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Abstract 

This paper presents the results of evaluation of possible biophysical methods and approaches for registering 

various non-ionizing radiation (NIR) wave types of the human body in the electromagnetic range. Many types of 

NIR (electromagnetic waves, infrared radiation, thermo radiation, bioluminescence) emitted from the human 

body were reviewed. In particular the results of spontaneous biophoton emission and delayed luminescence from 

the human body are submitted along with infrared thermography (IRT) results. It was shown that 1 cm
2 

of skin 

generally emits ∼85 photones for 1s. The intensity of biophoton emission ranges from 10
−19

 to 10
−16

 W/cm
2
 

(approx. ∼1–1000 photons
.
cm

-2.
s

-1
). The specific photon emission from part of the human thumb was detected as 

a spectrum of various colours with the method of Color coronal spectral analysis on a device with an electrode 

made of polyethylene terephthalate (PET hostafan) with applied electric voltage of 15 kV, electric impulse 

duration 10 µs, and electric current frequency 15 kHz. It was established that photons corresponding to a red 

color emission of the visible electromagnetic spectrum have energy at 1.82 еV. The orange color of the visible 

electromagnetic spectrum has energy at 2.05, yellow – 2.14, blue-green (cyan) – 2.43, blue – 2.64, and violet – 

3.03 eV. The reliable result measurement norm was at E ≥ 2.53 eV, while the spectral range of the emission was 

within 380–495 nm and 570–750 nm±5 nm. Some important physical characteristics were also demonstrated 

(energy of hydrogen bonds, wetting angle, surface tension) of water by the methods of non-equilibrium energy 

(NES) and differential non-equilibrium energy (DNES) spectrum of water, that helps understand in general how 

electromagnetic radiation interacts with water and establishes the structural alterations of water. In the report 

there were included the results of Christos Drossinakis from the scientific project in Chalkida, Greece. 

Keywords: electromagnetic waves, infrared radiation, thermo radiation, bioluminescence, color coronal spectral 

analysis, NES, DNES 

 

1.  Introduction 

All living organisms have a cellular, and therefore, a molecular organized structure. The living processes inside 

them run on a cellular and a molecular level. Bioelectrical activity is one of the very important physical 

parameters of living organisms (Ignatov et al., 1998). Bioelectric potentials generated by various cells are widely 

used in medical diagnostics and are recorded as electrocardiogram, electromyogram, electroencephalogram, etc. 

It was proved that the human body and tissues emanate weak electromagnetic  waves, the electric voltage of 

which is denoted as resting potential, action potential, omega-potential etc. (Dobrin et al., 1979; Adey, 1981). 

Between the outer surface of the cell membrane and the inner contents of the cell there is always the electric 

potential difference, which is created because of different concentrations of K
+
, Na

+ 
and Cl

-
 inside and outside of 

the cell and their different permeability through the cell membrane (Kiang et al., 2005). Their value in the human 

body varries ∼50–80 mV, and is defined by the galvanic contact of a voltmeter input with an object that indicates 

the galvanic type of their source (Cleary, 1993). When excited, a living cell changes the membrane electric 

potential due to changes in membrane permeability and active ion movement through the membrane. In cells of 
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excitable tissues (muscle, nervous), these processes can occur within a very short time intervals (milliseconds) 

and are called “current action” potential. Their magnitude makes up ∼120 mV. Electromagnetic fields refer to 

non-ionizing radiation (NIR), e.g. the radiative energy that, instead of producing charged ions when passing 

through matter, has sufficient energy only for excitation. Nevertheless it is known to cause biological effects 

(Kwan-Hoong, 2003). The NIR spectrum is divided into two main regions, optical radiations and 

electromagnetic fields. The optical spectrum can be further sub-divided into ultraviolet, visible, and infra-red. 

The electromagnetic fields are further divided into radiofrequency (microwave, very high frequency and low 

frequency radio wave). NIR encompasses the long wavelength (> 100 nm) and low photon energy (<12.4 eV) 

portion of the electromagnetic spectrum, from 1 Hz to 3
.
10

15 
Hz. Research carried out in the 1990ies and 

subsequent years established the property of animal and plant tissues to generate relatively strong transient NIR 

electric fields due to mechanical stresses and temperature changes in biological structure (Anderson, 1993). 

These electric fields are mainly due to the piezoelectric and pyroelectric voltage electric polarization of natural 

biological structures. Owing to cell metabolism, electric dipoles (polar and ionized molecules) involved in 

polarization of biostructures are continuously destroyed and restored, i.e. this is a non-equilibrium polarization 

(Barnes & Greenebaum, 2006). Such type of non-equilibrium electric polarization is known as a main 

characteristic of electrets (Gubkin, 1978). Electrets include dielectric insulators and semiconductors, which, 

under certain conditions, e.g. under the influence of a strong electrostatic field or ionizing radiation, light and 

other factors, acquire the property to generate an external electric field, existing for a long time (days, years) and 

slowly diminish due to the destruction of their substance by polarization (Sessler & Gerhard-Multhaupt, 1998). 

Along with the electromagnetic field, electrets generate specific elecric currents produced by heating – thermally 

stimulated current (TSC) (Gross, 1964). Electrets belonging to the non-galvanic type of electrical sources tend to 

a strong electric field (up to 10
6
 V/m) and to the infinitesimal electric current (∼10

-14 
A/mm

2
). By analogy with 

the physical fields, the electric field emitted from the human body and its physical alterations resemble the 

electric field generated by electrets. The electrets play an important role in the functioning of many biological 

structures as they themselves possess electret properties. The bioelectret fields registered on the surface of the 

human body are basically generated by the basal cells of the epidermis (Marino, 1988). Dermis cells adjacent to 

the bottom layer of basal cells are surrounded by a conductive interstitial fluid whose electric voltage while 

grounding on the human body is close to zero (so called ground potential). This interstitial fluid screens off 

electromagnetic fields of underlying tissues. With the average thickness of the epidermis (∼0.1 mm) and the 

maximum value of electric voltage (∼30.0 V), the electric field strength can reach significant values at ∼300000 

V/m (Seto et al., 1992). The strength of the electric field is quite sufficient for its influence on the biological 

processes in cells and surrounding tissues, including the synthesis of proteins and nucleic acids (Liboff at al., 

1984; Frey, 1993; Shimizu et al., 1995). This electric field along with the field of transmembrane assymetry of 

ions concentrated at the inside and outside of the membrane (∼10
5
 V/cm

2
) can participate in the cooperative 

effects in cell membrane structures (Holzel & Lamprecht, 1994; Miller, 1986). Thus, owing to the bioelectret 

condition of certain subcellular structures in the cell and its surroundings a slowly oscillating electric field is 

generated that is strong enough to influence the biological processes. This field and the electric field due to the 

piezoelectric voltage and intramembrane electric field forms the total electromagnetic field of the cell and its 

supracellular structures. It is known that the human skin emanates electromagnetic waves in close ultraviolet 

range, optic range and also in close infrared range. Infrared thermal bioradiation is found in the middle infrared 

range at wavelengths from 8 to 14 µm. At a wavelength of 9.7 µm infrared bioradiation has its maximum value 

at t = 36.6 
0С. At this temperature the skin emission is closest to the emission of an absolute black body (ABB) 

having the same temperature. Infrared emission penetrates the skin surface at a depth of ∼0.1 mm, and is 

reflected in accordance with the physical laws of reflection of the visible part of the electromagnetic spectrum. 

