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Abstract 

Twenty six road-cut sandstone samples from two lithological sections of Lokoja-Basange Formation in Middle 

Niger Basin (Lokoja sub-basin) situated by the side of Auchi-Igarra road (07º 07.201'N, 006º 13.011'E) were 

investigated using integrated mineralogical, geochemical and pore water chemistry studies. The medium to 

coarse grained sandstone bodies are poorly sorted suggestive of deposition in a low energy setting, probably in a 

shelf or floodplain. The observed variations in the sandstone colourations are attributed to the nature of the 

cementing materials. Based on the mineralogical composition, two specific geochemical intervals were 

established; the first interval revealed quartz and kaolinite as major crystalline minerals with traces of hematite. 

The second geochemical interval showed quartz and kaolinite as the major crystalline minerals with minor 

quantities of grossite and halloysite. The geochemical datasets obtained revealed mature, lithic arenites including 

sub-greywacke and protoquartzites. The inverse correlation between redox potential (Eh) and electrical 

conductivity (EC), total dissolved solids (TDS) and Mg (at 0.05 significant levels) suggest well oxygenated 

environment of deposition. The high chemical index of alteration (CIA), plagioclase index of alteration (PIA), 

and chemical index of weathering (CIW) indices revealed high detrital input dominated by intense chemical 

weathering. This process eventually led to the formation of clay minerals by hydration and leaching of all major 

cations, such as Ca
+2

, K
+
, and Na

+
, present in feldspar minerals. The average mineralogical index of alteration 

(MIA) values are indicative of intense to extreme weathering of mineralogical component of the detrital 

materials from the source areas. The studied sandstones samples are plotted in the field of the active and passive 

continental margin settings. The mean ratio of Ti/Zr also corroborates active and passive continental margin 

settings. The higher ratios of La/Y and La/Th and corresponding lower ratios of La/Co and Th/Co indicates felsic 

source rock. Moreover, the lower ratios of Ba/Sr, Cr/Zr, Ti/Zr and higher ratio of Zr/Y probably suggest felsic 

source rock. Based on the previously established thresholds, the low Cu/Zn ratios in the studied sandstone 

samples suggest deposition under oxidizing conditions.  

Keywords: Lokoja-Basange Formation, Middle Niger Basin, Mineralogy, Geochemistry, Pore water chemistry, 

provenance, tectonic setting, weathering, Redox proxy.  

 

1. Introduction 

This paper demonstrates the geochemical composition of Campanian sandstones from Lokoja-Basange 

Formation of the Middle Niger Basin (Lokoja Sub-basin) (Fig. 1) based on the 26 outcrop samples collected 

from two profiles. The Campanian sandstone outcrop samples used in this study are encountered at the height 

ranges between 0.0 - 6.5m and 0.0 - 5.5m in profiles A and B respectively. The detrital sedimentary sequence 

comprise of subequal proportions of alternating sandstones and clay at the lower part of profile A. The northern 

and southern Middle Niger (Bida) basins comprises of about 3km thick Campanian to Maastrichtian continental 

to shallow marine sediments. The southern Middle Niger (Bida) Basin comprises of the basal Campanian Lokoja 

Formation (mainly conglomerate and sandstone), Maastrichtian Patti Formation (shale, claystone and sandstone) 

and the youngest Agbaja Formation (Ironstone). Their lateral stratigraphic equivalents in the northern Bida Basin 

consist of the basal Bida Formation (conglomerate, sandstone), Enagi Formation (siltstone, claystone and 

sandstone) and Batati Formation (Ironstone). The compositions of clastic rocks are affected by several factors, 

such as hydraulic sizing, tectonic environment, diagenesis, weathering and transportation processes (Taylor 
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&Mclennan, 1985; Wronkiewicz & Condie, 1987; Wronkiewicz & Condie, 1989). The major assumption 

proposed for sandstone provenance studies is that each tectonic setting consist its own rock type (Dickson and 

Suczek, 1979; Dickson, 1985). Although some geochemical ratios can be altered during weathering during 

oxidation (Taylor and McLennan, 1985) or diagenesis (Nesbit and Young, 1989; Milodowski and Zalasiewicz, 

1991), as long as the bulk chemical composition is not totally altered, the geochemical composition of sediments 

is an important tool in the study of provenance (Bakkiaraj et al., 2010; Taylor and McLennan, 1985; Bhatia, 

1983). The integration of petrography and geochemistry data of sedimentary rocks can reveal the nature of 

source rocks, the tectonic setting of sedimentary basins, and paleoclimatic conditions (Dickinson and Suczek, 

1979; Valloni and Mezzardi, 1984; Bhatia and Crook, 1986; McLennan et al., 1993; Armstrong-Altrinet al., 2004; 

Al-Juboury, 2007; Jafarzadeh and Hosseini-Barzi, 2008; Ikhane et al., 2011; Akintola et al., 2012).  

The major element discrimination diagrams of Bhatia (1983) have been usually used to classify the tectonic 

settings of sedimentary basins and was applied in recent study (e.g., Armstrong-Altrin et al., 2004), even though 

caution is required in their arbitrary use (Armstrong-Altrin and Verma, 2005). The most essential clues for the 

tectonic setting of basins come from the relative depletion of the oxides like CaO and Na2O (the most mobile 

elements), among others. The oxides are understood to show enrichment or depletion of quartz, K-feldspars, 

micas and plagioclase. The ratio of the most immobile elements to the mobile ones increases towards the passive 

margin to the relative tectonic stability (Armstrong-Altrin et al., 2004) and hence indicating prolonged 

weathering. 

Trace elements are almost certainly transferred quantitatively into clastic sediments during weathering and 

transportation, reflecting the signature of the parent materials, and hence are expected to be more useful in 

discerning tectonic environments and source-rock compositions than the major elements (Bhatia and Crook, 

1986; McLennan, 1989; Condie, 1993). Conversely, rare earth elements (e.g., La, Ce, Nd, Gd, Yb), Y, Th, Zr, Hf, 

Nb, and Sc) are most suited for the discrimination of provenance and tectonic setting because of their relatively 

low mobility during sedimentary processes and their short residence times in seawater (Taylor and McLennan, 

1985; Bhatia & Crook, 1986; Wronkiewicz & Condie, 1987, 1989 and 1990). Consequently, elemental ratios 

such as La/Sc, La/Co, Th/Sc and Zr/Cr have been found to be good discriminators between mafic and felsic 

source rocks (Tijani et al., 2010). Trace elements such as La, Th and Zr are said to be more concentrated in felsic 

igneous rocks while Co, Sc and Cr have higher concentrations in mafic rocks (Ronov et al., 1974; Wronkiewicz 

and Condie, 1987, 1990). 

Previous studies focused on the sedimentology and depositional environments of the sediments in the northern 

Middle Niger (Bida) Basin suggested alluvial to braided stream depositional processes (Adeleye, 1974; Braide, 

1992b; Olaniyan and Olabaniyi, 1996; Ojo and Akande, 2011). Recent studies showed considerable evidence of 

alluvial to coastal marine processes in the sedimentation of the Lokoja and Patti Formations in southern Bida 

Basin (Ojo and Akande, 2003 and 2009). A detail palynological study by Ojo and Akande (2008) and Ojo (2010) 

reported occurrence of biostratigraphic significant dinoflagellates of Mastrichtian age and accordingly re-affirm 

the Maastrichtian age (Jan du Chene et al., 1978) for the Patti shales. The ironstones of the Agbaja Formation 

have also attracted the noteworthy attention of researchers. Ladipo et al. (1994) suggested that the oolitic 

ironstones of Agbaja Formation contain high primary kaolinitic clays that were subsequently reworked into ooids 

by shallow marine waves and tides. Abimbola (1997) and Abimbola et al. (1999) reported kaolinite replacement 

by haematite and goethite. This present study is typically focused towards evaluating major and trace element 

geochemistry of the Campanian sandstones in the Lokoja-Basange Formation, Middle Niger Basin (Lokoja 

sub-basin) predicting the distribution pattern of the elements, reveals the main minerals present and as a result 

inferring their provenance, tectonic settings, weathering signatures and paleo-redox condition. 

