Studying the Properties of Hot Mineral Water to Sustain the Organic Forms of Life by IR, NES and DNES Methods

Ignat Ignatov¹ and Oleg Mosin²

1. DSc, Professor, Scientific Research Center of Medical Biophysics (SRCMB), N. Kopernik Street, 32, Sofia 1111, Bulgaria

2. PhD (Chemistry), Biotechnology Department, Moscow State University of Applied Biotechnology, Talalikhina Street, 33, Moscow 109316, Russian Federation

* E-mail of the corresponding author: mbioph@dir.bg

Abstract

We studied the composition of water, its temperature and pH value in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms of life in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR- and DNES-spectroscopy. As model systems were used cactus juice of Echinopsis pachanoi and the Mediterranean jellyfish Cotylorhiza tuberculata. The reactions of condensation and dehydration in alkaline aqueous solutions with \(\text{pH} = 9–10 \), resulting in synthesis from separate molecules larger organic molecules as polymers and short polipeptides, were considered and scrutinized. It was shown that hot alkaline mineral water with temperature from +65 \(^\circ\)C to +95 \(^\circ\)C and the pH value from 9 to 11 is more suitable for the origination of life and living matter than other analyzed water samples. The pH value of seawater on the contrary is limited to the range of 7,5 to 8,4 units. Two common local maximums were observed in IR-spectra of jellyfish and seawater, which were more pronouncedly expressed in IR-spectra of jellyfish.

Keywords: deuterium, hydrosphere, evolution, origin of life, IR-spectrometry, DNES.

1. Introduction

Previous biological experiments with \(^2\text{H}_2\text{O} \) and structural-conformational studies with deuterated molecules, performed by us, enable to modeling conditions under which the first living forms of life might be evolved (Ignatov & Mosin, 2013a; Ignatov & Mosin, 2013b; Ignatov & Mosin, 2013c). The content of deuterium in hot mineral water may be increased due to the physical chemical processes of the deuterium accumulation. It can be presumed that primary water might contain more deuterium at early stages of evolution of first living structures, and deuterium was distributed non-uniformly in the hydrosphere and atmosphere (Ignatov & Mosin, 2012). The primary reductive atmosphere of the Earth consisted basically of gas mixture CO, \(\text{H}_2 \), \(\text{N}_2 \), \(\text{NH}_3 \), \(\text{CH}_4 \), lacked \(\text{O}_2 \)–\(\text{O}_3 \) layer protecting the Earth surface from rigid short-wave solar radiation carrying huge energy capable to cause radiolysis and photolysis of water. The processes accompanying accumulation of deuterium in the hydrosphere are solar radiation, volcanic geothermal processes and electric discharges in the atmosphere. These natural processes could lead to the enrichment of the hydrosphere by deuterium in the form of \(\text{HDO} \) which evaporates more slowly than \(\text{H}_2\text{O} \), and condenses faster. If this is true, this is a significant fact regarding thermal stability of deuterated macromolecules in the preservation of life under thermal conditions, because chemical bonds with participation of deuterium are stronger than those ones formed of hydrogen.

Natural prevalence of deuterium makes up approximately 0.015–0.020 at.%, and depends strongly on the uniformity of substance and the total amount of matter formed in the course of early Galaxy evolution (Linsky, 2007). Constant sources of deuterium are explosions of nova stars and thermonuclear processes frequently occurring inside the stars. Probably, it could explain a known fact, why the amount of deuterium is slightly increased during the global changes of climate in warming conditions. The gravitational field of the Earth is insufficiently strong for the retaining of lighter hydrogen, and our planet is gradually losing hydrogen as a result of its dissociation into interplanetary space. Hydrogen evaporates faster than heavy deuterium, which can be collected by the hydrosphere. Therefore, as a result of this natural process of fractionation of H/D isotopes throughout the process of Earth evolution there should be an accumulation of deuterium in the hydrosphere and surface waters, while in the atmosphere and in water vapour deuterium content tends to be low. Thus, on the
planet there occurs a natural process of separation of H and D isotopes, playing an essential role in the maintenance of life on the planet.