Evidently, radiation energy influences tissues while being absorbed by them. Yu. V. Gulyaev and E. E. Godik 

(Gulyaev & Godik, 1984) determined that the threshold of skin sensitivity for infrared radiation compiled ∼10
-14 

W/cm
2
. When thermal influence is applied to the point of threshold skin sensitivity, there  develops a 

physiological reaction toward the thermal flow. The intensity of the radiated thermal flow generated by the skin 

makes up ∼2.6
.
10

-2 
W/cm

2
. The second component of electromagnetic waves is bioluminescence (Young & 

Roper, 1976; Chang et al., 1998). It is supposed that biophotons, or ultraweak photon emissions of biological 

objects, are weak electromagnetic waves in the optical range of the spectrum (Cohen & Popp, 1997). The typical 

observed emission of biological tissues in the visible and ultraviolet frequencies ranges from 10
−19

 to 10
−16

 

W/cm
2
 (∼1–1000 photons

.
cm

-2.
sec

-1
) (Edwards et al., 1989; Choi et al., 2002). This light intensity is much 

weaker than the one to be seen in the perceptually visible and well-studied spectrum of normal bioluminescence 

detectable above the background of thermal radiation emitted by tissues at their normal temperature (Niggli, 

1993). Bioelectric emission from parts of the human body like thumbs can be easily detected with the method of 
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Color coronal spectral analysis by applying gas electrical discharge of high voltage and frequency developed by I. 

Ignatov (Ignatov, 2005). Its advantages include safety, sterility, clarity and interpretability of the data obtained, 

ease of storage and subsequent computer data processing, the ability to monitor the development of processes in 

time, comparing the structural, functional and temporal processes, etc. The purpose of this research was the  

studying of possible biophysical methods and approaches for registering various NIR wave’s types emitted from 

the human body (electromagnetic waves, infrared radiation, thermo radiation) and methods of their visualization 

by different techniques including magnetography, infrared thermography, chemiluminescence and coronal gas 

discharge spectral analysis.   

2. Materials and methods 

2.1. Infrared thermography (IRT) 

The research was made using infrared thermography (IRT) method according to M. Marinov. The range of the 

infrared thermal-imaging camera was in the middle infrared range from 9 µm to 14 µm. The temperature range 

was from 24.0 
0С to 38.0 

0С. The first camera was Inframetrics/FLIR ThermaCam PM 290 wave type. FLIR 

ThermaCam PM 290, FLIR 390, Inframetrics PM 250 and Inframetrics PM 350 thermal infrared cameras were 

of FLIR short wave type, handheld, Focal Plane Array cameras are capable of temperature measurement. These 

cameras stored images on a PCMCIA Card, and the images were further analyzed using one of several available 

FLIR software packages (Thermogram 95, FLIR Reporter 2000 Software, Researcher 2000). The second camera 

(D.I.T.I.) was a totally non-invasive clinical imaging camera for detecting and monitoring a number of diseases 

and physical injuries, by revealing the thermal abnormalities present in the human body’s patterns. It was used as 

a tool for diagnosis and prognosis, as well as monitoring therapy progress; the type of this device was TB 04 K.  

2.2. Registration of electromagnetic fields  

The registration of electromagnetic fields was used with super conductive detectors based on Joseffson junctions 

– device made by sandwiching a thin layer of insulating nonsuperconducting material between two layers of 

superconducting cooper pairs (S-I-S).This allows the registering of magnetic fields 10
10 

times weaker than the 

Earth’s magnetic field. The study of electric field emitted by the human body was done using a standard Faraday 

cage formed by conducting material (aluminum foil) blocks with external static and non-static electric fields by 

channeling electricity through the conducting material, providing constant voltage on all sides of the enclosure.  

2.3. Biophoton detection 

The measurement was performed with photoemission detector with photomultiplier (EMI9558QA selected type) 

in a dark room impervious to the light wherein the light was minimized about ∼5 cps. This was 4 times lower 

than the noise of the cooled photomultiplier – 20 cps. The photomultiplier was connected through an amplifier 

and other intermediate devices to a potentiometer recorder or a personal computer. The detection of biophoton 

emission was performed within a time interval with real count rate 3 cps, for 30 min, with reliability p < 0.05. 

The registration was performed from an area of the skin with a diameter of 7 cm within a time interval of 100 ms 

or 1 s. The calculation of biophoton emission was measured in counts/100 ms. The irradiation time of the 150 W-

tungsten lamp was 5 s. Within 100 ms after switching off the external lamp, the first measurements of delayed 

luminescence was recorded; then 256 units of the delayed luminescence were recorded. Delayed luminescence of 

biological objects and tissues in terms of coherent states was detected within time intervals of 100 ms. 

Relaxation function was of 25.6 units. These dates are object to further scrutinized analysis (Cohen & Popp, 

1997).  

2.4. Color coronal gas discharge spectral analysis 

Experiments were carried out by Selective high-frequency electric discharge (SHFED) on a device with the 

electrode made of polyethylene terephthalate (PET, hostafan) with an electric voltage on the electrode 15 kV, 

electric impulse duration 10 µs, and electric current frequency 15 kHz. The electrode of the device was made of 

hostafan, and was filled up with electro-conductive fluid. The spectral range of the emission was in the range 

380–495 nm and 570–750±5 nm. The measurements were registered in electronvolts (eV). The authors of the 

device are I. Ignatov and Ch. Stoyanov. Detection of gas discharge glowing was conducted in a dark room 

equipped with a red filter. A color film was put on the electrode. The object under study (human thumb) was 

placed on top of color film. Between the object and the electrode were generated impulses of electric voltage 15 

kV and electric current frequency – 15–24 kHz; on the reverse side of the electrode was applied the transparent 

electrically conductive thin copper coating. Under these conditions in the thin contact gas space between the 

studied object and electrode was generated gas electric discharge in the form of characteristic glow around the 
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object – a corona gas electric discharge in the range of 280–760 nm illuminates a color photographic film. The 

parameters of the corona gas discharge glow depend on the bioelectric properties of the studied object. Along 

with the visible range, for this method were obtained color spectra in the ultraviolet (UV) and the infrared (IR) 

range. Evaluation of the physical and biophysical parameters of snapshots was based on the analysis of images 

treated by standard software package. Statistical processing of the experimental data was performed using the 

statistical package STATISTISA 6 using Student's t-criterion (at p < 0.05). 