2. Geological setting of Middle Niger basin 

The Middle Niger (Bida) Basin is a linear intracratonic sedimentary basin situated in central Nigeria. It trends 

NW – SE and roughly perpendicular to the Benue Trough. It is separated from the basal continental bed of the 

Sokoto Basin by a narrow outcrop of the crystalline basement rocks in the west and it is adjacent to the Anambra 

Basin in the east (Fig.1). The basin occupies a gently down warped trough (Osokpor and Okiti, 2013). The 

epeirogenesis responsible for the basin genesis appears closely connected with the Santonian tectonic crustal 

movements which mainly affected the Benue Basin and SE Nigeria. The underlain basement complex perhaps 

has a high relief (Jones, 1955) and the thick sedimentary successions is approximately 2000 metres as shown by 

gravity survey (Ojo and Ajakaiye, 1976], comprised of unfolded post-tectonic molasse facies and thin marine 

strata. Borehole logs, Landsat images interpretation, and Geophysical data across the basin suggest that it is 

bounded by a NW-SE trending system of linear faults (Kogbe et al., 1983). Gravity survey studies also 

corroborate central positive anomalies flanked by negative anomalies (Ojo, 1984; Ojo and Ajakaiye, 1989). This 

trend agreed with rift structures as observed in the adjacent Benue Trough/Basin. A detailed study of the facies 

indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to 
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lacustrine facies (Braide, 1992). Consequently, a simple sag and rift origin earlier suggested may not account for 

the basin’s evolution (Osokpor and Okiti, 2013). Braide (1992a) paleogeographic reconstruction suggests 

lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin’s axis and 

close to the margins. This suggests that the depocenter must have migrated during the basin’s depositional 

history and subsided rapidly to accommodate the 3.5 km thick sedimentary fill (Osokpor and Okiti, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geological map of Nigeria showing locations of Middle Niger Basin (After Obaje et al., 2004). 

The sedimentary sequences are Late Cretaceous (Campanian – Maastrichtian) in age and were named the Nupe 

Sandstone by Russ (1930). Adeleye (1972) subdivided Nupe sandstone (Group) into four formations: Bida 

Sandstone (oldest), Sakpe Ironstone, Enagi Siltstone and Batati Ironstone (youngest). A lateral facies variation 

occurs in the basin. Around Lokoja, the sequence is usually referred to as the Lokoja Sandstone. Nonetheless, the 

Sandstone is only partly equivalent to the Nupe Sandstone (Dessauvagie, 1975) and is overlain by Patti 

Formation (Jones, 1955). The Bida area and Lokoja area are considered separately as the stratigraphy as 

different. The Lokoja, Patti and Agbaja Formations occur as the three formational units in the southern Middle 

Niger basin (Osokpor and Okiti, 2013). The Lokoja Formation consists of pebbly clayey grit and sandstone, 

coarse-grained cross bedded sandstone, and few thin oolitic iron stones. A basal conglomerate of well-rounded 

quartz pebbles in a matrix of white clay is rarely exposed. Its thickness depends on the relief of the underlying 

Basement Complex floor and varies between 100 and 300 metres (Dessauvagie, 1975). 

The Patti Formation is a sequence of fine to medium-grained, grey and white sandstones, carbonaceous siltstone, 

clay stone, shale and oolitic ironstone. Thin coal seams may be present and white gritty clays are common. The 

maximum exposed thickness is 70 m (Jones, 1955), while the oolitic ironstones range from 7-16 m thick. The 

strata yielded a few non-diagnostic plant remains (Dessauvagie, 1975). A Maastrichtian (and possibly Senonian) 

age was thus assigned to it based mainly on correlation with other formations e.g. the Nupe Sandstone and 

Enugu Shale of Campano-Maastrichtian age (Jan Du Chene et al., 1979) have recorded a palynomorph 

assemblage and a foraminifera fauna respectively from the Lokoja area. The micro fauna is considered to be a 

marsh assemblage. The palynomorphs are made up mainly of pollen and spores, the assemblage of which is 

indicative of a Maastrichtian age (Jan Du Chene et al., 1979). Dessauvagie (1975) shows that Patti formation 

yielded fossil plants (from the carbonaceous beds) dates the formation as Campanian to Maastrichtian. 
3. Materials and method 
The sampling technique, sample pre-treatment and analytical techniques are reported in our previous study 

(Akinyemi et al., 2013). The details are also reported as follows; 

 

http://www.iiste.org/


Journal of Natural Sciences Research                                                                        www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.4, No.16, 2014 

 

68 

3.1 Sampling technique and sample pre-treatment 

The Campanian sandstone outcrop located at Auchi-Igarra road, Edo state, Nigeria (07º 07.201'N, 006º 13.011'E; 

230m above sea level) (Fig. 2) was sampled. 500 grams of sandstone samples were collected at an interval of 

0.5m from two profiles in the road-cut sandstone exposure. All the 26 sandstone samples were immediately 

stored in zip lock polyethylene bag and preserved at a room temperature. The samples were dried at 60ºC and 

then ground to fine powder and homogenized in an agate ball mill. The pulverized sandstone samples were 

analysed using XRD, XRF and LA-ICPMS techniques. 

3.2. XRF and LA-ICPMS analyses 

The elemental data were acquired using X- ray fluorescence (XRF) and Laser Ablation-inductively coupled 

plasma spectrometry (LA-ICPMS) analyses. The detailed analytical procedures are as follows; 

Pulverised sandstone samples were analysed for major elements using Axios instrument (PANalytical) with a 2.4 

kWatt Rh X-ray Tube. Further, the same set of samples were analysed for trace elements using LA-ICPMS 

instrumental analysis. LA-ICP-MS is a powerful and sensitive analytical technique for multi-elemental analysis. 

The laser was used to vaporize the surface of the solid sample and it was the vapour, and any particles, which 

were then transported by the carrier gas flow to the ICP-MS. The detailed procedures for sample preparation for 

both analytical techniques were reported below. 

3.2.1. Fusion bead method for Major element analysis 

 Weighed 1.0000 g ± 0.0009 g of milled sample 

 Placed in oven at 110 ºC for 1 hour to determine H2O- 

 Placed in oven at 1000 ºC for 1 hour to determine LOI 

 Added 10.0000 g ± 0.0009 g Claisse flux and fuse in M4 Claissefluxer for 23 minutes. 

 0.2 g of NaCO3 was added to the mix and the sample+flux+NaCO3 was pre-oxidized at 

 700 °C before fusion and 

  The flux type employed was Ultrapure Fused Anhydrous Li-Tetraborate-Li-Metaborate (66.67 % 

Li2B4O7 + 32.83 % LiBO2) and a releasing agent, Li-Iodide (0.5 % LiI). 

3.2.2. Pressed pellet method for Trace element analysis 

 Weighed 8 g ± 0.05 g of milled powder 

 Mixed thoroughly with 3 drops of Mowiol wax binder 

 Pressed pellet with pill press to 15 ton pressure and 

 Dried in an oven at 100 ºC for half an hour before analysing. 

These analytical methods yielded data for eleven major elements[SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO, CaO, 

Na2O, K2O, Cr2O3, P2O5] reported as oxide percent by weight and 21 trace elements [Ni, Cu, Zn, Ga, Rb, Sr, Y, 

Zr, Nb, Co, V, Pb, Th, U, Ti, Cr, Ba, La, Ce, Nd, P] reported as mg/kg (ppm). 