The second point regards the influence of temperature on the biochemical processes in living matter. Recent studies have shown that the most favorable for the origin of life and living matter seem to be hot alkaline mineral waters interacting with CaCO$_3$ (Ignatov, 2010; Ignatov & Mosin, 2013d). According to the law for conservation of energy the process of self-organization of primary organic forms in water solutions may be supported by thermal energy of magma, volcanic activity and solar radiation. According to J. Szostak, the accumulation of organic compounds in open lakes is more possible compared to the ocean (Szostak, 2011). Life began near a hydrothermal vent: an underwater spout of hot water. Geothermal activity gives more opportunities for the origination of life. In 2009 A. Mulkidjianian and M. Galperin demonstrate that the cell cytoplasm contains potassium, zinc, manganese and phosphate ions, which are not particularly widespread in the sea aquatorium (Mulkidjanian & Galperin, 2009). J. Trevors and G. Pollack proposed in 2005 that the first cells on the Earth assembled in a hydrogel environment (Trevors & Pollack, 2005). Gel environments are capable of retaining water, oily hydrocarbons, solutes, and gas bubbles, and are capable of carrying out many functions, even in the absence of a membrane. Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon.

The data presented in this paper show that the origination of living matter most probably occurred in hot mineral water. This occurred in ponds and hydrothermal vents in seawater or hot mineral water. An indisputable proof of this is the presence of stromatolites fossils. They lived in warm and hot water in zones of volcanic activity, which could be heated by magma and seem to be more stable than other first sea organisms (Ignatov, 2012). Therefore, the purpose of the research was studying the conditions of primary hydrosphere (temperature, pH, isotopic composition) for possible processes for origin of life and living matter in hot mineral water. Various samples of water from Bulgaria were studied within the frames of the research.

2. Material and Methods

2.1. Chemicals
For preparation of water with varying content of deuterium (HDO) was used D$_2$O (99.9 atom.%) purchased from the Russian Research Centre “Isotope” (St. Petersburg, Russian Federation). D$_2$O was preliminary distilled over KMnO$_4$ with the subsequent control of isotope enrichment by 1H-NMR-spectroscopy on a Brucker WM-250 device (“Brucker”, Germany) (working frequency: 70 MHz, internal standard: Me$_4$Si).

2.2. Biological Objects
The objects of the study were used the cactus juice of Echinopsis pachanoi and the Mediterranean jellyfish Cotylorhiza tuberculata (Chalkida, Greece, Aegean Sea).

2.3. Water Samples
The samples of water were taken from various water springs of Bulgaria:
1 – Mineral water (Rupite, Bulgaria);
2 – Seawater (Varna resort, Bulgaria);
3 – Mountain water (Teteven, Bulgaria);
5 – Deionized water (the control).
6 – Water with varying deuterium content (HDO).

2.4. IR-Spectroscopy
IR-spectra of water samples were registered on Brucker Vertex (“Brucker”, Germany) Fourier-IR spectrometer (spectral range: average IR – 370–7800 cm$^{-1}$; visible – 2500–8000 cm$^{-1}$; permission – 0.5 cm$^{-1}$; accuracy of wave number – 0.1 cm$^{-1}$ on 2000 cm$^{-1}$) and on Thermo Nicolet Avatar 360 Fourier-transform IR (M. Chakarova).

2.5. DNES-Spectroscopy
The research was made with the method of differential non-equilibrium spectrum (DNES). The device measures the angle of evaporation of water drops from 72$^\circ$ to 0$^\circ$. As the main estimation criterion was used the average energy (ΔH$_{H...O}$) of hydrogen O...H-bonds between H$_2$O molecules in water’s samples. The spectra of water were measured in the range of energy of hydrogen bonds 0.08–0.1387 eV with using a specially designed computer program.

2.6. High-Frequency Coronal Electric Discharge Experiments
A device for high-frequency coronal electric discharge was used in this study, constructed by I. Ignatov and Ch. Stoyanov (Ignatov & Mosin, 2013e). The frequency of the applied saw-tooth electric voltage was 15 kHz, and
the electric voltage – 15 kV. The electric discharge was obtained using a transparent firm polymer electrode on which a liquid sample of water (2–3 mm) was placed. The spectral range of the photons released upon electric discharge was from \(\lambda = 400 \) to \(\lambda = 490 \) nm and from \(\lambda = 560 \) to \(\lambda = 700 \) nm.

