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ABSTRACT 

Discriminant analysis is a multivariate statistical technique used primarily for obtaining a linear 
function of p variables which maximizes the distance between centroids or midpoints of multivariate 
distributions of k groups. Linear discriminant analysis was performed using the fisher’s technique 
which was also derived. Test for differences in the means for the two groups and their variance 
covariance matrices were discussed. A major shortcoming of the fisher’s linear discriminant analysis 
is that if normality assumption does not hold, the optimal property is lost. This paper compared 
Fisher’s linear discriminant analysis and the rank transformation approach. This was illustrated by 
performing discriminant analysis on the data and discriminant analysis on the ranks.  If the population 
is not normal, the effectiveness of this method is enhanced by using the ranks of the original data 
rather than the data themselves. The results obtained indicate that the two methods perform equally 
well but the rank transformation is a better alternative to the Fisher’s discriminant  technique  for 
distributions of small samples and non-normal data.   

Keywords    Fisher’s Linear Discriminant Analysis, Rank transformation, Classification, Apparent 
Error Rate.  

 

INTRODUCTION 

Fisher’s linear discriminant analysis is a conventional multivariate technique for dimension reduction 
and classification. Fisher’s discriminant analysis is concerned with the problem of classifying an 
object of unknown origin into one or more distinct groups or population on the basis of observations 
made on it. (Hawkins, 1982)The goals of discriminant analysis are to construct a set of discriminants 
that may be used to describe or characterized group separation based upon a reduced set of variables 
for the purpose of analyzing the contributions of the original variable to the separation and to evaluate 
the degree of separation. ( Neil ,2002)  

 Usually, when confronted with a set of objects that comes from two or more populations, we may 
wish to classify a new object into one of the populations with known values of the variables. For 
example, a university vice chancellor may be interested to know if an applicant for admission for a 
degree programme  is qualified  to be admitted or not. Should a prospective student be admitted or not 
based on the result of an aptitude test? A researcher may want to predict the success or failure of a new 
product based on data obtained relating to the item. A medical doctor may wish to conclude whether a 
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pregnant woman will deliver through normal or cesarean -section by certain measurements such as 
height, weight, blood pressure and cervical size before delivery. An automobile engineer may classify 
an auto mobile engine into grade I, grade II, or grade III on the basis of measurements of its output, 
shape, size and shape. Nutritionist may classify food items into carbohydrate, protein, minerals, fat 
and oil based on measurements observed about the food composition. These examples illustrate range 
of problems that can be solved using of discriminant analysis. 

Discriminant analysis was first applied by the originator R.A Fisher, an English scientist who 
developed how species of birds could be classified (Fisher, 1936). He considered group separation 
when there are only two classes, k=2. Fisher originated the idea to find a linear combination of the 

predictors, ,2211 ......, pp xaxaxaz +++=  that shows the largest difference in the group means 

relative to the within group variance.  Other works that considered optimal transformation by 
minimizing the within and between class separation are Guo etal 2007 and Ye, J (2005). 

Fisher’s linear discriminant analysis is a linear combination of observed or measured variables that 
best describe the separations between known groups of observations. Its basic idea is to classify or 
predict problems where the dependent variable appear in quantitative form (Rencher, 2002)   

Classification analysis is a multivariate technique associated with the development of rules for 
allocating or assigning observations to one or more groups. Classification rules require knowledge of 
the parametric structure of the groups. The goal of classification is to create rules for assigning 
observation to groups that minimize the total probability of misclassification. Linear discriminant 
functions are used to develop classification rules and the goals of the two procedures tend to overlap. 
Classification is a statistical method used to build predictive models to separate and classify new data 
points. It is a learning function that classifies a data item into one of several predefined classes 
(McLachlan,1992).      

Johnson and Wichern (2007) tried to find “discriminants “whose numerical values are such that the 
populations are separated as much as possible. The emphasis is on deriving a rule that can be used to 
optimally assign new objects to the labeled classes. 

This work intends to develop a robust classification function, perform  discriminant classification 
analysis and classify individuals into groups and determine the apparent error rate by applying the 
Fisher’s method and the rank transformation approach.   Conover and Iman,(1980), compared rank 
transformation method with Linear discriminant function (LDF) and  Quadratic discriminant function 
(QDF) using simulation studies. Gessaman and Gessaman (1972), compared the probabilities of 
misclassification for several types of discrimination methods.   

