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Abstract 

This work focused on comparing three methods of estimating 2-parameter Weibull distribution by using the 

Mean Squared Error (MSE) as test criterion. Three methods of estimation were used, namely, maximum 

likelihood estimator, method of moments and least squares methods. The method of moments was selected as the 

best method based on the selection test criterion. 
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1.0 INTRODUCTION: The Weilbull distribution by Professor Wallodi Weilbull in 1951 is a popular 

distribution for analyzing real life data. The distribution otherwise known as “life data analysis” is widely used 

in reliability analysis. 

 

1.1 THE WEIBULL DISTRIBUTION MODEL 

The general form of a Weilbull density function (pdf) (Mann and Singpurwalla 1974) is given by    
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The cdf of the Weibull distribution is mathematically given as:  
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Where; tx  =data vector (weekly squared stock price returns of Cornerstone Insurance Company, PLC, Port 

Harcourt) 

β = the shape parameter of the distribution 

α = the scale parameter of the distribution (spread) 

v = is the location parameter 

The Weibull shape parameter, β , indicates whether Weibull function is increasing, decreasing or constant. For 

10 << β  indicates that the Weibull distribution has a decreasing function, 1>β  indicates an increasing 

function and 1=β
 
shows that Weibull function is constant and reduces to an exponential distribution. The 

Weibull scale parameter called α  is a measure of the scale or spread in the distribution of sampled data 

(Johnson et al 1994). 

 

2.0 THE SCOPE OF THE STUDY 

This study will consider the various analytical methods of estimating a 2–parameter Weibull Distribution. 

 

3.0 AIMS AND OBJECTIVES 

The objective of this study is to discriminate among the three analytical methods of estimating a 2-parameter 

Weibull distribution and select the best. 

 

4.0 METHODS OF ESTIMATION 

In this section, we shall discuss some of the analytical methods used in estimating Weibull parameters. The 

analytical methods used in this study shall include that of the Maximum Likelihood Estimator (MLE) the 

Method of Moments (MOM), and the Least Square Method (LSM). 

 

4.1 MAXIMUM LIKELIHOOD ESTIMATOR (MLE) 

The method of maximum likelihood estimation is a commonly used procedure for estimating parameters (Harter 
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and Moore 1965). Let nxxx ,...,
2

,
1

 be a random sample of size n drawn from a population with probability 

density function ( )λ,xf  where λ  is an unknown vector of parameters, ( )αβλ ,= . 

The likelihood function of n random samples nxxx ,...,
2

,
1

 is defined to be the joint density function (pdf) of 

the n random variables say ( )λ;,...,
2

,
1 nxxxf  which is considered to be an unknown parameter λ . In 

particular, if nxxx ,...
2

,
1

 is a random sample from the density function ( )λ,nxf , then the likelihood 

function is  )( )(∏ =
==

n

i txffL
1

,, λβα  . . .  (3) 

Equation (3) is the likelihood function of α and β . The maximum likelihood of λ , maximizes L or 

equivalently, the logarithm  of L given by the equation ,0
log

=
∂

∂

λ
λ

 see for example, Johnson et al (1994) 

and Mood et al (1974) where solutions that are not functions of the sample values, nxxx ,...,
2

,
1

 are not 

admissible, nor are solutions which are in the parameter space. Now, we apply the MLE to estimate the 

parameters of Weibull distribution, namely α  and β  respectively where .0=v  

Consider the Weilbull pdf given in equation (3), the likelihood function will be given as:  
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Taking the algorithm of both sides and differentiating partially w.r.t β  and α  in turn and equating to zero, we 

obtain the estimating equations as follows: 
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On eliminating α  in equations (5) and (6) and by simplification, we obtain  
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α  is now estimated using equation (6) as thus: 
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So that 
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4.2 METHOD OF MOMENTS (MOM) 

The method of moments is another technique commonly used in the field of parameter estimation. Let 

nxxx ,...,
2

,
1

 be a random sample and then an unbiased estimator for the 
thk  moment is given by;  

,
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Where 
k

m̂  stands for the estimate of 
thk  moment.  In Weibull,  the 

thk  moment follows from equation (10) 

(Al-Fawzan 2000) as  
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Where Γ  is a gamma function evaluated at the value of 
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1  which provides the values ( )kΓ  at any value 

of .k  From (11), we can find the 1
st
 and 2

nd
 moments as follows: 
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When we divide 1m  by the square of ,2m  we get an expression which is a function of β  only as in     Al-

Fawzan (2000) 
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Where 
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Equation (15) is transformed in order to estimate β  and α  respectively as in Nwobi (1984): 
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The value of the scale parameter momα  can be estimated, thus 
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Where µ̂  is the mean of the original data. 