3.3 Loss on ignition determination 

Loss on Ignition (LOI) is a test used in XRF major element analysis which consists of strongly heating samples 

of the material at a specified temperature, allowing volatile substances to escape or oxygen is added, until its 

mass ceases to change. The LOI is made of contributions from the volatile compounds of H2O
+
, OH

-
, CO2, F

-
, 

Cl
-
, S; in parts also K

+
 and Na

+
 (if heated for too long); or alternatively added compoundsO2 (oxidation, e.g. FeO 

to Fe2O3), laterCO2 (CaO to CaCO3). In pyro-processing and the mineral industries such as lime, calcined 

bauxite, refractories or cement manufacturing industry, the loss on ignition of the raw material is roughly 

equivalent to the loss in mass that it will undergo in a kiln, furnace or smelter. 

3.4 Mineralogical analysis 

Pulverised sandstone samples were analysed for mineralogical composition by X-ray diffraction (XRD) analysis. 

A Philips PANalytical instrument with a pw 3830 X-ray generator operated at 40 kV and 25 mA was used. The 

pulverised samples were oven dried at 100 °C for 12 h to remove the adsorbed water. The samples were pressed 

into rectangular aluminium sample holders using an alcohol wiped spatula and then clipped into the instrument 

sample holder. The samples were step-scanned from 5 to 85 degrees on 2 theta scale at intervals of 0.02 and 

counted for 0.5 sec per step. 

 

3.5 Pore water chemistry of the sandstones 

The pH of interstitial/pore water was determined using sandstone to water ratio of 1:10. Ten grams of each of the 

sandstone samples were weighed and put in a beaker and suspended in 100 ml of ultrapure water. The mixture 

was then agitated thoroughly for 30 min, and allowed to settle for 15 min. The pH, EC, TDS and Eh of the 

supernatant were recorded. The filterate was analyzed for anions using ion chromatography and cations using 

inductive coupled plasma optical emission spectroscopy (ICP-OES). Triplicate analysis was carried out in each 

case. 
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4. Results and discussion 

4.1 Lithologic description 

The clastic units at the outcrop section along Auchi-Igarra road are well exposed. The approximately 6.5m thick 

sandstone sequence (Figures 3 & 4) consists of coarse grained sandstones and clayey materials at the basal part 

of section A. At the basal part of sections A & B there is prominent brownish, medium to coarse grained and 

moderately sorted sandstone units. The basal part was laminated with kaolinitic materials at section A indicative 

of detrital origin in a continental setting. In the middle part, sections A & B consist predominantly of light brown, 

whitish yellow to pale brown, medium to coarse grained and some moderately sorted sandstone bodies. The 

upper part of sections A & B compose of pinkish brown, whitish grey to purple reddish, coarse grained, poorly to 

moderately sorted, clast-supported sandstone. This probably suggests that the sandstone bodies have been 

deposited in a low energy setting, possibly in a shelf or floodplain (i.e. fluivatile environment). The observed 

colours variations could be attributed to different cementing materials in the sandstone bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Campanian sandstone of Lokoja-Basange Formation exposed at Auchi-Igarra Road. 
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Figure 3.Lithologic section of profile A. 

4.2 Mineralogical Composition 

The mineral composition of the Campanian sandstone samples is dominated by quartz and kaolinite, which were 

found in all samples in both profiles. X-Ray diffraction analyses demonstrate little mineralogical variation 

between the sandstone samples within specific geochemical intervals. The X-ray diffraction spectra of the first 

intervals in profile A (0-0.5m and 4-5m) and B (0.5m, 3.5m and 5-5.5m) revealed quartz and kaolinite as the 

major crystalline minerals with traces of hematite (Figures 5&6). The second specific geochemical interval in 

profile A (1-3.5m and 5.5-6.5m) and that of B (0, 1-3m and 4-4.5m) showed quartz and kaolinite as the major 

crystalline mineral phase with minor quantities of grossite and halloysite (Figures 5&6). 
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Figure 4.Lithologic section of profile B 

Kaolinite is believed to form by weathering or hydrothermal alteration of aluminosilicate minerals. Thus, rocks 

rich in feldspar commonly weather to kaolinite. Halloysite, which consists of poorly ordered arrangement of 

kaolinite-like units, with variable amounts of water between the layers, generally between 0.6 to 4H2O per 

formula unit, and often with a tabular form. Kaolinites are indicators for its detrital origin in continental 

sediments (Kassim, 2006). Furthermore, Weaver (1960) stated that kaolinite is dominant in sediments of 

fluviatile environments. 
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Figure 5a&b. XRD spectra of the sandstone samples taken at profile A. 

 

Qt

z. 

b 

a 

http://www.iiste.org/


Journal of Natural Sciences Research                                                                        www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.4, No.16, 2014 

 

73 

 

Figure 6a&b. XRD spectra of the sandstone samples taken at profile B. 

Kaolinite is known to be concentrated in many near-shore sediments and to decrease in abundance with distance 

from the shoreline as other clay minerals increase (Parham, 1966). Robert and Kennett (1994) reported that 

increased kaolinite contents in marine sediments resulted either from increased runoff, which could be caused by 

sea level falls, or from increased rainfall. Berner and Berner (1996) in their study established that kaolinite is 

formed under a good drainage system where the water travel-distance was much greater, less rapid flushing of 

sediments and less removal of silica. Hematite is the oxidation products of weathering of ferrous minerals and 

constitutes a major source of detrital iron in sediments. During diagenesis limonite may be dehydrated to 

hematite. In order for this to take place, the original sediment would have to be relatively free from 

decomposable organic matter so that a high enough oxidation/reduction potential (Eh) can be maintained to 

stabilize hematite. Since, organic matter is generally abundant in marine sediments; almost all hematite are 
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non-marine (Berner, 1971). Consequently, the presence of hematite in the bottom layers of the shale sequence 

suggest non-marine environment of deposition. 

4.3 pH, EC and TDS of Interstitial water 

The average values of pH, EC and TDS of the sandstones in profiles A and B respectively are 6.61 and 6.23; 

2.09µS/cm and 2.66µS/cm; and13.39 and 17.16ppm correspondingly. Moreover, the average Eh values for 

profiles A and B is 225.94 and 239.07 respectively. Table 1 shows Pearson’s coefficient correlations for all the 

measured geochemical parameters of the interstitial pore water.  

Table 1. Pearson’s coefficient correlations for all geochemical parameters measured in the extracted interstitial 

pore water of the sandstone samples 

 

 

 

 

 

 

 

 

 

 

 

 

** Correlation is significant at the 0.01 level (1-tailed) 

*  

 
Correlation is significant at the 0.05 level (1-tailed). 
The inverse correlation between Eh and EC, TDS and Mg (at 0.05 significant levels) in the studied samples 

suggest well oxygenated environment of deposition. Simultaneously, inverse correlation occurs between Eh and 

pH but at 0.01 significant levels.   

4.3 Geochemical classification  

The major element concentrations of the Campanian sandstones of Lokoja-Basange Formation are arranged in 

Tables 2a&b. The concentration of three major oxide groups such as silica and alumina and alkali oxides in 

conjunction with iron oxides and magnesia were used to classify sandstones. The enrichment of SiO2 over Al2O3 

by mechanical and chemical process produces quartz arenites (Orthoquartzites). Silica (quartz) enrichment is a 

measure of sandstone maturity and is a reflection of the duration and intensity of weathering and destruction of 

other minerals during transportation. The average values of log SiO2 / Al2O3 in samples taken at certain interval 

from profiles A (1.46) and profile B (1.43) are less than 1.5 (Tables 2a&b). The values of the log K2O/Na2O in 

the samples from profiles A (-0.15) and B (-0.19) are less than 0 (Tables 2a&b). Furthermore, the average values 

of the log Fe2O3+MgO/Na2O for all the samples from profiles A (0.21) and B (0.49) are more than 0. The low 

alkalis values in all the studied samples indicate mature sandstone.  The depletion of Na2O (<1%) in all samples 

(Tables 2a&b) can be attributed to a relatively smaller amount of Na-rich plagioclase in the sandstone samples.  