Huberty and Stephen (2006) stated the rank transformation procedure as follows; 

 let )(lX  denote the  th
l  ordered observation on a given variable in the original data set;  

 let 1+NX  denote the observation for a new unit, and let )1(( +NXR  denote its rank which may be 

assigned as follows; 

1. If ,)1(1 XX N <+   then  1()( )(1 ==+ lN XRXR      

2. if ,)(1 NN XX >+  then  NXRXR NN ==+ )(1 ()(  

3. If  ,)(1 lN XX =+  then )(1 ()( lN XRXR =+ . 

4. If  ,)1(1)( ++ << lNl XXX    ,1..,,.........2,1 −= Nl  then 
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METHODOLOGY 
              

Fisher proposed the transformation of multivariate observations to univariate observations such that 

they could be maximally separated. The mean difference of these observations determines the 

separation. Fisher classification rule maximizes the variation between samples variability. 

 

Let the transformation of multivariate variables  

[ ]pXXXX ,........,, 21
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                                                                     (1) 

        

 to a univariate variable Y be a linear function of the X variables. Let the data matrix be represented as 
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Which are transformed to scalars 
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The sample mean vectors and covariance matrices are given as 
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The pooled sample variance covariance matrices which is an unbiased estimate of ∑  is  
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We find the vector ‘a’ that maximally separate the two groups.  

The separation is measured by 
2
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Over all possible coefficient vectors
'

a
⌢

, where d = )( 21 xx − . The maximum of the ratio above is  
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 which is known as the Mahalanobi’s squared distance.  

The vector a
⌢

that maximizes the standardize difference and the square distance is the ratio 
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 and the maximization occurs when  
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1

21

' )(
−

−= pSxxa
⌢

 is parallel to the line joining 21 xx − because 
2D is 

equivalent to the standardized distance between 1x  and 2x . Hence we can state that 
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and any other direction other than 
1
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−= pSxxa  would yield a smaller difference between 1

' xa  

and 2

' xa . 

Therefore the linear combination and the linear discriminant function is 
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 Fisher’s discriminant function and classification rule 

A simple procedure for classifying or allocating new observations ox to any of the two groups would 

be  

i    To calculate xSxxY 1'

21 )( −−=             (13)  

ii   To determine the midpoint ‘m’ which is given as 

2

)( 21 yy
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=                         (14)                                                                                                                             
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Iii   We proceed and apply the allocation rule based on Fisher’s discriminant function. 

Allocate ox to 1π if  mxSxxy opo
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≥−=
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Allocate ox to 2π if mxSxxy opo
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This rule is known as Fisher’s linear discriminant function. 
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 The classification rule based on the cut off value is  

Assign an observation ox  to 1π if  cYY ≥
                                                                                  

 

Assign an observation ox to 2π if cYY <  

This is called the linear discriminant analysis and this technique adhere strictly to equal variance 

covariance matrix for two normal population (Fisher,1936,).        
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Rank  Transformation.          

Rank transformation procedure is one in which the usual parametric procedure is applied to the ranks 

of the data instead of the data themselves. Here, we simply rank each variable in all the observations 

from the smallest, with rank 1, to the largest with rank N, separately for each of the p component 

variables.  The discriminant function procedure is then applied to the data vectors of ranks with each 

of their elements replaced by their corresponding ranks. This procedure is repeated across all 

predictors and the usual parametric procedures are followed to obtain the discriminant function and 

apparent error rate.  This procedure is not only simple and easy, but the approach is a development to 

solving new nonparametric problems where parametric procedure exists.      

Let ijX  be the jth individual observation from ,1π  .,........,2,1;,.......,2,1 kiNj ==   

ijmX  denotes the p components of ijX  where  .,......2,1 pm =  The mth  components of all ijX  are 

ranked  from the smallest, with rank 1, to the largest, with rank ...........21 kNNNN +++=  Each 

component is ranked separately for 1=m  to pm = . Then the sample means )( ixR and sample 

covariance matrices )( iSR are computed on the ranks of the observations from each population 

separately. The new observation 0x  to be classified is compared, component by component, with all 

original observations and each component of 0x is replaced by a rank, which is a number obtained by 

linear interpolation between the two adjacent ranks. Average ranks are used when there is a tie.
 

 In our investigation, we considered Fisher’s linear discriminant analysis and Rank Transformation 
Approach using two groups of observations. 

               
 

 Multivariate test of significance. 

Test of equality for group mean vectors  
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where  )(1, 11
α−−+ pnnpF  is the value of F  with degree of freedom of numerator .121 −−+ pnn  

 Decision Rule 

 Reject 0H   at α  level of significance if 

 )(1, 21
α−−+> pnnpFF

 

 

 Wlks’ lamda  is a direct measure of the proportion of variance in the combination of dependent 

variables that is unaccounted for by the independent variables. Wilks’ (1932) suggested the wilks’ 

Lambda criteria which are given as. 
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where  

W = ‘within’ sum of squares and products matrix  

B = ‘Between’ sum of squares and products matrix  

B + W = Total sum of squares and products matrix  
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Test of  equality of covariance matrices  

Box’s M test statistic is usually applied to test for equality of covariance matrices for two groups.  Box 

