (5)

4. RESULTS & DISCUSSION

The results of the measurements for 22 soil samples collected at different locations in Habiganj District. It was found that, the soil specific activity ranges from $5.27733\pm0.01534 - 18.8277 \pm 0.0155$ Bq/kg for Radium-226 $\binom{226}{\text{Ra}}$, 7.1355 \pm 0.00248 - 38.1423 \pm 0.00338 Bq/kg for Thorium-232(232 Th) and 93.140877 \pm 0.006196 - 392.62765 ± 0.007421 Bq/kg for Potassium-40 (⁴⁰K), with mean values of 11.09224 ± 0.01090 Bq/kg, 21.98392 ±0.00293 Bq/kg and 227.96598± 0.00676 Bq/kg respectively. We did not get artificial radionuclide (¹³⁷Cs) in any kind of samples of Habiganj district. Radium equivalent activity(Ra_{eo}), gamma absorbed dose rate, The external hazard index(H_{ex}), annual effective dose rate for different soil samples were 58.513 Bq/Kg, 27.99008 nGy/h, 0.162327, 33.17704 µSv respectively.

Location	Sample	Radioactivity of ²²⁶	Radioactivity of ²³²	Radioactivity of ⁴⁰ K
	Code	Ra (Bq/kg)	Th (Bq/kg)	(Bq/kg)
1. Habiganj Sadar	HS1	9.8328 ± 0.01564	22.5094 ± 0.00299	169.64205±0.006566
	HS2	8.9118 ± 0.01193	24.6257 ± 0.00299	263.52309±0.006899
	HS3	6.9669 ± 0.01524	17.9312 ± 0.00283	263.35077±0.006959
2. Chunarughat	CS4	14.1590±0.01562	16.9908 ± 0.003130	321.57677±0.007194
-	CS5	7.5424 ± 0.01532	7.1355 ± 0.00248	212.22427±0.006714
	CS6	5.27733 ± 0.01534	13.2997 ± 0.00269	151.44345±0.006462
3. Bahubal	BS7	6.4477 ± 0.00273	13.7630 ± 0.00261	241.56055±0.006696
	BS8	8.7014±0.0154	17.2215 ± 0.00280	165.51562±0.006526
	BS9	11.7445 ± 0.01546	14.1968 ± 0.00276	161.25088 <u>+</u> 0.006584
4. Lakhai	LS10	14.7151 ± 0.01230	34.8203 ± 0.00331	231.85590 <u>+</u> 0.006823
	LS11	14.6966 ± 0.01160	34.3311 ± 0.00318	350.29827±0.007155
	LS12	11.0815 ± 0.01204	21.8139 ± 0.00291	392.62765±0.007421
5. Azmirigonj	AS13	12.6522 ± 0.01221	38.1423 ± 0.00338	233.19610±0.006829
	AS14	11.2385 ± 0.01215	27.8833 ± 0.00313	191.64967±0.006645
6. Baniachong	BS15	12.3629 ± 0.01224	32.8687 ± 0.00326	218.61234±0.006770
	BS16	12.6117 ± 0.01234	30.3693 ± 0.00317	93.140877±0.006196
7. Nobigonj	NS17	18.8277 ± 0.0155	19.2458 ± 0.00280	284.78372±0.006896
	NS18	11.2548 ± 0.0156	21.2819 ± 0.00292	356.53950 <u>+</u> 0.007321
	NS19	11.5474 ± 0.01201	16.4699 ± 0.00279	176.90739 <u>+</u> 0.006578
8. Madhabpur	MS20	14.7142 ± 0.0156	17.9699 ± 0.00289	250.70865 <u>+</u> 0.006870
	MS21	10.5202 ± 0.01205	20.2285 ± 0.00286	154.43019 ± 0.006437
	MS22	8.8227 ± 0.01202	20.5478 ± 0.00258	130.41407 ± 0.006292
Average		11.09224 ± 0.01090	21.98392 ± 0.00293	$227.96598 {\pm}\ 0.00676$

Table 3: Specific activities of radionuclides (²²⁶Ra, ⁴⁰K, ²³²Th) in soil samples at different locations in Habigani District

Table 4: Radium equivalent activity, gamma absorbed dose rate, annual effective dose and exte	rnal
hazard index for soil samples at different locations in Habiganj.	