2.5. NES and DNES experiments on interaction of electromagnetic field with water 

The research was made with the method of Non-equilibrium spectrum (NES) and Differential non-equilibrium 

spectrum (DNES). The device measures the angle of evaporation of water drops from 72
0
 to 0

0
. As the main 

estimation criterion was used the average energy (∆EH...O) of hydrogen O...H-bonds between H2O molecules in 

water’s samples. The spectrum of water was measured in the range of energy of hydrogen bonds 0.08–0.1387 eV 

or 8.9–13.8 µm with a specially designed computer program.  

 

3. Results and discussion 

3.1. Electric fields 

The electric field surrounding the human body with frequency ν = 1
.
10

3
 Hz is created by electrochemical 

processes in the organism and is modulated by the rhythm of internal organs (Ignatov et al., 1998). The spatial 

distribution of the electric field around the body reflects the teamwork of the different organs and systems in the 

organism. There are also electric fields, which are generated by accumulation of triboelectric (caused by friction) 

charge on the epidermis, which depends on epidermal electric resistance and varies from 10
9
 to 10

11
 Ω/cm

2
. 

Radiothermal emission is being detected in the centimeter and decimeter range of the spectrum. This type of 

emission is connected with the temperature and the biorhythms of the internal organs, and is being absorbed by 

the surface skin layer at a depth from 5 cm to 10 cm (Gulyaev & Godik, 1984). Long persistent electric field 

emitted from the human body can be detected with an electrometer voltmeter after neutralizing electric charges 

on the skin caused by triboelectric charges. The electric strength of this field is undergoing slow oscillations, and 

most patients exert its value within the range of 100–1000 V/m at a distance of 5–10 cm from the body. People in 

a state of clinical death usually have the electric field strength’s value reduced to 10–20 V/m after 2–3 hours of 

cardiac arrest. Intensity vector of the detected electric field is found to be normal at the surface of the skin, and 

the electric voltage is inversely proportional to the distance. On the skin surface the electric voltage of the field 

(the difference of its electric potential with respect to ground potential) reaches essential values of ∼10000 mV or 

more, i.e., is about 1000 times greater than the source electric voltage of the electric unit above the bioelectric 

potentials. This allows us to characterize the electric field detected from the human body as relatively strong 

electric field emitted from living tissues. Its electric voltage was measured by electrometric methods, identified 

by a non-galvanic type of its source. If the physical basis of the generation of a relatively strong electric field in 

the human tissue is non-equilibrium electric polarization of the substance due to metabolic processes, the electric 

field strength should depend on these processes. As noted above, this dependence is actually observed: inhibition 

of tissue metabolism due to hypoxia during cardiac arrest was accompanied by drop in the electric field strength. 

This relationship is confirmed in experiments on animals (Geraldy et al., 2008). For example, in rats inhibition of 

metabolism of the tissue due to cardiac arrest (death of the animal) or by general anesthesia is accompanied by a 

significant drop in the electric field strength (Bars & Andre, 1976). Electric fields depend on the magnitude of 

the electric voltage and the distance from the source (Kwan-Hoong, 2003). Generally, the electric voltages are 

stable and remain the same; however electric fields are easily perturbed and distorted by many surrounding 

objects. Relatively strong electric field investigated in humans and animals is being formed evidently by the 

skin’s biostructures, since the electric fields of the underlying tissues are largely shielded by conductive 

interstitial fluid (Goodman et al., 1995; Gulyaev & Godik, 1990). The basal cells of the epidermis – the top layer 

of the skin, contribute the most to the detected electric field. Electric polarization vector of these cells are normal 

to the surface of the skin, i.e., coincides with the electric voltage’s vector field, and yet it is inherent in the 

metabolism intensity, conditioning the generation of the electric field.  

3.2. Magnetic fields 

Magnetic field of a living organism can be caused by three reasons. First of all, it is ion channels arising from the 

electrical activity of cell membranes (primarily muscle and nervous cells). Another source of magnetic fields are 

the tiny ferromagnetic particles, trapped or specially introduced into the human body. These two sources create 

their own magnetic fields. In addition, at imposition of external magnetic field there appears inhomogeneity of 
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the magnetic susceptibility of different organs and tissues distorting the external magnetic field (Wikswo & 

Barach, 1980). The magnetic field in the last two cases is not accompanied by the appearance of the electric field, 

so the study of the behavior of magnetic particles in the human body and the magnetic properties of various 

organs are applicable only with magnetometric methods. Biocurrents, on the contrary, except for the magnetic 

fields, create the distribution of electric potentials on a body’s surface. Registration of these electric potentials 

has long been used in research and clinical diagnostics – in electrocardiography, electroencephalography, etc 

(Cohen, 1968). It would seem that their magnetic counterparts, i.e. magnetocardiography and 

magnetoencephalography recording the signals from the same electrical processes in the body, will give almost 

the same information about the studied organs. However, as follows from the theory of electromagnetism, the 

structure of the electric current source in the electric conductive medium (the body) and the heterogeneity of the 

medium have significantly different impact on the distribution of magnetic and electric fields: some types of 

bioelectric activity manifest themselves primarily in the electric field, giving a weak magnetic signal, while 

others – on the contrary, create a rather strong magnetic signal (Zhadin, 2001; Anosov & Trukhan, 2003). 

Therefore, there are many biophysical processes whose observation is preferable by magnetographic methods. 

Magnetography does not require direct contact with the investigated object, i.e., it allows carrying out 

measurements over a bandage or other obstructions. It is not only practically useful for diagnostics, but has a 

fundamental advantage over electrical methods towards data recording, as the attachment of the electrodes on the 

skin can be a source of slowly varying contact electric potentials. There are no such spurious noises while using 

magnetographic methods, therefore, magnetography allows, in particular, to reliably explore slowly occurring 

processes (with the characteristic time of tens of minutes). Magnetic fields rapidly diminish with distance from 

the source of the activity, as they are caused by relatively strong currents running in the body, while the surface 

potentials are determined mainly by the weaker and “smeared” electric currents in the skin. Therefore, 

magnetography is more convenient for accurate determination (localization) of bioelectric activity parts on the 

human body. And finally, the magnetic field vector is characterized not only by the absolute value but also by the 

direction, which also may provide additional useful information. However, it should not be assumed that the 

electricity and magnetographic methods compete with each other. On the contrary, it is their combination that 

gives the most complete information about the processes being investigated. But for each of the individual 

methods, there are practical areas wherein the use of any one of them is preferable. Water is the main substance 

of all living organisms and the magnetic field exerts a certain influence on water. This influence is a complex 

multivariate influence, which the magnetic field exerts on dissolved in water metal cations (Fe
2+

, Fe
3+

) and the 

structure of the hydrates and water associates (Mosin, 2011). It was experimentally proved that the magnetic 

field acts much weaker on still unmoved water, because water has a conductivity; as water moves in the 

electromagnetic field, a small electric current is generated (Mosin, 2012). The research performed with 

superconductive detectors based on Joseffson junctions shows that magnetic fields around the human body are in 

the range from 1 to 100 Hz. The magnetic activity of the brain for example makes up ∼30
.
10

15
 T/Hz

1/2
. The 

magnetometric system has a sensitivity of 10
.
10

15
 T/Hz

1/2
 in the range of 1 to 100 Hz (Gulyaev & Godik, 1990).  