The enrichment of silica (quartz) over Al2O3 (i.e. log SiO2/Al2O3<1.5) is a reflection of the duration and intensity 

of weathering and destruction or dissolution of other minerals during transportation. These indicate that 

sandstone sediments used in this study had undergone long period of transportation and intense weathering 

resulting in the destruction of other minerals especially plagioclase and potassium feldspars during transportation. 

The geochemical datasets shown in Tables 2a&b and 3 accordingly revealed homogeneous sedimentary 

formations that are mature lithic arenites including sub-greywacke and protoquartzites. 

pH Ec TDS Eh Ca Mg pH Ec TDS Eh Ca Mg

pH 1 0.083 0.085 0.209 0.404 0.082 1 .720
**

.719
**

-.836
** -0.1 0.423

Ec 0.083 1 1.000
** 0.177 .732

**
.922

**
.720

** 1 1.000
**

-.509
* -0.3 0.136

TDS 0.085 1.000
** 1 0.175 .730

**
.920

**
.719

**
1.000

** 1 -.507
* -0.3 0.134

Eh 0.209 0.177 0.175 1 0.108 0.4 -.836
**

-.509
*

-.507
* 1 -0 -.648

*

Ca 0.404 .732
**

.730
** 0.108 1 .651

** -0.059 -0.271 -0.27 -0.047 1 0.456

Mg 0.082 .922
**

.920
** 0.4 .651

** 1 0.423 0.136 0.134 -.648
* 0.46 1

Mg/Ca -0.17 .541
*

.540
* 0.43 -0.02 .733

**
.611

* 0.454 0.451 -.756
** -0.1 .775

**

Na -0.04 -0.106 -0.102 -0.02 -0.18 -0.17 0.128 0 0 -0.032 0 0.085

K -0.28 0.314 0.312 0.179 .481
* 0.322 0.273 0.019 0.018 -0.244 -0.2 0.093

K/Na -0.13 0.317 0.311 -0.07 .509
* 0.305 0.232 0.007 0.006 -0.246 -0.2 0.034

F 0.01 0.29 0.292 0.024 .520
* 0.218 0.178 -0.009 -0.009 0.089 0.21 -0.33

Cl 0.346 0.153 0.156 0.065 0.364 0.151 -0.278 -0.23 -0.229 0.257 -0.2 -0.22

Profile A Profile B

http://www.iiste.org/


Journal of Natural Sciences Research                                                                        www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.4, No.16, 2014 

 

75 

Table 2a. Major elements concentrations (wt %) for profile A in the Campanian sandstones outcrop of the Lokoja-Basange Formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Chemical index of alteration (CIA, Nesbitt and Young, 1982), Chemical index of weathering (CIW, Harnois, 1988), Mineralogical index of alteration (MIA.Voicu et 

al., 1997), Plagioclase index of alteration (PIA, Fedo et al., 1995). 

  

Sample name Al2O3 CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI Total

 6.5 m 2.94 0.00 0.00 0.60 0.00 0.05 0.01 0.04 0.01 95.73 0.09 1.12 100.60

6.0 m 3.22 0.00 0.00 0.27 0.00 0.05 0.00 0.03 0.00 96.15 0.12 1.22 101.06

 5.5 m 2.73 0.00 0.00 0.40 0.01 0.06 0.00 0.11 0.00 96.27 0.14 1.13 100.85

5.0 m 2.08 0.00 0.00 0.88 0.00 0.05 0.00 0.03 0.01 97.03 0.23 0.90 101.21

4.5 m 1.99 0.00 0.00 0.64 0.00 0.06 0.00 0.04 0.01 96.71 0.19 0.76 100.41

4.0 m 3.50 0.00 0.00 0.61 0.00 0.04 0.00 0.04 0.00 95.02 0.22 1.32 100.75

3.5 m 4.04 0.00 0.00 0.42 0.00 0.05 0.00 0.04 0.00 94.37 0.61 1.58 101.11

3.0 m 5.59 0.00 0.00 0.22 0.00 0.04 0.00 0.05 0.01 92.66 0.12 2.04 100.74

 2.5 m 3.72 0.00 0.00 0.32 0.00 0.04 0.00 0.04 0.01 95.44 0.14 1.39 101.10

 2.0 m 3.34 0.00 0.00 0.28 0.01 0.04 0.01 0.06 0.01 95.82 0.06 1.26 100.88

 1.5 m 7.67 0.00 0.00 1.04 0.03 0.03 0.00 0.06 0.01 89.85 0.37 2.85 101.91

 1.0 m 3.86 0.00 0.00 0.33 0.00 0.05 0.00 0.05 0.01 94.48 0.05 1.45 100.27

0.5 m 2.54 0.00 0.00 1.39 0.00 0.05 0.01 0.08 0.01 95.66 0.10 1.06 100.88

0 m 2.49 0.00 0.00 4.55 0.00 0.05 0.01 0.04 0.02 92.70 0.40 1.22 101.48

Min. 1.99 0.00 0.00 0.22 0.00 0.03 0.00 0.03 0.00 89.85 0.05 0.76

Max. 7.67 0.00 0.00 4.55 0.03 0.06 0.01 0.11 0.02 97.03 0.61 2.85

Aver. 3.55 0.00 0.00 0.85 0.00 0.05 0.00 0.05 0.01 94.85 0.20 1.38

Sample name CIA CIW MIA PIA Al2O3/TiO2 TiO2/Al2O3 Na2O/K2O SiO2/Al2O3 Al2O3/SiO2 Fe2O3+MgO Log K2O/Na2O Log SiO2/Al2O3 Log Fe2O3+MgO/Na2O

 6.5 m 98.26 98.26 96.52 98.51 32.54 0.03 0.00 32.54 0.03 0.65 0.00 1.51 0.24

6.0 m 97.04 97.04 94.09 98.97 26.69 0.04 0.00 29.88 0.03 0.32 0.00 1.48 0.25

 5.5 m 98.59 98.59 97.19 96.10 19.61 0.05 10.95 35.30 0.03 0.46 -1.04 1.55 -0.03

5.0 m 98.89 99.28 97.77 98.43 9.06 0.11 0.00 46.75 0.02 0.93 0.00 1.67 0.38

4.5 m 98.09 98.38 96.18 97.81 10.44 0.10 0.00 48.54 0.02 0.70 0.00 1.69 0.30

4.0 m 98.81 98.81 97.63 98.76 16.04 0.06 0.00 27.16 0.04 0.65 0.00 1.43 0.18

3.5 m 99.03 99.03 98.06 98.91 6.58 0.15 0.00 23.39 0.04 0.47 0.00 1.37 0.19

3.0 m 98.91 98.91 97.81 99.03 47.37 0.02 0.00 16.57 0.06 0.26 0.00 1.22 -0.03

 2.5 m 98.76 98.76 97.51 98.81 26.44 0.04 0.00 25.66 0.04 0.36 0.00 1.41 0.09

 2.0 m 97.81 97.81 95.62 98.37 56.16 0.02 5.47 28.67 0.03 0.32 -0.74 1.46 0.02

 1.5 m 98.43 98.43 96.85 99.28 20.64 0.05 1.82 11.71 0.09 1.07 -0.26 1.07 0.20

 1.0 m 95.77 96.11 91.54 98.59 77.90 0.01 0.00 24.50 0.04 0.38 0.00 1.39 0.09

0.5 m 98.97 98.97 97.94 97.04 25.52 0.04 0.00 37.70 0.03 1.44 0.00 1.58 0.31

0 m 98.51 98.51 97.01 98.26 6.28 0.16 0.00 37.19 0.03 4.60 0.00 1.57 0.75

Min. 95.77 96.11 91.54 96.10 6.28 0.01 0.00 11.71 0.02 0.26 -1.04 1.07 -0.03

Max. 99.03 99.28 98.06 99.28 77.90 0.06 10.95 48.54 0.09 4.60 0.00 1.69 0.75

Aver. 98.28 98.35 96.55 98.35 27.23 0.06 1.30 30.40 0.04 0.90 -0.15 1.46 0.21

Profile A (Wt %)
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Table 2b. Major elements concentrations (wt %) for profile B in the Campanian sandstones outcrop of the Lokoja-Basange Formation. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical index of alteration (CIA, Nesbitt and Young, 1982), Chemical index of weathering (CIW, Harnois, 1988), Mineralogical index of alteration (MIA.Voicu et 

al., 1997), Plagioclase index of alteration (PIA, Fedo et al., 1995).