3. Results and Discussion

We have carried out the research of various samples of mineral water obtained from mineral springs and seawater from Bulgaria (Fig. 1, curves 1–5). For this aim we employed the IR-spectrometry and DNES method. For calculation of the function \(f(E) \) represented the energy spectrum of water, the experimental dependence between the wetting angle (\(\theta \)) and the energy of hydrogen bonds (\(E \)) is established:

\[
f(E) = \frac{14.33 \cdot f(\theta)}{[1-(1+bE)^2]^2},
\]

where \(b = 14.33 \text{ eV}^{-1} \)

The relation between the wetting angle (\(\theta \)) and the energy (\(E \)) of the hydrogen bonds between \(\text{H}_2\text{O} \) molecules is calculated by the formula:

\[
\theta = \arccos (-1 - 14.33E)
\]

Cactus juice was also investigated by the DNES method (Fig. 1, curve 1). The cactus was selected as a model system because this plant contains approximately 90% of water. The closest to the spectrum of cactus juice was the spectrum of mineral water contacting with \(\text{Ca}^{2+} \) and \(\text{HCO}_3^- \) ions (Fig. 1, curve 2). DNES-spectra of cactus juice and mineral water have magnitudes of local maximums at \(-0.1112; -0.1187; -0.1262; -0.1287 \) and \(-0.1387 \) eV. Similar local maximums in the DNES-spectrum between cactus juice and seawater were detected at \(-0.1362 \) eV. The spectrum of the control sample of deionized water (Fig. 1, curve 5) was substantially different from the spectra of seawater and mineral water. Another important parameter was measured by the DNES method – the average energy (\(\Delta E_{\text{H...O}} \)) of hydrogen H...O-bonds among individual molecules \(\text{H}_2\text{O} \), which makes up \(-0.1067\pm0.0011 \) eV. When the water temperature is changed, the average energy of hydrogen H...O-bonds alternates. This testified about the restructuring of average energies among individual \(\text{H}_2\text{O} \) molecules with a statistically reliable increase of local maximums in DNES-spectra.
As shown from these data, the closest to the IR-spectrum of cactus juice was mineral water from Rupite Village (Bulgaria), which DNES and IR spectrum is shown in Fig. 2 and Fig. 3 (Thermo Nicolet Avatar 360 Fourier-transform IR). IR-spectra of cactus juice and mineral water with HCO$_3^-$ (1320–1488 mg/l), Ca$^{2+}$ (29–36 mg/l), pH (6.85–7.19), have local maximums at 8.95; 9.67; 9.81; 10.47 and 11.12 µm (Fourier-IR spectrometer Brucker Vertex). Common local maximums in the IR-spectrum between cactus juice and seawater are detected at 9.10 µm.

The local maximums obtained with IR method at 9.81 µm (1019 cm$^{-1}$) and 8.95 µm (1117 cm$^{-1}$) are located on the spectral curve of the local maximum at 9.7 µm (1031 cm$^{-1}$) (Fig. 3). With the DNES method were obtained the following results – 8.95; 9.10; 9.64; 9.83; 10.45 and 11.15 µm, or 897; 957; 1017; 1037; 1099 and 1117 wave numbers.

Table 1: Characteristics of spectra of water of various origin obtained by the DNES-method*

<table>
<thead>
<tr>
<th>-E, eV</th>
<th>λ, µm</th>
<th>k, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1112</td>
<td>0.1112</td>
<td>–</td>
</tr>
<tr>
<td>0.1187</td>
<td>0.1187</td>
<td>–</td>
</tr>
<tr>
<td>0.1262</td>
<td>0.1262</td>
<td>–</td>
</tr>
<tr>
<td>0.1287</td>
<td>0.1287</td>
<td>–</td>
</tr>
<tr>
<td>0.1362</td>
<td>–</td>
<td>0.1362</td>
</tr>
<tr>
<td>0.1387</td>
<td>0.1387</td>
<td>–</td>
</tr>
</tbody>
</table>

The note:

*The function of the distribution of energies Δf was measured in reciprocal electron volts (eV$^{-1}$). It is shown at which values of the spectrum -E (eV) are observed the biggest local maximums of this function; λ – wave length; κ – wave number.