(1949) presented the Box M test statistic which is given as   
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This approximation is appropriate provided in 20>
 and   p and g are less that 6. The chi-square 

approximation is 
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 Classification rule

 

In executing the classification rules, let’s define ( )xf1  and ( )xf 2  as the probability density functions 

associated with the random vector Y  for populations 1π  and 2π . Let the prior probabilities be  

1p and 2p , with 121 =+ pp . Let ( )1|21 Cc =  and ( )2|12 Cc =  represent the misclassification of 

assigning an individual from 2π  to 1π  and from 1π  to 2π  respectively. If ( )xf1  and ( )xf 2  are 

known, the total probability of misclassification (TPM) is equal to 1p  times the probability of 

assigning an individual to 2π given that it is from 1π , ( )1|2p  plus 2p  times the probability that an 

individual is classified into 1π  given that it is from 2π , ( ).2|1p  Thus, 

TPM = ( ) ( )2|11|2 21 PpPp +       Johnson and Wichern (2002)  (25)       

The optimal error rate (OER) is the error rate that maximizes the TPM. If cost is taking into account, 

the average or expected cost of misclassification is given by 

(ECM) = ( ) ( ) ( ) ( )2|12|11|21|2 21 CPpCPp +       (26) 

The classification rule is to make the ECM as small as possible although cost of misclassification is 

not usually known in practice. (Neil, 2002). The classification performance of discriminant procedures 

is determined by the “error rates” or the misclassification probabilities.

                                                          

The optimum error rate (OER) is the minimum (smallest value) total probability of misclassification 

over all classification rules. This is  given as  
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The actual error rate (AER) is the sample performance of the total probability of misclassification of 
the simulated data. This is given as   
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Where 1R̂
and 2R̂

 are the classification regions of 1n
   and. 2n

 

The Apparent error rate (APER) was evaluated using the confusion matrix presented below. It 
indicates the number of correct and incorrect classified individuals in the data set. 

Confusion matrix table 1.                 

                    Predicted membership                   

Actual                       1π
                                2π

 

  Membership              1π
                 

cn1                              
mn2           1n

          

                                   2π
             

mn2                            
cn2        2n

  

Where 

cn1  is the number of individuals from 1π
   correctly classified as 1π

  

cn2  is the number of individuals from 2π
  correctly classified as 2π

 

mn1  is the number of individuals from 1π
misclassified as 2π

 

mn2  is the number of individuals from 2π
 misclassified as 1π

 

The apparent error rate (APER) is given as  
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The confusion matrix and APER is to justify how good or bad the rule is. The APER is an estimate of 
the probability that a classification procedure based on a given data will misclassify a future 
observation.  
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DATA 

Two groups of Car owners and Non- car owners were considered for best sales prospects by an 
automobile manufacturing company who were interested in classifying families on the basis of Income 

and lot size. The sample taken were 
1221 == nn

 car owners and Non car owners. The figures are 
given below: 

Car Owners                                                                                Non Car Owners 

Income (In $ )         Lot size (in ft)                    Income (in $)                Lot Size (in ft) 

1.   90.0                         18.4                                        105.0                           19.6 

2.   115.5                       16.8                                        82.8                             20.8                  

3.   94.8                         21.6                                        94.8                             17.2   

4.   91.5         20.8                           73.2                             20.4 

5.   117.0                       23.6                                        114.0                           17.6 

6.   140.1                       19.2                                        79.2                             17.6 

7.   138.0                       17.6                                        89.4                             16.0     

8.   112.8                       22.4                                        96.0                             18.4 

9.   99.0                         20.0                                        77.4                             16.4 

10. 123.0                       20.8                                        63.0                             18.8      

11. 81.0                         22.0                                        81.0                             14.0 

12. 111.0                       20.0                                        93.0                             14.8 

Source: Applied Multivariate Statistical Analysis by Johnson and Wichern 2007.  

 

DATA ANALYSIS 

Summary of the data: The result of the original data for Fisher’s technique is presented in Table 2 -7 
while that of the ranked data for Rank transformation is shown in Table 8 -14.     

 

 Table 2: Tests of Equality of Group Means 

 Wilks’ Lambda          F Df1 Df2 Sig. 

X1 

X2 

.076 

.072 

267.705 

284.685 

1 

1 

22 

22 

.000 

.000 
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Table 3:   Box’s Test of Equality of Covariance Matrices 

 Log Determinants 

Group Rank Log Determinants 

1 

2 

Pooled within groups 

2 

2 

2 

11.161 

2.830 

9.808 

 

 

Table 4:    Test Results 

Box’s M 

F       Approx.   

                Df1 

              Df2 

             Sig. 

61.872 

18.605 

3 

87120.000 

.000 

 

 

Table 5:                        Eigen values 

Function Eigenvalue % of Variance Cummulative % Canonical Correlation 

1 27.271 100.0 100.0 .982 

 

Table 6:             Wilk’s Lambda 

Test of Function Wilk’s Lambda Chi-square df Sig. 