Sample name Al2O3 CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI Total

5.5 m 3.96 0.01 0.00 3.03 0.01 0.05 0.00 0.04 0.04 91.80 0.21 2.09 101.25

5 m 3.80 0.00 0.00 4.92 0.01 0.06 0.01 0.04 0.06 90.24 0.18 1.91 101.22

4.5 m 2.88 0.00 0.00 2.07 0.00 0.05 0.00 0.04 0.02 94.48 0.12 1.32 100.98

4 m 4.12 0.00 0.00 1.12 0.00 0.04 0.00 0.04 0.02 94.28 0.08 1.63 101.33

3.5 m 2.51 0.00 0.00 1.58 0.00 0.06 0.01 0.04 0.02 95.58 0.05 1.23 101.09

3 m 2.87 0.00 0.00 0.58 0.00 0.05 0.00 0.04 0.01 95.83 0.18 1.16 100.72

2.5 m 2.72 0.00 0.00 0.60 0.00 0.05 0.00 0.03 0.01 96.53 0.07 1.07 101.08

2 m 3.30 0.00 0.00 0.95 0.00 0.05 0.01 0.04 0.01 94.95 0.06 1.35 100.72

1.5 m 2.80 0.00 0.01 3.96 0.00 0.06 0.01 0.07 0.04 92.94 0.05 1.55 101.48

1 m 4.39 0.00 0.00 3.09 0.01 0.07 0.01 0.10 0.04 90.95 0.45 1.95 101.06

0.5 m 4.38 0.00 0.00 4.60 0.00 0.05 0.00 0.04 0.06 88.18 1.31 2.31 100.93

0 m 4.60 0.00 0.00 0.70 0.00 0.05 0.00 0.04 0.01 86.90 0.39 1.91 94.60

Min. 2.51 0.00 0.00 0.58 0.00 0.04 0.00 0.03 0.01 86.90 0.05 1.07

Max. 4.60 0.01 0.01 4.92 0.01 0.07 0.01 0.10 0.06 96.53 1.31 2.31

Aver. 3.53 0.00 0.00 2.27 0.00 0.05 0.00 0.05 0.03 92.72 0.26 1.62

Sample name CIA CIW MIA PIA Al2O3/TiO2 TiO2/Al2O3 Na2O/K2O SiO2/Al2O3 Al2O3/SiO2 Fe2O3+MgOLog K2O/Na2OLog SiO2/Al2O3 Log Fe2O3+MgO/Na2O

5.5 m 99.01 99.01 98.03 98.78 18.73 0.05 4.38 23.18 0.04 3.09 -0.64 1.37 0.63

5 m 99.06 99.06 98.12 98.86 21.41 0.05 4.38 23.76 0.04 4.97 -0.64 1.38 0.80

4.5 m 97.59 97.80 95.17 98.50 24.24 0.04 0.00 32.77 0.03 2.12 0.00 1.52 0.50

4 m 97.70 97.70 95.39 98.95 52.12 0.02 0.00 22.88 0.04 1.16 0.00 1.36 0.31

3.5 m 98.68 98.68 97.36 98.28 50.64 0.02 0.00 38.04 0.03 1.64 0.00 1.58 0.47

3 m 98.80 98.80 97.59 98.48 16.04 0.06 0.00 33.42 0.03 0.63 0.00 1.52 0.23

2.5 m 98.48 98.48 96.97 98.80 39.08 0.03 0.00 35.51 0.03 0.64 0.00 1.55 0.32

2 m 98.28 98.28 96.55 98.68 55.42 0.02 0.00 28.81 0.03 1.00 0.00 1.46 0.32

1.5 m 98.95 98.95 97.89 97.70 56.54 0.02 0.00 33.24 0.03 4.02 0.00 1.52 0.69

1 m 98.50 98.50 96.99 97.80 9.68 0.10 9.85 20.73 0.05 3.16 -0.99 1.32 0.58

0.5 m 98.60 98.86 97.21 99.01 3.36 0.30 0.00 20.13 0.05 4.65 0.00 1.30 0.76

0 m 98.54 98.78 97.08 99.06 11.87 0.08 0.00 18.87 0.05 0.75 0.00 1.28 0.26

Min. 97.59 97.70 95.17 97.70 3.36 0.02 0.00 18.87 0.03 0.63 -0.99 1.28 0.23

Max. 99.06 99.06 98.12 99.06 56.54 0.30 9.85 38.04 0.05 4.97 0.00 1.58 0.80

Aver. 98.52 98.57 97.03 98.57 29.93 0.07 1.55 27.61 0.04 2.32 -0.19 1.43 0.49

Profile B (Wt %)
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Table 3. Classification of sandstone based on chemical approach (After Blatt et al., 1972; Hebron, 1988; Pettijohn, et al., 1972; 

Potter, 1978; Akinmosin and Osinowo, 2008; Obiefuna and Orazulike, 2011. 

 

 

 

 

 

 

4.4 Weathering in the source area 

Weathering indices are useful tools to illustrate weathering profiles and establish the extent of weathering. The weathering indices 

used to examine the decomposition of unstable mineral are: (1) Chemical Index of Alteration (CIA; Nesbitt and Young, 1982), (2) 

Chemical Index of Weathering (CIW; Harnois, 1988), and (3) Plagioclase Index of Alteration (PIA; Fedo et al., 1995) (Tables 

2a&b). The chemical index of alteration (CIA) defined as CIA = 100 x Al2O3 / (Al2O3 + CaO + Na2O + K2O) and chemical index 

of weathering (CIW) = (Al2O3/(Al2O3+CaO+Na2O)*100 have been established as a general indicator of the degree of weathering 

in any provenance regions (Nesbitt and Young, 1982; Harnois, 1988; Fedo et al., 1995). In the formula given above, CaO* is the 

amount of CaO incorporated in the silicate fraction of the studied sandstone samples. Correction for CaO from carbonate 

contribution was not done for the studied sandstone samples since there was no CO2 data. Consequently, to compute for CaO* 

from the silicate fraction, the assumption proposed by Bock et al. (1998) was adopted. In this regard, CaO values were accepted 

only if CaO ≤ Na2O; accordingly, when CaO>Na2O, it was assumed that the concentration of CaO equals that of Na2O (Bock et 

al., 1998). 

The low CIA values of approximately 50 imply an unweathered upper crust or weak weathering, but high CIA values (i.e. 76-100) 

indicate intense weathering with a complete removal of alkali and alkaline earth elements and an increase in Al2O3 (McLennan, 

1993; Fedo et al., 1995; Dupuis et al., 2006). The average CIA values in both profiles A and B are 98.28% and 98.52% 

respectively while the average CIW values are 98.35% and 98.57% (Tables 2a&b). The variation in CIA values may reflect 

changes in the proportion of clay minerals in the sandstone samples analyzed. The CIA and CIW values indicate that the 

sandstone samples have experienced strong chemical weathering (CIA > 90) at the source area.  