Location	Sample	1		External Hazard Index,	Annual Effective
		Ra _{eq} (Bq/Kg)		H _{ex}	Dose, D _{eff} (10 ⁻⁶
		1			Sv)
1. Habiganj Sadar	HS1	53.896	25.2634	0.148753	30.98303
	HS2	62.573	30.05914	0.173952	36.86453
	HS3	51.043	25.10988	0.142813	30.79476
2. Chunarughat	CS4	60.966	30.31013	0.170725	37.17234
	CS5	32.601	16.70785	0.092057	20.49051
	CS6	34.896	16.83177	0.097098	20.64248
3. Bahubal	BS7	43.038	21.43723	0.120786	26.29060
	BS8	44.914	21.37349	0.12442	26.21245
	BS9	43.333	20.77336	0.12008	25.47645
4. Lakhai	LS10	80.738	37.56779	0.222415	46.07314
	LS11	88.310	42.23834	0.2451	51.8011
	LS12	69.759	34.78561	0.195801	42.66107
5. Azmirigonj	AS13	83.519	38.6775	0.229944	47.43409
	AS14	64.527	30.08299	0.177876	37.17234
6. Baniachong	BS15	74.668	34.74607	0.205769	20.49051
	BS16	62.559	28.08158	0.170706	30.98303
7. Nobigonj	NS17	66.284	32.28378	0.1844	39.59283
	NS18	66.645	33.02864	0.186713	40.50632
	NS19	47.482	22.71283	0.131579	27.85501
8. Madhabpur	MS20	57.960	28.18154	0.161272	34.56184
-	MS21	50.257	23.56441	0.138641	28.89939
	MS22	47.335	21.96435	0.130293	26.93708
Average		58.513	27.99008	0.162327	33.17704

5. CONCLUSION

Habiganj district is one of the border districts of Bangladesh. Although it is important both geologically and from the view point of natural resources, information about radioactivity in Habiganj in present is still unavailable due to lack of measurement. For this reason, concentration of radionuclides in 22 soil samples have been studied and evaluated.

For soil samples radium equivalent activity (Ra_{eq}), gamma absorbed dose rate, The external hazard index (Hex), annual effective dose rate were 58.513 Bq/Kg, 27.99008 nGy/h, 0.162327, 33.17704 µSv respectively. The average value of gamma dose rate obtained in this study is less than to the world average 57 nGy/h. All values obtained for radium equivalent activity are less than 370 Bq/kg, which are acceptable for safe use OECD 1979.We did not get artificial radionuclide (^{137}Cs) in any kind of samples of Habiganj district.

This radioactivity monitoring study is significantly devoted to measure the effective dose to the environment where people live in. This type of study may be continued to establish a complete database of environmental radioactivity dissymmetry. This study may lead scientists or researchers to improve necessary safety measure.

REFERENCES

[1] Nasim Akhtar, M. Tufail, M. Ashraf, M. Mohsin Iqbal. Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Available online.

[2] International Journal of Recent Research in Physics and Chemical Sciences (IJRRPCS)Vol. 1, Issue 1, pp: (1-7), Month: April - June 2014.

[3] Osmanlioglu, Ahmet Erdal; Kam, Erol; Bozkurt, Ahmet, "ASSESSMENT OF BACKGROUND RADIOACTIVITY LEVEL FOR GAZIANTEP REGION OF SOUTHEASTERN TURKEY." Radiation Protection Dosimetry; May 2007, Vol. 124 Issue 4, p407.
[4] Rohit Mehra, Surinder Singh, Kulwant Singh, "²²⁶Ra, ²³²Th and ⁴⁰K analysis in soil samples from some areas

[4] Rohit Mehra, Surinder Singh, Kulwant Singh, ²²⁶Ra, ²³²Th and ⁴⁰K analysis in soil samples from some areas of Malwa region, Punjab, India using gamma ray spectrometry". Environmental Monitoring and Assessment .Volume 134, Issue 1-3, pp 333-342.

[5] Erol Kam, Ahmet Bozkurt, Rustu Ilgar, "A study of background radioactivity level for Canakkale, Turkey." Environmental Monitoring and Assessment, September 2010, Volume 168, Issue 1-4, pp 685-690.

[6] Muhammad, Musa Auwal; Idris, Isa Funtua; Simon, Peter Malam and Arabi, Suleiman Abdullahi, "Distribution of Gamma-Emitting Radionuclides in Soils around the Centre for Energy Research and Training (CERT) Ahmadu Bello University, Zaria, Zaria-Nigeria." Journal of American Science, 2010; 6(12).

[7] Roy, S.; Islam, A.; Begum, M.; Razzak, M.A.; Awal, M.A. "Distribution of Radionuclides in Soil Samples in Kurmitola Cantonment Area."Nuclear Science and Applications (1989); v. 15(1); ISSN 1016-197X; Jun 2006; p. 23-27.

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: <u>http://www.iiste.org/journals/</u> All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