3.3. Chemiluminescence 

Chemiluminescence denotes luminescence accompanying chemical reactions, detected in the near infrared, the 

optical and the near UV-range of the electromagnetic spectrum. When chemiluminescence takes place in living 

organisms, the phenomenon is called bioluminescence. The term is generally used for higher luminance ATP-

dependent luciferin/luciferase systems observed in Lampyridae lightning bugs (Rauhut, 1985). Although there 

are bacterial, latria and dinoflagellate luciferin, and coelenterazine found in some bacteria, freshwater snails, 

dinoflagellates, radiolarians, shrimp, squid and deep-sea fish species (Hastings, 1983). Chemiluminescence is 

observed in reactions accompanied by allocation of large amounts of energy, such as the reaction of combining 

two radicals, or in reactions involving peroxides, e.g. peroxide oxidation of lipids (Halliwell & Gutteridge, 1989). 

Peculiar (“ultra-weak”) glow of cells and tissues of animals and mammals is caused by free radical reactions: 

lipid radicals and oxygen, and nitrogen oxides – compounds that play an essential role in cell metabolism, and 

under certain conditions in the development of a number of pathological conditions. It is suggested that the 

major radicals responsible for the light emission are excited triplet carbonyl and excited singlet oxygen, and that 

these radicals arise through the decomposition of hydroperoxides formed in the process of lipid oxidation 

(Zlatkevich & Kamal-Eldin, 2005; Porter & Wujek, 1988). The process of lipid peroxidation (LPO) is an 

important cause of the accumulation of cellular defects caused by radicals. LPO main substrate is 

polyunsaturated fatty acids in composition of cell membranes and lipoproteins. Their attack by oxygen radicals 

leads to the formation of hydrophobic radicals, interacting with each other (Vladimirov, 1996). Many different 

mechanisms have been suggested for the oxidative lipid fragmentation that produces biologically active 

aldehydes as 4-hydroxynon-2-enal (HNE), oxononanoyl phosphatidylcholine (ON-PC) from linoleic acid (LA) 
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esters, or HNE and oxovaleroyl phosphatidylcholine (OV-PC) (Esterbauer et al., 1990). Processes of life are 

almost always accompanied by a very weak radiation, which is sometimes called ultra-low illumination or 

radiation of cells and tissues (Boveris et al., 1980). Some organisms possess the ability to emit bright light at 

photon fluxes below about 10
4
 photons

.
cm

-2.
s

-1
, visible to the naked eye. Тhis phenomenon is denoted 

“bioluminescence”. In biochemical systems, i.e. in tissue’s homogenates, cell suspensions or cell organelles, 

mixtures of enzymes and substrates, chemiluminescence in most cases has an extremely low intensity, and 

requires particularly sensitive equipment for its detection and measurement (Popp et al., 2002). Some substances 

– enhancers, have the ability to essentially enhance the chemiluminescence, sometimes many thousands of times 

(activated, or enhanced chemiluminescence). In addition, weak luminescence is accompanied by the formation 

of free radicals under the action of a number of physical factors on the object: at ionizing radiation, 

radiochimoluminescence is observed, at ultraviolet or visible light illumination – photochimoluminescence, at 

passing an electric current – electroluminescence, with ultrasound – sonoluminescence, under the influence of 

friction forces – triboluminescence. Chemiluminescence differs from fluorescence in that the electronic excited 

state is derived from the product of a chemical reaction rather than the more typical way of creating electronic 

excited states, namely adsorption. It photomemical reactions, in which light is used to drive an endothermic 

chemical reaction, light is generated from a chemically exothermic reaction. At present time, quite a lot of 

chemical reactions are known involving the formation of luminescence glow. In most cases they are generally 

quite complex processes having many intermediate stages, but the basic processes leading to luminescence 

glowing in general are similar. They include the separation and transfer of charged particles (electrons and free 

radicals), the electron transfer (redox reactions) at one of the higher energy levels with the formation of the 

reaction product in an electron-excited state and further releasing of a photon in the transition of the molecule to 

the low excited electronic ground state with a lower energy level (luminescence). Theoretically, in this process 

on each molecule of the reactant one photon should be allocated. Chemiluminescence accompanies many 

chemical reactions (ozonation and fluorination reactions, the oxidation of phosphorus and complex organic 

substances, lipids) and has an impulse mode; the signals of this process usually are very weak. Thus, the human 

skin dissociates few photons per 1 sec. with emission power level ∼10 mW/cm
2 
(Gulyaev, Godik, 1991). 

Luminescence of cells and tissues is accompanied by three types of reactions: 

- Reactions with active oxygen; 

- Chain reactions of lipid peroxidation; 

- Reactions involving nitric oxide (NO). 

The more lipid radicals the system contains, e.g. the more energetic the chain reaction of lipid oxidation, the 

higher the intensity of chemiluminescence accompanying the reaction of radicals. Substances reacting with free 

radicals and thereby inhibiting the chain lipid oxidation (so-called antioxidants) simultaneously inhibit 

chemiluminescence. That inhibition of chemiluminescence by cells and tissues by such antioxidants as 

tocopherol (vitamin E), indicates that chemiluminescence is stipulated by lipid oxidation chain reactions. On the 

other hand, studying the impact of various natural and synthetic compounds on the time (kinetics) of 

chemiluminescence, one can judge on the ability of these substances to protect our body from the harmful effects 

of free radicals and thereby select candidates to certain medications. Chemiluminescent methods are used for 

recording ultra-weak light waves accompanying the chemical and biochemical reactions involving the formation 

of free radicals. They do not require special laboratory conditions and special material preparation for analysis, 

they are characterized by high sensitivity, reliability, and meet the requirements for rapid methods of express 

research. Chemiluminescent methods are widely used in biomedical diagnostics for studying the molecular basis 

of physiological processes in biological systems and general mechanisms of development of pathological 

conditions.  