The extent of weathering at the source area can also be determined by plagioclase index of alteration (PIA; Fedo et al., 1995) 

calculated by the following equation (molecular proportions): PIA = [(Al2O3 - K2O) / (Al2O3 + CaO +Na2O-K2O)] *100. The 

average PIA in profiles A and B is 98.35% and 98.57% respectively and are consistent with the CIA and CIW values in both 

profiles (Tables 2a&b). The high CIA, PIA, and CIW indices obtained reveal high detrital input dominated by strong chemical 

weathering, which leads to the formation of clay minerals by hydration and leaching of all major cations, such as Ca+2, K+, and 

Na+ present in feldspar minerals (Gertsch et al., 2011). The mineralogical index of alteration indicates the degree of weathering 

for each analysed sample, independent of the depth of sampling. The calculation of the mineralogical index of alteration (MIA), 

according to Voicu et al. (1997) is: MIA = 2*(CIA-50).These ranges of MIA values indicate incipient (0-20%), weak (20-40%), 

moderate (40-60%), and intense to extreme (60-100%) weathering. The value of 100 % means complete weathering of a primary 

material into its equivalent weathered product (Voicu and Bardoux, 2002). The average MIA values in both profile A and B are 

96.55% and 97.03 % respectively (Tables 2a&b). This is indicative of intense to extreme weathering of mineralogical component 

of the detrital materials from the source areas. The Al2O3, CaO, Na2O and K2O constituents in sediments are related with CIA, 

they show variations between the investigated samples reflecting variable climatic zones or rates of tectonic uplift in source areas. 

Furthermore the depletion of Na and Ca demonstrates an intense chemical weathering of the source rocks. 

4.5 Tectonic setting  

The geochemical data obtained from the studied sandstones outcrop along Auchi-Igarra Road indicate both active and passive 

margin settings. The most favorable discrimination parameters of the Campanian sandstones representing the various tectonic 

settings is achieved by the plots of Fe2O3 + MgO versus TiO2, Al2O3 / SiO2, K2O / Na2O, and Al2O3 / (CaO + Na2O) (Figs. 7a&b). 

The studied sandstones are plotted in the field of the active and passive continental margin settings. Active continental margin 

sandstones are dominantly derived from the uplifted basement and reflect the composition of the upper continental crust (Roser 

and Korch, 1986). Sediments of passive continental margins generally are considered to be mature (Crook, 1974; Schwab, 1975; 

Sahraeyan and Bahrami, 2012), and are deposited in plate interiors at stable 

S./ No. Log of ratio of oxides Types of sandstone 

1. Log (SiO2/Al2O3) >1.5 Arenites 

2. Log (SiO2/Al2O3) <1 and log (K2O/Na2O) < 0 Greywacke 

3. Log (SiO2/Al2O3) <1.5, log (K2O/Na2O) > 0 

and log (Fe2O3+MgO)/(Na2O+K2O) 

Arkose 

4. Log (SiO2/Al2O3) <1.5, and either log 

(K2O/Na2O) < 0 or log (Fe2O3+MgO / Na2O) > 

0 

Lithic arenites  

(including sub-greywacke 

and protoquartzites 
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Figure 7a. The tectonic setting discrimination diagrams of samples taken at profile A (after Bhatia, 1983); OIA: Oceanic island Arc, CIA: continental island Arc, 

ACM: active continental margin, PM: passive continental margin. 
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Figure 7b. The tectonic setting discrimination diagrams of samples taken at profile B (after Bhatia, 1983); OIA: Oceanic island Arc, CIA: continental island Arc, 

ACM: active continental margin, PM: passive continental margin. 
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continental margin or intra-cratonic basins. The average of Na2O/K2O ratios in both sandstone profiles A and B is 

1.30 and 1.55 respectively implying detrital influx (Sageman and Lyons, 2003). The ratio of Na2O/K2O has been 

used to constrain tectonic settings of sedimentary basins (e.g. Roser & Korsch, 1986) and data from modern deep sea 

turbidites indicate that sands from volcanically active tectonic settings commonly have Na2O/K2O < 1, whereas 

sands from trailing edge margins exhibit ratios larger than 1 (McLennan et al., 1990). However, because of the 

relatively easy loss of these elements during weathering and loss or gain during diagenesis, one must use alkali 

elements with caveats (Bock et al., 1989).The high Na2O/K2O ratios are attributed to the common absence of 

K-bearing minerals such as K-feldspar and mica, illite, muscovite, and biotite (McLeann et al., 1983; Nath et al., 

2000; Zhang, 2004; Osae et al., 2006). The average ratios of Ti/Zr for profile A and B in the sandstones are 6.95 and 

7.70 respectively (Tables 4a&b). The mean ratio of Ti/Zr suggests active and passive continental margin settings for 

the sandstones (Bhatia and Crook, 1986). 

4.6 Provenance  

Table 2a&b shows the major element concentration of sandstone exposure samples taken from profile A and B.  In 

the studied sandstone samples, the average Al2O3/TiO2 ratios for the profiles A and B is 27.23 and 29.93 respectively 

(Tables 3a&b). Al2O3/TiO2 ratios of most clastic rocks are essentially used to infer the source rock compositions, 

because the Al2O3/TiO2 ratio increases from 3 to 8 for mafic igneous rocks, from 8 to 21 for intermediate rocks, and 

from 21 to 70 for felsic igneous rocks (Hayashi et al., 1997). Accordingly, the average Al2O3/TiO2 ratios obtained 

suggest felsic igneous rocks as the probable source rocks for the studied Campanian sandstone samples.  

The studied Campanian sandstones have extreme SiO2 contents in both profiles A and B averaging 94.85wt% and 

92.72 wt% respectively but, as expected; the sandstones have higher SiO2 and correspondingly lower Al2O3. The 

average of SiO2/Al2O3 ratios of the Campanian sandstone in both profiles A and B is 30.40 and 27.61 respectively 

show detrital influx dominated by large extent of weathering. Generally, the low average values of Al2O3/SiO2 ratio 

indicate quartz enrichment in the both profiles. The average of Na2O/K2O ratios of the studied sandstone samples in 

both profiles A and B is 1.30 and 1.55 respectively. This literally suggests the felsic igneous rocks for the studied 

sandstones. The large quantity of alkalis (Na2O and K2O) characterizes immature sandstones such as Arkoses and 

greywackes whereas the ratios of Na2O/K2O could be used to establish both the provenance and diagenesis of 

sandstone deposit (Akinmosin and Osinowo, 2008; Ibe and Akaolisa, 2010).  

Trace elements such as Cr, Ni, Co, and V have been used to determine mafic and ultramafic sources (Wronkiewicz 

and Condie, 1987; Huntsman-Mapila et al., 2005). The average concentrations of the followings trace elements in 

profile A and B respectively are: Cr, 12.62ppm and 12.45ppm; Co, 202.77ppm and 176.09ppm; and V, 27.15ppm and 

40.45ppm (Tables 4a&b). Trace elements such as Ba, Sr and Y showed lower concentration in the sandstones. 

Nevertheless, the average concentration of Zr in profile A and B are 172.85ppm and 203.27ppm respectively (Tables 

4a&b). The lower concentrations of Cr, Co, Ni and Cr and higher concentration of Zr observed in the sandstones 

suggest felsic source rock. Felsic source rocks usually contain lower concentrations of Cr, Co, Ni, and V and higher 

concentrations of Ba, Sr, Y, and Zr than mafic and intermediate source rocks (Wronkiewicz and Condie, 1987; 

Spalletti et al., 2008). Besides, the relatively higher concentrations of La and Ce in the sandstones (Tables 4a&b) also 

suggest felsic source rock. REE and Th abundances are higher in felsic than in mafic igneous source rocks and in 

their weathered products, whereas Co, Sc, and Cr are more concentrated in mafic than in felsic igneous rocks and in 

their weathered products (Armstrong-Altrin et al., 2004).  