The results with Mediterranean jellyfish *Cotylorhiza tuberculata* indicated that jellyfish has local maximums in IR-spectra at 8.98 and 10.18 µm (Fig. 3). Before the measurement the jellyfish was kept in seawater for several days. On comparison seawater has a local maximum at 8.93 µm in IR-spectra. These results were obtained with Thermo Nicolet Avatar 360 Fourier-transform IR. With DNES method the local maximums in spectra for jellyfish are at 8.95 and 10.21 µm, and for seawater at 9.10 µm. A differential spectrum was recorded between
jellyfish and seawater by using the Thermo Nicolet Avatar 360 Fourier-transform IR method. In IR-spectrum of jellyfish are observed more pronouncedly expressed local maximums, detected by Thermo Nicolet Avatar 360 Fourier-transform IR and DNES method. Measurements demonstrate that two common local maximums are observed in IR-spectra of jellyfish and seawater. These maximums are not observed in the IR-spectrum of cactus juice and mineral water from Rupite (Bulgaria). Jellyfish contains approximately 97 (w/w) % of water and is more unstable living organism compared to those ones formed the stromatolites. The explanation for this is the smaller concentration of salts and, therefore, the smaller number of local maximums in the IR-spectrum in relation to seawater.

Figure 3: IR-spectrum of seawater obtained from Varna (Bulgaria) and jellyfish Cotylorhiza tuberculata, Chalkida (Greece), the Aegean Sea

Such a character of IR- and DNES-spectrum and distribution of local maximums in spectra relative to the spectra of the jellyfish may prove that hot mineral alkaline water is preferable for origin and maintenance of life compared to other types of water analyzed by these methods. Thus, in hot mineral waters the local maximums in the IR-spectrum are more manifested compared to the local maximums obtained in IR-spectrum of the same water at a lower temperature. The difference in the local maximums from +20 °C to +95 °C at each 5 °C according to Student t-criterion makes up p < 0.05. These data indicate that the origination of life and living matter depends on the structure and physical chemical properties of water, as well as its temperature and pH value. The most close to the IR- and DNES-spectrum of water, which contains bicarbonates and calcium ions typical for the formation of stromatolites is the IR-spectrum of cactus juice. For this reason cactus juice was applied as a model system. The most close to local maximums in IR-spectrum of cactus juice are local maximums in IR-spectra of alkaline mineral water interacting with CaCO₃ and then seawater. In connection with these data the following reactions participating with CaCO₃ in aqueous solutions are important:

\[
\begin{align*}
\text{CO}_2 + 4\text{H}_2\text{S} + \text{O}_2 &= \text{CH}_2\text{O} + 4\text{S} + 3\text{H}_2\text{O} \quad (3) \\
\text{CaCO}_3 + \text{H}_2\text{O} + \text{CO}_2 &= \text{Ca(HCO}_3)_2 \quad (4) \\
\text{CO}_2 + \text{OH}^- &= \text{HCO}_3^- \quad (5) \\
2\text{HCO}_3^- + \text{Ca}^{2+} &= \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad (6)
\end{align*}
\]

The equation (3) shows how some chemosynthetic bacteria use energy from the oxidation of H₂S and CO₂ to S and formaldehyde (CH₂O). The equation (4) is related to one of the most common processes in nature: in the presence of H₂O and CO₂, CaCO₃ transforms into Ca(HCO₃)₂. In the presence of hydroxyl OH⁻ ions, CO₂ transforms into HCO₃⁻ (equation 5). Equation (6) is valid for the process of formation of the stromatolites – the dolomite layered accretion structures formed in shallow seawater by colonies of cyanobacteria. In 2010 D. Ward described fossilized stromatolites in the Glacier National Park (USA) (Schirber, 2010). Stromatolites aged 3.5 billion years had lived in warm and hot water in zones of volcanic activity, which could be heated by magma. This suggests that the first living forms evidently evolved in hot geysers (Ponsa et al., 2011). It is known that
water in geysers is rich in carbonates, while the temperature is ranged from $+100 \, ^{\circ} \text{C}$ to $+150 \, ^{\circ} \text{C}$. In 2011 a team of Japanese scientists under the leadership of T. Sugawara showed that life originated in warm or, more likely, hot water (Kurihara et al., 2011). From aqueous solution of organic molecules, DNA and synthetic enzymes were created proto cells. For this the initial solution was heated to a temperature close to water’s boiling point $+95 \, ^{\circ} \text{C}$. Then its temperature was lowered to $+65 \, ^{\circ} \text{C}$ with formation of proto cells with primitive membrane. This laboratory experiment is an excellent confirmation of the possibility that life originated in hot water.