3.4. Biophoton emission 

The term biophoton emission means a photon of non-thermal origin spontaneous emission in the visible and UV-

spectrum emitted from all biological objects and tissues and covered over a wide range of wavelengths, from 200 

to 800 nm. Biophoton emission was discovered by the biologist Alexander Gurwitsch (USSR) who was among 

the first to discover that in the process of cell mitogenesis, cells emitted ultra-weak UV waves, named 

mitogenetic or Gurwitsch rays (Gurwitsch, 1959; Beloussov et al., 1997). The biophoton emission is evidently 

linked to the endogenous production of excited states within the biological system. As a possible carrier of 

biophotone emission A. Gurvitsh offered chromatin – the complex of DNA with special proteins that during 

eukaryotic cell division form chromosomes – thread-like structures inside the cell's nucleus, consisting of DNA, 

RNA and proteins. Cells that do not contain chromatin, do not possess the ability to emit biophotones. It was 

found that if the other surrounding cells were under mitogenetic rays, the mitosis increased, i.e. it stimulated the 

cell growth (Gurwitsch, 1988; Nikolaev, 2000). It was also demonstrated that mitogenetic radiation can not only 
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stimulate, but also inhibit the cell growth. Further, F.A. Popp developed a biophoton theory to explain their 

possible biological role and the ways in which they may control biochemical processes, growth, cell 

differentiation etc. (Popp, 2005). This work has been further corroborated by the Italian biophotonic group of 

Musumeci and co-authors (Niggli et al., 2005, Scordino et al., 2014). In cellular systems, this low level radiation 

has been measured by various scientific researchers worldwide and was reviewed most recently by Niggli (2014 

a,b). For many years the existence of Gurwitsch rays has been uncertain because of the very contradictory 

experimental results for their detection. The situation has changed for the better with the development of more 

sensitive resolution technical devices for their precise detection (Inaba, 1988; Motohiro, 2004). Contemporary 

photon-emission detectors used for photon’s detection are divided into two classes: photodetectors, or photon 

detectors and temperature detectors. In photodetectors photons absorbed by the material of the detector at 

interaction with electrons change the electrical characteristics of the detector, which is reflected in the measured 

electrical signal. In thermodetectors the absorption of photons leads to an increase of the temperature and 

temperature characteristics of the detector. Thus, the pyroelectric detector measures the change in internal 

electron polarization; in bolometers – electrical resistance, etc. The photodetectors have, as a rule, better 

sensitivity and are more widespread, whereas temperature detectors are used mainly for standard measurements. 

Photodetectors are divided into three classes: photoemission, semiconductor and superconducting detectors. 

These types of photodetectors may be used in hybrid devices; photoemission electrons may be recorded when 

they are exposed to a semiconductor CCD (EBCCD type detectors and ICSD). In photoemission detectors 

incident photon knocks an electron from the surface of the photocathode, which is accelerated under electric 

field in vacuum and moves to the anode. The resulting electric current of the detector is proportional to the 

number of photoelectrons, i.e. the intensity of the incident radiation. The effectiveness of photoemission and 

spectral energy characteristics of such a detector are defined by the working surface of the photocathode. 

Advantages of such photodetectors are: high sensitivity and convenience; disadvantages: low quantum efficiency, 

the spectral dependence of the detector response and the dependence of its efficiency on surface cleanliness. In 

semiconductor detectors, photons are absorbed within the volume of the semiconductor material, creating a pair 

of “electron-hole” and the corresponding conductivity. This class of detectors uses an internal photoelectric 

effect, in which the photon energy must be large enough to overcome the photoelectron band gap to be moved to 

the conduction band. In photodiodes, Schottky diodes and metal-insulator-semiconductors overcome the 

potential barrier when the external electric field is applied. External detector photocurrent is proportional to the 

number of detected photons. Advantages of such photodetectors: a wide operating range, linearity, high quantum 

efficiency, wide dynamic range, large image matrices; disadvantages – aging effects by UV radiation. 

Superconducting photon detectors – temperature detectors based on the change in the physical state of matter at 

increased internal energy of the material due to the absorption of UV photons. The following demands are 

usually put forward to photodetectors: 

- Low sensitivity to visible light (solar-blind). Outside the Earth's atmosphere per one photon in the range 

of 100–200 nm correspond ∼104–106 photons in the visible and infrared ranges. This ratio is increased 

on the surface of the Earth. Therefore, the use of transmissive UV-filters with attenuation of signal on 

10
-4

–10
-3

 level is not enough, if the detector has good sensitivity in the visible and/or infrared ranges; 

- High detection quantum efficiency (DQE). In optical systems, the UV range, where there are large 

losses in transmission, this value may differ from the quantum efficiency of the photocathode, or CCD. 

As a result, special filters and windows are used to block visible light DQE of photoemission detectors 

decreases by an order from ~ 50 % to 2–5 %; 

- Wide local dynamic range: a maximum value of the ratio of flux in a given point of the detector to a 

minimum signal level composed ∼3 units of the noise signal. At the integration over the detector area, 

the integral dynamic range of the detector is obtained. This option is especially important for sensitive 

photomultiplier detectors and the development of high-speed position-sensitive detectors; 

- Low level of background noise and signal that determines the practical sensitivity of the device and the 

image contrast. 

It should be mentioned that biophotonic emition is measured to be much weaker compared to other types of 

radiation. Biophotons according to recent studies have a wavelength from 200 nm to 800 nm (0.2–0.8 µm) 

(Devaraj & Inaba, 1997; Kim, 2002.). They are usually being observed in the close UV range (from 300 nm to 

400 nm) and visible optic range (from 0.38 µm to 0.75 µm) with frequencies ranges from 10
−19

 to 10
−16

 W/cm
2
 

(approx. ∼1–1000 photons
.
cm

-2.
sec

-1
) (Inaba, 2000). This light intensity is much weaker than the one that may be 

seen in the perceptually visible and normal bioluminescence, but is detectable above the background of thermal 
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or infrared (0.74–2.5 µm) radiation emitted by tissues at their normal temperature.  F.A. Popp proposed that this 

type of light is not radiated in a dispersed way as daylight, but quite coherently maintaining order in the flow 

oscillations, stability and continuity of the phase difference of the amplitude of the total wave, e.g. it might be 

both semi-periodic and coherent (Popp et al., 1992). It is known that coherence is an ideal property of waves that 

enables stationary (i.e. temporally and spatially constant) interference. More generally, coherence describes all 

properties of the correlation between physical quantities of a single wave, or between several waves or wave 

packets (Beloussov et al., 2000). This may signify that biophotones in the light’s beam vibrate simultaneously, 

like in a laser beam that can indicate on information characteristics of the signal. The photon emission in its turn 

is weaker than normal bioluminescence because during that process individual photons are being emanated (Lin, 

2006). The “delayed luminescence” is connected with hyperbolic relaxation of biological objects that is a 

characteristic active response of coherent states. In recent years the evidence has been found that the light has a 

high degree of coherence because of its photon count statistics, the spectral distribution, unstable decay behavior 

after exposure to light illumination, and its transparency through optically thick materials. Moreover, DNA is 

apparently an important source of biophoton emission, since conformational changes of DNA induced with 3,8-

diamino-5-ethyl-6-phenylphenanthridinium bromide in vivo are clearly reflected by changes of photon emission 

in cells (Rattemeyer et al., 1981). The physical properties of the emission are described, using the DNA molecule 

as an exciplex ultraviolet laser system, where a stable state can be reached far from thermal equilibrium at 

threshold. (Popp et al., 1994) It was shown that 1 cm
2 
of skin generally emits ∼85 photones for 1s. The intensity 

of biophoton emission ranges from 10
−19

 to 10
−16

 W/cm
2
 (approx. ∼1–1000 photons

.
cm

-2.
s

-1
) and depends on a 

number of conditions as intensity of biochemical processes, metabolism, temperature etc. The result of Ch. 