 

4.3 THE LEAST SQUARES METHOD (LSM) 

The third estimation technique among the analytical methods for estimating a 2-parameter Weibull is the Least 

Squares Method. It is commonly applied in engineering and mathematics problems that are often not thought of 

as an estimation problem. We assume that there is a linear relationship between two values. 

Considering 

  txβα +=Υ           (18) 
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Assume that a set of data pairs 
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 were obtained and plotted. 

According to the least squares principle which minimizes the vertical distance between the data points and the 

straight line fitted to the data, the best fitting line to this data is the straight line: 

xY βα +=  

Such that ( )
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Where α̂ and β̂  are the least estimates of α  and β , and n  is the number of data points. 

To obtain α̂  and β̂  we let  ( )2
1∑ =

+−= n
t tXtyQ βα

; 
and differentiating Q

 
with respect to β  and 

equating to zero yields the following system of equations; 

( ) 0
2

1
2 =∑ =

+−=
∂

∂ n
t tXty

Q
βα

α
       (19) 

and 

( ) 02
2

1
=+−=

∂

∂
∑ = t

n

t tt XXy
Q

βα
β

       (20)

  

Expanding and solving equations (19) and (20) simultaneously, we have 
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5.0 METHODS OF ANALYSIS 

We have discussed the three analytical methods for estimating a 2-parameter Weibull namely α  and β . To 

compare the analytical methods, the Mean Squared Error (MSE) test criterion will be used. The MSE test 

criterion defined by (Al-Fawzan, 2000) is given as  
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Such that the method with minimum Mean Squared Error (MSE(min)) becomes the best method for Weibull 

parameter estimations and hence satisfies the objective of this study. 

 

5.1 COMPUTATIONAL RESULTS 

5.1.1 Maximum Likelihood Estimator 

To obtain the estimates of 
MLE

β̂  and 
MLE

α̂  we use the Equations (8) and (9) respectively as: 
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5.1.2 Method of Moments 

Using Equation (10),   ( ) 6392.2
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To estimate the 2-parameters Weibull distribution, we use the two computed values of µ̂  and .2σ  

MOM
β̂  is estimated using Equation (14) as  

( ) ( )
( )

( )

( )

( ) ( )
( )

( ) ( )
( )

5664.0
21

11

5664.0
2986.12

9654.6

21

11

2
6392.23332.5

2
6392.2

21

11

22

2

=
Ζ+Γ
+Γ+Γ

=

Ζ+Γ
+Γ+Γ

=
+

Ζ+Γ
Ζ+ΓΖ+Γ

=
+

ZZ

ZZ

µσ

µ

 

From the Gamma Function Table, Z lies between 0.86 and 0.87 and using their linear application, we obtain Z as; 
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From the value of the gamma function ( )aΓ  table  
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Hence, our estimates for the method of moments are as follows: 
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5.1.3 THE LEAST SQUARE METHOD (LSM) 
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To estimate 2488.0ˆ =
LSM

β   

We substitute into Equation (22) to get 
LSM

α̂
 

7036.03ˆ =
LSM

α  

Hence, our estimates for the Least Square Method are given as follows  
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,7036.3ˆ =
LSM

α   ,2488.0ˆ =
LSM

β  
4103549.1 ×=MSE  

5.1.4 COMPARISON OF ANALYTICAL METHODS 

Table : Summary Of Results And Comparison Of The Analytical Method Of Weibull Parametric 

Estimation 

Method of estimation α̂  β̂  
MSE 

MLE 37.6880 2.6392 
1.3549× 10

4
 

MOM 2.7730 1.1435 
1.3488× 10

4
 

LSM 3.7036 0.2488 
1.3549

410×  

 

From Table 1, it is obviously seen that MOM is the best method since it has the minimum Mean Squared Error 

of
4103488.1 × . 

 

6.0  CONCLUSION  

In this paper, we have presented the analytical methods for estimating a 2-parameter Weibull Distribution. We 

have seen from the results shown in Table 1 that the method of moments (MOM) achieves the best result and 

hence satisfies the objective of the study. 
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