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ABSTRACT
A normal regression situation is considered inclthive have data for n+m individuals. The valuesotieiy
Yne1 s Yne2,. Yn+m Fepresent right- censored observatioksximum likelihood estimation of the regression
coefficients and residual variance for the nornaaecwith censored and uncensored data is derivkdsaessed
through simulation studies.
1- Introduction
Consider a regression situation in which we haata for n+m individuals. For the first n indivals the
values of the response variable, sayy .y, represent uncensored observations while for timairging m
individual, the values denote Dby.y, Yn+2, ... Yn+m represent right- censored observations. Thudgsfayrandom
variable representing the response observatiothéoith individuals, we have that
Y =y , i=1,..,n ... @
Yi =y, , i=n+l,...,ntm ... (2)
We shall suppose that the ith individual . So weehvalues i, X, ... X on k explanatory variables.
If we write

Yi =di+el ,i=1,...,n+m (3)
Where Exp (Ei) = 0, we shall assume that theaumultiple linear regression model with
k
pi=y gjxij ,i=1,...,ntm .. 4
=0
Where xio=1fori=1, ..., n+m. Then the usassumptions that the true residuals have consgtaignce

and are uncorrelated will also be made, that is ,

V(ei) = o® , Covgi, ei*) =0, i#i*=1,...,n+m ... (5)
A number of authors (Draper and Smith,(1980gah et al,(2011) considered the least squana@sti and its
applications without censored data. Also a numbauthors such as (Haddaw and Young,1986). A regms
model was considered in which the response vartzddea type one extreme value distribution for fstl
values. Small sample moment properties of estimatbthe regression coefficients and scale paragiedsed
on Maximum likelihood estimation, ordinary leastiace and best linear unbiased estimation with gedsand
uncensored dataKalbfleisch and Prentice (2002Wei et al, (1990) Jin et al, (2005) Jin et al,(2006) , were
considered least- squares regression with censiatad

The purpose of this paper was to derive maximkaliiood estimation of the regression coefficieatsl
residual variance for the normal case with censomw uncensored data and its applications.

2- Theoretical framework (Maximum Likelihood Estimatio n of the Regression Coefficints and Residual
Variance for the Normal Case)
Assuming that th¢Ei) are IN( 0 %) random variables , the P.d . f of i¥

f (yi) = 1/oV2r exp[ -1/2(y - pil 6)? ] , -o<y<m ...(6)
Since
P(Y; >y ) =1o\2r 7y, e Y2 0-We2 gy = 1.d(y; - pil o) ...(7)
Whered(.) denote the c.d.f of the N(0, 1) distribution.
The likelihood function is

L ={n" 1/ oV2m exp[ -1/2(y- pi/ 6)* } { " epssf 1-® (y; - pil o) ..(8)
We have n n+m
log L=- n/2 log(2r) — n logo — 1/22 Y. (i - piY’ +Y log{1- ®(y; - pi/ o) }
i=1 i=n+1
.. (9)
Thus
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n+m
d logL /dB; 1/02(y, pi) dui/d3; + 1/02 D(y; - Hil 6)/1- D(y; - Wil o)(dpi/dB )
i=1 i=n+1
n+m

-1/0{2()/. lll)Xu"‘ZG‘D(yu Hil 0) X 11- O(y; - Wil o) }
i=1 i=n+1

n+m
=1/oc {Z (i - i) Xjj +Z<sxIJ h(y,- pifoc) },forj=0,1, ...k ... (10)
i=1 i=n+1
Where
h(t) =@(t)/{ 1- O(t)}

is the hazard rate function for the N(0,1) .
Putting z= (y;- Wi/ o , we may write (10) in the form

n+m
dlog L/dB;=1/c’Y (yi*-pi) X ,j=0,1,...,k ... (11)
i=1
Where
vi , 1=1,2,...,n
i1 .
v k= ] i +ohiz) ,i=nt+l, .. otm 12y

We also have

frHn
dlog Lid o= -n/f o+2 (yi- pi) a0 +1/ 02 ¥ Blyi - pif a)f1- By - pifo)
=1 =+l
n n+m
=16{Y z°-n+Y zh@)} .. (13)
i=1 i=n+1