Drossinakis shows ∼900 biophotons from 1 cm
2 
of the skin for 1 s. However, there are no reliable proofs that this 

method has consistent results for medical diagnostics.   

3.5. Color coronal discharge spectral analysis 

Coronal gas discharge effect is indicated by the glow corona electrical discharge (flooding, crown, streamer) on 

the surface of objects being placed in the alternating electric field of high frequency (10–150 kHz) and electric 

voltage (5–30 kV) (Kilrian, 1949). In this process in the ionization zone develops the gas corona discharge 

sliding on dielectric surface, occurring in a nonuniform electric field near the electrode with a small radius of 

curvature. In the thin air layer with thickness of ∼10–100 µm between the studied object and the electrode are 

developed the following processes: 

- Excitation, polarization and ionization by electric field of high frequency the main components of air – the 

molecules of nitrogen (78 % N2), oxygen (21 % O2) and carbon dioxide (0.046 % CO2). As a result of this is 

formed an ionized gas, i.e. gas with separated electrons having negative charges, creating a conductive medium 

as plasma; 

- Formation of a weak electric current in the form of free electrons separated from molecules of N2, O2 and CO2, 

which generate gas discharge between the studied object and the electrode. The form of gas discharge glowing, 

its density and surface brightness distribution is determined mainly by electromagnetic properties of the object; 

- The transition of electrons from lowers to higher energy levels and back again, during which there appears a 

discrete quantum of light radiation in the form of photon radiation. The transition energy of electrons depends on 

the external electric field and the electronic state of the studied object. Therefore, in different areas surrounding 

the electric field, the electrons receive different energy impulses, i.e. “skipping” at different energy levels that 

result in emission of photons with different wavelengths (frequencies) and the energy, coloring the contour of the 

glow in various spectral colors. 

Processes outlined above form the total gas electric effect (Ignatov & Mosin, 2012), which allows the studying 

of the electrical properties of the object at its interaction with an external electromagnetic field (Ignatov & Mosin, 

2013a; Ignatov & Mosin, 2013b). It was shown that the electrical conductivity of the object has almost no effect 

on the formation of the electric images, which mostly depends on the dielectric constant (Pehek et al., 1976). 

There is a relationship (1) of the electric discharge per unit area of the recording medium on the following 

parameters: 

σ = [α − Up(d2+δ)/d2]ε0(d2+δ)/δd2,  (1)  where: δ= d1/ε1 + d3/ε3 

α – slope rate of electrical pulse; 

T – duration of the electrical pulse;  
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Up – breakdown voltage of the air layer between the object and the recording medium;  

d1 – the width of the object;  

d2 – width of the zone of influence of the electromagnetic field; 

d3  – width of the recording medium; 

ε0 – dielectric permittivity of the air (ε0 = 1.00057 F/m); 

ε1 – dielectric permittivity of the studied object; 

ε3 – dielectric permittivity of the medium. 

To calculate the breakdown voltage of the air layer, this formula is used: 

Up = 312 + 6,2d2   (2) 

As a result of mathematical transformations is obtained a quadratic equation describing the width of the air layer: 

6,2d2
2
 – (αT – 6,2δ – 312)d2 + 312δ = 0  (3)  

This equation has two solutions: 

d2 = [αT – 6,2δ – 312] ± [(αT – 6,2δ – 312)
2 
– 7738δ)

1/2  
(4)  

The above equations allow calculating maximum and minimum width of the air layer for the occurrence of 

elecric discharge under which is being formed the electrical image of the studied object. Gas discharge 

characteristics for various biological objects vary in character and light intensity, size of contour glow and color 

spectrum and depend both on its own electromagnetic radiation and the dielectric constant of the object. The 

intensity depends on the electric voltage applied on the electrode. Studies have shown that the contours of gas 

discharge glow at 12 kHz and 15 kHz and are homogeneous in their structure. The contour at kHz is 55 % of the 

contour at 15 kHz and at 24 kHz – only 15 % of the contour at 15 kHz that is important for further analysis and 

identification of images. The incidence of bioelectrical activity of the body reduces the intensity of gas discharge 

glow. Pathology in the organism and surrounding tissues also alter the bioelectric activity and the shape and 

color of gas discharge glow, which is determined mainly by energy of photon emission at the transition of 

electrons from higher energy levels to the lower ones when being excited by the external electric field. Thus, for 

red colour of the electromagnetic spectrum this energy compiles 1.82 еV, for orange color – 2.05 eV, yellow – 

2.14 eV, blue-green (cyan) – 2.43 eV, blue – 2.64 eV, and violet – 3.03 eV. The reliable result norm is at E ≥ 2.53 

eV. The spectral range of the photon emission for different colors is within 380-495 nm and 570–750 nm±5 nm. 

The photons, corresponding to the emission with green color in the visible electromagnetic spectrum, are not 

being detected under those experimental conditions. Thus, the more predominant in the color spectrum yellow, 

orange, blue-green, blue and violet colors, the more pronounced the gas discharge glow and bioelectric 

properties of the object. According to the data obtained, the incidence of bioelectrical activity of the body 

reduces the intensity of gas discharge glow. Studies carried out by I. Ignatov on more than 3000 people show that 

the overall drop in the bioelectric activity of the body, as well as pathology in the organism alter the bioelectric 

activity and reduce the apparent size of the gas disharge glow. This dependence is observed for many disorders, 

although there are not statistical reliable results that this method can be applied in medical diagnostics. Figure 1 

shows the results on bioelectrical discharge images of thumbs of various people detected on color photofilm 

under coronal gas discharge conditions. The research area was from part of the thumb contacted with transparent 

electrode. The norm of energy of photon emission compiles 2.54 eV. If the value is over 2.54 eV, this is an 

indicator of normal bioelectrical status. Some people with high energy status possess the values of photon 

emission over 2.90 eV. The high values of this parameter are possible with the practicing of yoga, sport, etc. The 

emission less than 2.53 eV is characteristic for people with low bioelectrical status.  
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a). Normal bioelectrical discharge  b). 

Bioelectrical discharge image   c). Bioelectrical discharge image of an image of a person (1.94 eV)     of Christos 

Drossinakis (3.03 eV)  of  Pablo Bianchini (3.00 eV) 

                                                

d).Bioelectrical discharge image e).Bioelectrical discharge image   f).Bioelectrical image of           of  Patricia 

Schucht  (2.85 eV)     of Nektarios Tsatalmpassis (3.03 eV)    Andreas Verlohr (3.03 eV)  

         

g). Bioelectrical discharge image  h). Bioelectrical discharge image  i).Bioelectrical discharge image of  of  

Undine Rau (3.03eV)        of Miryam Frey (2.70 eV)          Eva Clauder (2.65 eV) 

           

g). Bioelectrical discharge image  h). Bioelectrical discharge image  i).Bioelectrical discharge image of of Dr. 