Ratios such as Eu/Eu*, (La/ Lu)cn, La/Sc, Th/Sc, La/Co, Th/Co, and Cr/Th are significantly different in mafic and 

felsic source rocks and can therefore provide information about the provenance of sedimentary rocks (Cullers et al. 

1988; Wronkiewicz and Condie 1989; Condie and Wronkiewicz 1990; Cullers 1994). Accordingly, the higher ratios 

of La/Y and La/Th and corresponding lower ratios of La/Co and Th/Co in both profiles A and B (Tables 4a&b) 

indicate felsic source rock. The lower ratios of Ba/Sr, Cr/Zr, Ti/Zr and higher ratio of Zr/Y in the sandstones (Tables 

4a&b) probably suggest felsic source rock. The existence of huge complexes of mafic/ultramafic rocks in the source 

region is most unlikely. 

4.7 Paleo-redox condition 

The average Cu/Zn ratio in the profiles A and B of the studied sandstones is 0.14 and 0.20 respectively (Tables 4a&b). 

According to Hallberg (1976) high Cu/Zn ratios indicate reducing depositional conditions, while low Cu/Zn ratios 

suggest oxidizing conditions. Therefore, the low Cu/Zn ratios in these sandstone 
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Table 4a. Trace elements concentrations (ppm) for profile A in the Campanian sandstones outcrop of the Lokoja-Basange Formation. 

  

Sample name Ni Cu Zn Ga Rb Sr Y Zr Nb Pb Th U Ti V Cr La Ce

 6.5m BD 6.00 9.00 2.00 BD 10.00 3.00 124.00 4.00 133.0 BD BD 691.00 15.00 21.00 10.00 BD

 6.0m BD BD 9.00 2.00 BD 9.00 2.00 130.00 5.00 132.0 1.00 BD 886.00 19.00 5.00 14.00 BD

 5.5m BD 1.00 10.00 3.00 BD 10.00 3.00 228.00 5.00 133.0 3.00 BD 949.00 18.00 12.00 10.00 BD

5.0m BD 1.00 10.00 3.00 BD 10.00 3.00 176.00 5.00 134.0 4.00 BD 1459.00 31.00 13.00 12.00 14.00

 4.5m BD 1.00 10.00 2.00 BD 9.00 3.00 193.00 5.00 134.0 2.00 BD 1232.00 27.00 14.00 11.00 0.00

 4.0m BD BD 9.00 3.00 1.00 10.00 5.00 292.00 6.00 136.0 8.00 BD 1475.00 32.00 5.00 22.00 4.00

 3.5m BD 1.00 9.00 5.00 1.00 11.00 6.00 415.00 12.00 137.0 7.00 BD 4024.00 85.00 9.00 6.00 28.00

 3.0m BD BD 9.00 5.00 BD 10.00 2.00 100.00 4.00 132.0 1.00 BD 837.00 18.00 16.00 16.00 6.00

2.5m BD 0.00 9.00 3.00 BD 10.00 2.00 132.00 5.00 134.0 2.00 BD 919.00 21.00 12.00 1.00 BD

 2.0m BD BD 9.00 4.00 BD 10.00 2.00 82.00 3.00 134.0 BD BD 406.00 9.00 6.00 5.00 1.00

 1.0m BD BD 10.00 3.00 BD 10.00 2.00 69.00 4.00 135.0 0.00 BD 379.00 8.00 21.00 19.00 BD

 0.5m BD 0.00 12.00 3.00 1.00 9.00 1.00 108.00 4.00 134.0 2.00 BD 668.00 15.00 13.00 10.00 BD

0m 2.00 1.00 15.00 2.00 2.00 10.00 2.00 198.00 7.00 142.0 7.00 BD 2459.00 55.00 17.00 16.00 2.00

Min. 2.00 0.00 9.00 2.00 1.00 9.00 1.00 69.00 3.00 132.00 0.00 0.00 379.00 8.00 5.00 1.00 0.00

Max. 2.00 6.00 15.00 5.00 2.00 11.00 6.00 415.00 12.00 142.00 8.00 0.00 4024.00 85.00 21.00 22.00 28.00

Aver. 2.00 1.38 10.00 3.08 1.25 9.85 2.77 172.85 5.31 134.62 3.36 BD 1260.31 27.15 12.62 11.69 7.86

Sample name Nd P Co Ba TiO2/Zr Ba/Sr Zr/Y Cr/Zr Ti/Zr Cu/Zn Cr/Th V/Cr Th/Co La/Co La/Y La/Th

 6.5m 16.00 55.00 189.00 3.00 7.29 0.30 41.33 0.17 5.57 0.67 BD 0.71 0.00 0.05 3.33 0.00

 6.0m 12.00 39.00 167.00 24.00 9.27 2.67 65.00 0.04 6.82 BD 5.00 3.80 0.01 0.08 7.00 14.00

 5.5m 20.00 37.00 202.00 9.00 6.10 0.90 76.00 0.05 4.16 0.10 4.00 1.50 0.01 0.05 3.33 3.333

5.0m 26.00 50.00 219.00 15.00 13.01 1.50 58.67 0.07 8.29 0.10 3.25 2.38 0.02 0.05 4.00 3.00

 4.5m 23.00 47.00 201.00 17.00 9.89 1.89 64.33 0.07 6.38 0.10 7.00 1.93 0.01 0.05 3.67 5.50

 4.0m 12.00 58.00 188.00 13.00 7.47 1.30 58.40 0.02 5.05 BD 0.63 6.40 0.04 0.12 4.40 2.75

 3.5m 24.00 40.00 196.00 32.00 14.77 2.91 69.17 0.02 9.70 0.11 1.29 9.44 0.04 0.03 1.00 0.86

 3.0m 29.00 41.00 163.00 8.00 11.81 0.80 50.00 0.16 8.37 BD 16.00 1.13 0.01 0.10 8.00 16.00

2.5m 16.00 40.00 226.00 6.00 10.66 0.60 66.00 0.09 6.96 0.00 6.00 1.75 0.01 0.00 0.50 0.50

 2.0m 20.00 35.00 212.00 2.00 7.26 0.20 41.00 0.07 4.95 BD BD 1.50 0.00 0.02 2.50 0.00

 1.0m 15.00 42.00 226.00 8.00 7.17 0.80 34.50 0.30 5.49 BD BD 0.38 0.00 0.08 9.50 0.00

 0.5m 14.00 61.00 225.00 15.00 9.20 1.67 108.00 0.12 6.19 0.00 6.50 1.15 0.01 0.04 10.00 5.00

0m 26.00 119.00 222.00 14.00 20.05 1.40 99.00 0.09 12.42 0.07 2.43 3.24 0.03 0.07 8.00 2.29

Min. 12.00 35.00 163.00 2.00 6.10 0.20 34.5 0.02 4.16 0.00 0.63 0.38 0.00 0.00 0.50 0.00

Max. 29.00 119.00 226.00 32.00 20.05 2.67 108 0.30 12.42 0.67 16.00 9.44 0.04 0.12 10.00 16.00

Aver. 19.46 51.08 202.77 12.77 10.30 1.30 63.95 0.10 6.95 0.14 5.21 2.72 0.01 0.06 5.02 4.09

Profile A (ppm)

Profile A (ppm)
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Table 4b. Trace elements concentrations (ppm) for profile A in the Campanian sandstones outcrop of the Lokoja-Basange Formation. 