Equating d logL /@ ;and d log L/ds to zero, we see that the maximum likelihood esmaf the §;) ando®
satisfy the equations

n+m
Syt *-prM)x;=0,j=0,1,...,k ... (14)
i=n+1

and
n n+m
Yz?+Y z'hz)=n . (15)
i=1 i=n+1
Where
n
Wi=y B;"x; ,i=1, .., n+m .. (16)
=0
z' =(yi-Wi /e’ ,i=1, ., nem oL (17)
, 1=1,2,
Vi

T SN
g i*='[ Wi+o hiz) ,i=n+l, . n+m . (18
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In the case when there is no censoring(when m=@)have y*= y; ,i= 0,1, .. k the set of equation(14)
becomes
n
Z(y|-l.lA|)X”=O,]=O,1,,k 1%
i=1
Substituting
k
Wi=Y B;" xj and puttingB” = Bo",B:", ..., Bx") , (19) in matrix
=0
formis
®xB =%y .. (20)
Where

X isamatriz of x5

and X =1 fori=1, ..., N . From (20) we have the well- known result
B =(xx)" XLy

Also from (15) , we have

n

Y (yi-yils)’=n .. (21)

i=0

leading to the estimator

1
=3 i-W'i2in
=1

n k
=3 Gu-7 B X Ain (22)
=l j=o

The Maximum likelihood (ML) estimatar 2 for the uncensored case is biased, an unbiasiehést being

n k
dof =% u-T B xy Pkl (23)
=l =0

3- Applied Side (Results and Discussion)

In this section we conducted simulation studieassess the performance of maximum likelihoodredibn of
the regression coefficients and residual variancéhie normal case.

As we mentioned that in introduction, a commonligption for the normal regression model occurdifier
testing when the response variable representsntigettd failure. Right censoring of the observatimsommon
in such cases because of the need for early tetiminaf the investigation. Several forms of censgrare
possible. Here we shall consider type 2 censolig).suppose that the r smallest observations déayotey()<
V()< ... < Yy()are observed, the remaining n- r observationsgoeémsored at the value, y(The(r) is fixed
integer satisfying 1< r < n . We let R3 r denote the total number of uncensored obsenstio

In order to examine the MI estimators, a Montel@simulation study was made for the case of alsing
explanatory variable, the model without censoriegb

Y, =po Hlxi+ei ,i=1,...,n (24)
While with censoring being
Y, =y, , i=n+l,..,ntm

Eéi) = 0, V(i) = o and the Yare independently distributed with p.d.f for i¥ given by
Equally spaced values of(x)  f(y) = 1/oV2r exp[ -1/2(y- po #p1xi/c)?], -w<y <o, (25)
were used with xi =i —%(n+1) , i=1, ...n . Equalgde sizes n=5, 10 were used and equal censorogpgion
p= 0.0, 0.25, 0.50 were applied. Without loss afagality, the y- observations were generated pyfior p1=0
in the regression model.
The ML estimates were obtained using a Minitalgpam. A run-size of 4000 was used in each case.
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Values of the biases, variances of the ML estinsaioe shown in tables 1,2 60, p1 respectively.

Table 1 Summary statistics for the simulation stadin=5)

P Bias Variance
B0 0.00 0.002 0.203
0.25 -0.003 0.234
0.50 -0.004 0.245
B1 0.00 0.003 0.204
0.25 0.004 0.226
0.50 0.006 0.249
Table 2 Summary statistics for the simulation stadin=10)
P Bias Variance
B0 0.00 0.003 0.201
0.25 -0.004 0.224
0.50 - 0.005 0.252
B1 0.00 0.002 0.203
0.25 0.003 0.227
0.50 0.004 0.258

From tables 1, 2 the main findings are as follows.

1- For estimation o0 for n=5, 10, the bias of the ML estimator was ligi\gle and a positive when no
censoring was present. But with censoring there avaggative bias which became more pronouncedeas th
degree of censoring increased. The variance dffthestimator had large values when there was ayhdagree

of censoring.

2- For estimation o1 for n=5, 10, the biases of the ML estimators vwepmsitive bias and negligible in all
cases. The variance of the ML estimator had snadlieszwhen there was no censoring.

4-Conclusion

From literature review, there are a numbers di@nstconsidered the least square estimator aaghjitécations
with uncensored and censored data. In the papeMLthestimator of the regression coefficients agsldual
variance for the normal case with censored andnswed data was derived. For estimatiof@®&andp1 for
n=5, 10, the biases of the ML estimator were négkga negative and a positive in all cases respdg. The
variance of the ML estimator @D andp1 for n=5, 10, had large values when there wasaayhdegree of

censoring.
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