Wolfgang Konrad  (3.03eV)   of Dr. Elke Rau (3.03 eV)   Karin Fink (3.03 eV) 

 Fig. 1. Bioelectrical discharge images of thumbs of people relative to the bioelectrical discharge image of a 

normal person (I. Ignatov) 
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3.6. NES and DNES analysis of water  

Water seems to be a good model system for studying the interaction with electromagnetic fields and structural 

research. Recent data indicated that water is a complex associated non-equilibrium liquid consisting of 

associative groups (clusters) containing from 3 to 50 individual H2O molecules (Keutsch & Saykally, 2011). 

These associates can be described as unstable groups (dimers, trimers, tetramers, pentamers, hexamers etc.) in 

which individual H2O molecules are linked by van der Waals forces, dipole-dipole and other charge-transfer 

interactions, including hydrogen bonding (Ignatov & Mosin, 2013c). At room temperature, the degree of 

association of H2O molecules may vary from 2 to 21. The measurements were performed with NES and DNES 

methods. It was established experimentally that in the process of evaporation of water drops, the wetting angle θ 
decreases discreetly to 0, and the diameter of water drop basis is only slightly altered, that is a new physical 

effect (Antonov & Yuskesselieva, 1983). Based on this effect, by means of measurement of the wetting angle 

within equal intervals of time is determined the function of distribution of H2O molecules according to the value 

of f(θ). The distribution function is denoted as the energy spectrum of the water state. A theoretical research 

established the dependence between the surface tension of water and the energy of hydrogen bonds among 

individual H2O-molecules (Antonov, 1995). The hydrogen bonding results from interaction between electron-

deficient H-atom of one Н2О molecule (hydrogen donor) and unshared electron pair of an electronegative O-

atom (hydrogen acceptor) on the neighboring Н2О molecule; the structure of hydrogen bonding may be defined 

as О···Н n+
–Оn-

. For calculation of the function f(E) represented the energy spectrum of water, the 

experimental dependence between the wetting angle (θ) and the energy of hydrogen bonds (E) is established: 

f(E) = b × f(θ)/1 – (1 + b × E)
2
)

1/2
, (5) 

where b = 14.33 eV
-1  

(6)    

The relation between the wetting angle (θ) and the energy (E) of the hydrogen bonds between H2O molecules is 

calculated by the formula: 

θ = arcos (-1 – 14.33E) (7) 

The energy spectrum of water is characterized by a non-equilibrium process of water droplets evaporation, 

therefore, the term non-equilibrium spectrum (NES) of water is used. The energy of hydrogen bonds measured 

by NES is determined as Ē = -0,1067 ± 0,0011 еV. 

The difference ∆f(E) = f (samples of water) – f (control sample of water)  

– is called the “differential non-equilibrium energy spectrum of water” (DNES). 

Thus, DNES spectrum is an indicator of structural changes of water as a result of various external factors. The 

cumulative effect of these factors is not the same for the control sample of water and the water sample being 

under the influence of this factor. Figure 2 shows NES-spectrum of deionized water that was used as a model 

system for studying the interaction of electromagnetic field with water. On the X-axis are given three scales. The 

energies of hydrogen bonds among H2O molecules are calculated in eV. On the Y-axis is shown the energy 

distribution function f(E) of H2O molecules measured in eV
-1

. It was shown that the window of transparency of 

the earth atmosphere for the electromagnetic radiation in the middle IR-range almost covers NES-spectrum of 

water. Arrows A and B designate the energy of hydrogen bonds among H2O molecules. Arrow C designates the 

energy at which the human body behaves itself as absolute black body (ABB) at optimum temperature 36.6 
0С 

and adsorbs the thermal radiation. A horizontal arrow designates the window of transparency of the earth 

atmosphere for the electromagnetic radiation in the middle IR-range. 
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Fig. 2. Non-equilibrium energy spectrum (NES) of water as a result of measurement for 1 year: λ –   wavelength, 

k – wave number. 

 

Another important physical parameter was calculated with NES and DNES methods – the average energy 

(∆EH...O) of Н…О-bonds between H2O compiled -0.1067±0.0011 eV. The most remarkable peculiarity of Н…О-

bond consists in its relatively low strength; it is 5–10 times weaker than chemical covalent bond. In respect of 

energy hydrogen bond has an intermediate position between covalent bonds and intermolecular van der Waals 

forces, based on dipole-dipole interactions, holding the neutral molecules together in gasses or liquefied or 

solidified gasses. Hydrogen bonding produces interatomic distances shorter than the sum of van der Waals radii, 

and usually involves a limited number of interaction partners. These characteristics become more substantial 

when acceptors bind H atoms from more electronegative donors. Hydrogen bonds hold H2O molecules on 15 % 

closer than if water was a simple liquid with van der Waals interactions. The hydrogen bond energy compiles 5–

10 kcal/mole, while the energy of covalent О–Н-bonds in H2O molecule – 109 kcal/mole. With fluctuations of 

water temperature the average energy of hydrogen H...O-bonds in H2O molecule associates changes. That is why 

hydrogen bonds in liquid state are relatively weak and unstable: it is thought that they can easily form and 

disappear as the result of temperature fluctuations. The next conclusion that can be drawn from our research is 

that there is the distribution of energies among individual H2O molecules. Further we performed two types of 

temperature-dependent experiments on heat exchange from the surface of the human body by DNES-method. In 

the first experiment we studied heat exchange when the temperature of the human body was higher than the 

temperature of the surrounding environment (curve 1a and 1b on Fig. 3). In the second experiment there was 

heat exchange when the temperature of the human body was lower than that of the surrounding environment 

(curve 2a and 2b on Fig. 4). In both experiments a local maximum was detected at 9.7 µm on curve 1 and curve 

2 (Fig. 3). This local maximum corresponds to the maximal level of heat emission from the surface of the human 

body and lays within the “transparency window” of the Earth atmosphere to electromagnetic radiation in the mid 

IR-range of the electromagnetic spectrum. In this range, the electromagnetic radiation emitted by the Earth in the 

surrounding space is being absorbed by the Earth atmosphere. There is a statistical difference between the results 

of heat emission from the surface of the human body to the surrounding environment and back to the human 

body according to the t-criterion of Student at p < 0.01. The local maximum on curve 1a is detected at 7.3 eV
-1

, 

while the local maximum on curve 2a – at 2.4 eV
-1 

(Fig. 4). 
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Fig. 3. Differential non-equilibrium energy spectrum (DNES) reflecting the heat exchange of the human body 

with the surrounding environment. 

 

3.7. Infrared thermography (IRT)  

The human body as a biological body has an average temperature in the range from 36.6 to 36.8 
0
C, The main 

part of this radiation predominantly falls on human skin with a long wavelength range from 4 to 50 µm. 