1 .035 70.178 2 .000 

 

Table 7: Classification Function Coefficients 

 1 2 

Rx1 

Rx2 

Constant 

.669 

.922 

-77.616 

.125 

.185 

-3.588 

Fisher’s Linear Discriminant Function 
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Table 7:     Classification Results    

                 Predicted group Membership 

Group 1 2 Total 

Original   Count   .   1 

                               2  

12 

0 

0 

12 

12 

12 

%                              1 

                                  2 

100.0 

0 

0 

100.0 

100.0 

100.0 

 Count                      2 

Crossvalidated         2 

12 

0 

0 

12 

12 

12 

%                            1 

                                2 

100.0 

0 

0 

100.0 

100.0 

100.0 

100% of original grouped correctly classified  

100% of cross validated grouped correctly classified 

 

Table 8:  Tests of Equality of Grouped Means 

 Wilk’s Lambda F Df1 Df2 Sig. 

Rx1 

Rx2 

.245 

.245 

77.046 

76.933 

1 

1 

25 

25 

.000 

.000 

 

 

Table 9:  Box’s Test of Equality of Covariance Matrices 

                      Log Determinants 

Groups Rank Log Determinant 

1 

2 

Pooled within groups 

2 

2 

2 

5.120 

5.255 

5.209 

 

Table 10:    Test Results 

Box’s M 

F       Approx. 

                 Df1 

                Df2  

                Sig  

.326 

.100 

3 

132508.071 

.960 

. 
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Table 11                                     Eigenvalues 

Function Eigenvalue % of variance Cumulative% Canonical Correlation 

1 5.982 100.0 100.0 .926 

 

 

Table  12                                Wilk’s Lambda 

Test of Function(s) Wilk’s Lambda Chi-square df Sig. 

1 .143 46.641 2 .000 

 

 

Table 13: Classification function Coefficients 

 1 2 

Rx1 

Rx2 

Constant 

1.329 

1.327 

-25.262 

.421 

.430 

-3.277 

Fisher’s linear discrminant functions 

 

Table 14:        Classification Results 

Groups 1 2 Total 

Original count   1 12 0 12 

                           2 0 15 15 

%                       1 100.0 0 100.0 

Cross validated 1 

                           2 

12 

0 

0 

12 

12 

15 

% Count              1 

                           2 

100.0 

0 

0 

100.0 

100.0 

100.0 

100.0% of groups cases correctly classified 

100.0% of cases validated cases correctly classified 

 

 

RESULTS AND DISCUSSION 

Discriminant analysis was carried out on two procedures-Fisher’s linear discriminant function and the 
rank transformation approach. It was done to predict sales prospect by an automobile manufacturing 
company who was interested in classifying families on the basis of Car owners and Non-car owners. 
The predictor variables are income and lot size. Table 2 and table 8 showed significant mean 
differences of (p<.000) in both income and lot size which meant that the data is suitable for 
discrimination. In table 3, the log determinants of the Fisher’s Discriminant (11.161, 2.830, 9.808) 
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were not similar and the Box’s M test result of table 4 showed that the assumption of equality of 
covariance matrices was violated at a significance value of (P <.000). However, in table 9, the log 
determinants (5.120,5.225, 5.209) were similar which is an indication of equality of covariance 
matrices. This was confirmed by the Box’s M test results of table 10 which showed a non-significance 
value of (p < .960).  Table 5  revealed that there is a significant association between groups and the 
predictors which explained for 96.4% of between groups variations. Table 11 also revealed significant 
association which explained for 85.7% of between group variation. The discriminant function for both 
approach is highly significant as indicated in Table 6 and table 12 which showed (p <.000). The two 
tables also showed variation within groups which was unexplained to be 3.6% and 14.3% respectively. 
The cross-validated classification in table 7 and table 13 showed that the hit ratio for both techniques 
is 100% and their probabilities of misclassification are therefore zero.  

 

CONCLUSION 

The results of the experiment conducted suggested  a comparable classification procedure to Fisher’s 

linear discriminant function. The  data used was employed to establish a preferable alternative 

approach to the Fisher’s linear discriminant function. The Rank transformation approach is compared 

to the Fisher’s linear discriminant function and the Rank procedure gave the same results as the 

Fisher’s technique.  The hit ratio and probabilities of misclassification for both methods are the same. 

However, the Rank transformation approach is more ideal  to adopt when the sample size is small and 

the data is non-normal. In distributions where  normality assumptions is violated, the Rank 

transformation becomes  a better alternative. This was established in this study when Box M test for 

equal covariance matrices  was violated as displayed in table 4. 

This showed that the rank transformation method is more robust and efficient than the Fisher’s 
technique and therefore is recommended as a better technique for small samples of non-normal data. 
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