 

 

 

 

 

 

 

 

 

 

Sample name Ni Cu Zn Ga Rb Sr Y Zr Nb Pb Th U Ti V Cr La Ce

5.5m BD 2.00 13.00 4.00 1.00 11.00 2.00 229.00 6.00 135.00 5.00 BD 1460.00 30.00 22.00 18.00 0.00

 5.0m BD 11.00 22.00 3.00 BD 13.00 4.00 202.00 5.00 146.00 4.00 BD 1192.00 26.00 21.00 23.00 15.00

4.0m BD 1.00 13.00 3.00 BD 10.00 3.00 89.00 4.00 136.00 0.00 BD 560.00 12.00 13.00 8.00 BD

3.5m BD 4.00 15.00 3.00 BD 10.00 2.00 71.00 4.00 136.00 0.00 BD 328.00 7.00 13.00 8.00 BD

 3.0m BD BD 11.00 4.00 BD 10.00 3.00 139.00 5.00 133.00 1.00 BD 1133.00 24.00 0.00 6.00 BD

2.5m BD 2.00 15.00 3.00 BD 10.00 3.00 135.00 5.00 136.00 0.00 BD 843.00 19.00 11.00 7.00 13.00

2.0m BD BD 14.00 2.00 BD 11.00 2.00 83.00 4.00 135.00 3.00 BD 456.00 11.00 12.00 7.00 BD

 1.5m BD 3.00 24.00 1.00 BD 10.00 2.00 68.00 3.00 140.00 0.00 BD 308.00 6.00 12.00 13.00 BD

 1.0m BD BD 14.00 2.00 1.00 12.00 9.00 337.00 9.00 143.00 16.00 BD 3038.00 64.00 10.00 40.00 53.00

 0.5m 3.00 4.00 24.00 5.00 4.00 13.00 15.00 706.00 22.00 163.00 33.00 6.00 8387.00 181.00 9.00 55.00 92.00

 0m BD 2.00 10.00 5.00 BD 10.00 6.00 177.00 9.00 140.00 4.00 BD 2866.00 65.00 14.00 14.00 4.00

Min. 3.00 1.00 10.00 1.00 1.00 10.00 2.00 68.00 3.00 133.00 0.00 6.00 308.00 6.00 0.00 6.00 0.00

Max. 3.00 11.00 24.00 5.00 4.00 13.00 15.00 706.00 22.00 163.00 33.00 6.00 8387.00 181.00 22.00 55.00 92.00

Aver. 3.00 3.63 15.91 3.18 2.00 10.91 4.64 203.27 6.91 140.27 6.00 6.00 1870.09 40.45 12.45 18.09 29.50

Sample name Nd P Co Ba TiO2/Zr Ba/Sr Zr/Y Cr/Zr Ti/Zr Cu/Zn Cr/Th V/Cr Th/Co La/Co La/Y La/Th

5.5m 22.00 218.00 174.00 17.00 17.05 1.55 114.50 0.10 6.38 0.15 4.40 1.36 0.03 0.10 9.00 3.60

 5.0m 17.00 323.00 155.00 23.00 13.64 1.77 50.50 0.10 5.90 0.50 5.25 1.24 0.03 0.15 5.75 5.75

4.0m 21.00 70.00 189.00 BD 5.22 0.00 29.67 0.15 6.29 0.08 0.00 0.92 0.00 0.04 2.67 0.00

3.5m 14.00 90.00 236.00 4.00 4.49 0.40 35.50 0.18 4.62 0.27 0.00 0.54 0.00 0.03 4.00 0.00

 3.0m 19.00 59.00 212.00 15.00 2.57 1.50 46.33 0.00 8.15 BD 0.00 0.00 0.00 0.03 2.00 6.00

2.5m 28.00 133.00 202.00 8.00 6.12 0.80 45.00 0.08 6.24 0.13 BD 1.73 0.00 0.03 2.33 0.00

2.0m 14.00 89.00 174.00 24.00 1.68 2.18 41.50 0.14 5.49 BD 4.00 0.92 0.02 0.04 3.50 2.33

 1.5m 9.00 197.00 169.00 14.00 5.95 1.40 34.00 0.18 4.53 0.13 BD 0.50 0.00 0.08 6.50 0.00

 1.0m 33.00 249.00 141.00 18.00 3.75 1.50 37.44 0.03 9.01 BD 0.63 6.40 0.11 0.28 4.44 2.50

 0.5m 37.00 398.00 147.00 57.00 55.25 4.38 47.07 0.01 11.88 0.17 0.27 20.11 0.22 0.37 3.67 1.67

 0m 24.00 57.00 138.00 30.00 189.15 3.00 29.50 0.08 16.19 0.20 3.50 4.64 0.03 0.10 2.33 3.50

Min. 9.00 57.00 138.00 4.00 1.68 0.00 29.50 0.00 4.53 0.08 0.00 0.00 0.00 0.03 2.00 0.00

Max. 37.00 398.00 236.00 57.00 189.15 4.38 114.50 0.18 16.19 0.50 5.25 20.11 0.22 0.37 9.00 6.00

Aver. 21.64 171.18 176.09 21.00 27.72 1.68 46.46 0.10 7.70 0.20 2.01 3.49 0.04 0.12 4.20 2.30

Profile B (ppm)

Profile B (ppm)
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samples (Tables 4a&b) suggest that the studied sandstone was deposited under oxidizing conditions. According to 

Jones and Manning (1994), the V/Cr ratios above 2 indicate anoxic conditions, whereas values below 2 suggest more 

oxidizing conditions. The average V/Cr ratio in the studied sandstones is 2.72 and 3.49 respectively (Tables 4a&b). 

The slight rise in V/Cr ratios could be attributed to Cr concentrations which are highly influenced by detrital input 

into marine sediments, which therefore significantly affect paleo-redox interpretations (Jacobs et al., 1985; Jacobs et 

al., 1987). 

5. Summary and conclusions 

The composition, provenance, weathering, tectonic setting and redox proxy of the Campanian sandstone of 

Lokoja-Basange Formation, Middle Niger (Lokoja sub-basin) southern Nigeria has been assessed using integrated 

mineralogical, geochemical and pore water chemistry approach. The medium to coarse grained clastic units exposed 

along Auchi-Igarra Road consists of sandstone intercalated with kaolinitic clay materials at the basal part. The 

sandstone bodies are moderate to poorly sorted suggesting deposition in a low energy setting, possibly in a shelf or 

floodplain. The colour variations of the sandstone bodies are indication of differences in the cementing materials. 

Two specific geochemical intervals were established based on the mineralogical composition. The first interval 

revealed quartz and kaolinite as major crystalline minerals with traces of hematite. The second geochemical interval 

showed quartz and kaolinite as the major crystalline minerals with minor quantities of grossite and halloysite. The 

geochemical datasets revealed mature lithic arenites including sub-greywacke and protoquartzites clastic sediments. 

The inverse correlation between Eh and EC, TDS and Mg (at 0.05 significant levels) in the studied sandstone 

samples suggest well oxygenated environment of deposition. The high CIA, PIA, and CIW indices obtained revealed 

high detrital input dominated by strong chemical weathering. This ultimately led to the formation of clay minerals by 

hydration and leaching of all major cations, such as Ca
2+

, K
+
, and Na

+
, present in feldspar minerals. The average 

MIA values in both profile A and B are indicative of intense to extreme weathering of mineralogical component of 

the detrital materials from the source areas. The studied Campanian sandstones of Lokoja-Basange Formation are 

plotted in the field of the active and passive continental margin settings. The mean ratio of Ti/Zr also suggests active 

and passive continental margin settings. Moreover, the higher ratios of La/Y and La/Th and corresponding lower 

ratios of La/Co and Th/Co indicate felsic source rock. Furthermore, the lower ratios of Ba/Sr, Cr/Zr, Ti/Zr and higher 

ratio of Zr/Y probably suggest felsic source rock. The low Cu/Zn ratios of studied sandstone samples suggest 

deposition under oxidizing conditions. 
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