Maximum of spectral density covers the range approx. ∼10 µm i.e. the middle wavelength IR range. The 

physical essence of the thermal radiation consists in the presence of charged particles (electrons and ions), which 

are in random motion and have the properties of electrical or magnetic polarity. Infrared radiation is emitted or 

absorbed by excited atoms or ions when they change their rotational-vibrational movements. Electromagnetic 

waves propagate throughout the body and reach the surface, passing through the skin and partly emitted into the 

environment. The intensity of these processes is proportional to the body temperature. The wavelength of 

infrared radiation emitted by the body depends on the heating temperature: the higher the temperature, the 

shorter is the wavelength and therefore the higher the emission intensity. Studies have shown that in the long 

wavelength infrared region (8–14 µm) the human skin radiates as a black body, regardless of age, degree of 

pigmentation and other features. Therefore, the emissivity of the human skin can be considered equal to 1 

absolute unit. In practice, it is proved that the difference between the emission characteristics of the human skin 

and blackbody still exist, however, it is small and depends essentially on the influence of the surrounding 

background. The limit of effective temperature measurement is equal to the thickness of the emitting layer (skin 

layer) and is defined as the distance at which electromagnetic waves propagate from the object's surface before 

the layer in which the intensity decreases in ∼2.5 times. Under equal conditions, the greater the wavelength, the 

greater the depth, which can detect the temperature perturbations. The maximum intensity of thermal radiation at 

normal ambient temperature is located in the infrared rage of the spectrum (wavelength ∼10 µm at t = 36.6 
0
C). 

The threshold of skin sensitivity according to Yu.V. Gulyaev and E.E. Godik compiles ∼10
-14

 W/cm
2 
(Gulyaev & 

Godik, 1990). This led to the feasibility of establishing IR thermal imaging (thermography) for the study of the 

temperature anomalies. However, the measurement of the thermal radiation of the human body in the IR range 

gives the true temperature for only the top layer of skin with thickness of ∼1 mm; after that the thermal radiation 

is reflected back into the environment. The temperature of the underlying tissues and organs can be judged 

indirectly when the temperature changes are “projected” on the skin. Infrared thermography is a scientific 

method for registering the thermogram – infrared image showing the distribution pattern of infrared waves 

emitted from the objects (Ring & Hughes, 1986). Thermographic cameras detect radiation in the infrared range 

of the electromagnetic spectrum (approx. ∼0.9–14 µm), and on its basis are obtained thermographic images 

(thermograms) allowing to determine the locations of patterns having different temperatures. Thermograms 

therefore are actually visual displays of the amount of infrared energy emitted, transmitted, and reflected from 

the surface of the object. Since infrared radiation is emitted by all objects with the temperature according to 



Journal of Medicine, Physiology and Biophysics                                                                                                                              www.iiste.org 

ISSN 2422-8427     An International Peer-reviewed Journal 

Vol.5, 2014 

 

87 

Planck's formula for black body radiation, thermography allows to “see” the environment with or without visible 

illumination. The intensity of the thermal radiation of the body increases with the temperature, therefore 

thermography allows to see the temperature distribution on the surface of the body. As a result, warm objects are 

seen better on the cooler environment background; mammals and warm-blooded animals are better visible on the 

environment. That is why thermography may find many diagnostic applications and is often being used for 

breast diagnostics, tumor detection etc. Most thermographic cameras use CCD and CMOS image sensors having 

most of their spectral sensitivity in the visible light wavelength range. The most commonly used is a matrix of 

indium antimonide (InSb), gallium arsenide (GaAs), mercury telluride (HgTe), indium (In) and cadmium (Cd). 

The latest technology allows the use of the inexpensive uncooled microbolometer sensors. Their resolution is 

varied from 160×120 or 320×240 up to 768×1024 pixels in the most advanced camera models. Often the 

thermogram reveals temperature variations so clearly that a photograph is not necessary for further analysis. 

Usually a block of the focal planes of thermo images can detect radiation in the medium (3 to 5 µm) and long (8 

to 15 µm) infrared wave band, designated as MWIR and LWIR corresponding to two infrared windows with 

high coeficient of transmittance. Improperly selected temperature range on the surface of the objects, indicates a 

potential problem. It should be noted that the intensity of the thermal radiation of the human body in the 

microwave (MW) range is much smaller in magnitude than in the infrared part of the spectrum (Sisodia, 2007). 

In particular at a wavelength of 17 cm the intensity is less in ∼10 times, so the heat reception signals in this range 

of the spectrum require equipment with higher sensitivity. However, the advantage of this method is that the 

measurement range and the depth of radiation penetration is much greater, therefore it is possible to obtain data 

on the temperature parameters of the internal organs and structures of the human body, but the resolution is 

significantly reduced, therefore it is impossible to obtain reliable thermal image of the study area. Infrared 

thermography registered a thermal infrared radiation emitted by the capillary network of the skin, which is used 

in medicine for thermovisual diagnostics. The closer an ailing organ is to the skin, the more accurate the 

diagnosis based on a thermal signal. Today it seems to be an established fact that some people possess the ability 

to increase the temperature of the treated area of the human body. There is thermovisual result of the temperature 

difference between the initial (t = 35.6 
0С) and final skin section temperature (t = 37.3 

0С) of the person before 

and after the treatment of Drossinakis. It was calculated that the temperature of the skin part was increased after 

the treatment on 1.7 
0С. In this connection there should be noted two important empirical thermography results 

obtained by M. Marinov (Marinov & Ignatov, 2008), which allow the medical diagnostics of various human 

organs and monitoring of their condition and malfunction by this method. Fig. 4a shows the thermography 

snapshot of a patient having a benign tumour growth in the mammary gland, which has a higher temperature 

than the surrounding tissues’ lower temperature with 0.54 
0
C. Fig. 4b shows a patient having hyperfunction of 

thyroid gland, which has higher temperature than the surrounding tissues’ lower temperature at 0.76 
0
C. The 

middle value on the scale is 36.6 
0С. In the left side of the scale there are temperatures less than 36.6 

0С. In the 

right side of the scale there are temperatures more than 36.6 
0С. 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

               

a)                                  b) 

Fig. 4. Thermovisual snapshots of the human body (Marinov, 2008): a) – patient having a benign tumor growth 

in the mammary gland; b) – patient having hyperfunction of thyroid gland  

4. Conclusions 
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Within the frames of this research many types of NIR radiation (electromagnetic waves, infrared radiation, 

thermo radiation, bioluminescence) emitted from the human body were studied and carefully scrutinized. The 

approaches and methods for detecting various types of radiation employed in this research as magnetography, 

infrared thermography, chemiluminescence and coronal gas discharge spectral analysis can find further 

application in many branches of applied science and medical diagnostics, while other methods as NES and 

DNES may be applied for studying the interaction of electromagnetic fields with water and structural studies.  
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