The above-mentioned data can predict a possible transition from synthesis of small organic molecules under high temperatures to more complex organic molecules as proteins. There are reactions of condensation-dehydration of amino acids into separate blocks of peptides that occur under alkaline conditions, with $\text{pH} = 9–11$. The important factor in reaction of condensation of two amino acid molecules into dipeptide is allocation of H_2O molecule when a peptide chain is formed, as the reaction of polycondensation of amino acids is accompanied by dehydration, the H_2O removal from reaction mixture speeds up the reaction rates. This testifies that formation of early organic forms may have occurred nearby active volcanoes, because at early periods of geological history volcanic activity occurred more actively than during subsequent geological times. However, dehydration accompanies not only amino acid polymerization, but also association of other small blocks into larger organic molecules, and also polymerization of nucleotides into nucleic acids. Such association is connected with the reaction of condensation, at which from one block a proton is removed, and from another – a hydroxyl group with the formation of H_2O molecule.

In 1969 the possibility of existence of condensation-dehydration reactions under conditions of primary hydrosphere was proven by M. Calvin (Calvin, 1969). From most chemical substances hydrocyanic acid (HCN)
and its derivatives – cyanoamid (CH$_2$N$_2$) and dicyanoamid (HN(CN)$_2$) possess dehydration ability and the ability to catalyze the process of linkage of H$_2$O from primary hydrosphere (Mathews & Moser, 1968). The presence of HCN in primary hydrosphere was proven by S. Miller’s early experiments (Miller, 1953). Chemical reactions with HCN and its derivatives are complex with a chemical point of view; in the presence of HCN, CH$_2$N$_2$ and HN(CN)$_2$ the condensation of separate blocks of amino acids accompanied by dehydration, can proceed at normal temperatures in strongly diluted H$_2$O-solutions. These reactions show the results of synthesis from separate smaller molecules to larger organic molecules of polymers, e.g. proteins, polycarboxydrates, lipids, and ribonucleic acids (Fig. 4). Furthermore, polycondensation reactions catalyzed by HCN and its derivatives depend on acidity of water solutions in which they proceed (Abelson, 1966). In acid aqueous solutions with pH = 4–6 these reactions do not occur, whereas alkaline conditions with pH = 9–10 promote their course. There has not been unequivocal opinion, whether primary water was alkaline, but it is probable that such pH value possessed mineral waters adjoining with basalts, i.e. these reactions could occur at the contact of water with basalt rocks, that testifies our hypothesis.

It should be noted, that geothermal sources might be used for synthesis of various organic molecules. Thus, amino acids were detected in solutions of formaldehyde CH$_2$O with hydroxylamine NH$_2$OH, formaldehyde with hydrazine (N$_2$H$_4$) in water solutions with HCN, after heating of a reactionary mixture to +95 °C (Harada & Fox, 1964). In model experiments reaction products were polymerized into peptide chains that are the important stage towards inorganic synthesis of protein. In a reactionary mixture with a HCN–NH$_3$ solution in water were formed purines and pyrimidines (Fig. 5). In other experiments amino acid mixtures were subjected to influence of temperatures from +60 °C up to +170 °C with formation of short protein-like molecules resembling early evolutionary forms of proteins subsequently designated as thermal proteinoids. They consisted of 18 amino acids usually occurring in protein hydrolysates. The synthesized proteinoids are similar to natural proteins on a number of other important properties, e.g. on linkage by nucleobases and ability to cause the reactions similar to those catalyzed by enzymes in living organisms as decarboxylation, amination, deamination, and oxidoreduction. Proteinoids are capable to catalytically decompose glucose (Fox & Krampitz, 1964) and to have an effect similar to the action of α-melanocyte-stimulating hormone (Fox & Wang, 1968). The best results on polycondensation were achieved with the mixes of amino acids containing aspartic and glutamic acids, which are essential amino acids occurring in all modern living organisms.
Figure 5: Prospective mechanisms of thermal (+95°C) synthesis of purines in aqueous solutions: a) – synthesis of hypoxanthine, adenine, guanine and xanthine from 4-aminoimidazole-5-carboxamidine, 4-aminoimidazole-5-carboxamide, water, NH₃, formamidine and urea; b) – synthesis of adenine from NH₃ and HCN (total reaction: 5HCN = adenine)

Under certain conditions (temperature, pH) in hot mixture of proteinoids in water solutions are formed elementary structures like proteinoid microspheres with diameter 5–10 µm (Fig. 6) (Nakashima, 1987). The best results on polycondensation were achieved with the mixes of amino acids containing aspartic and glutamic acids, which are essential amino acids occurring in all modern living organisms. By morphological features the proteinoid microspheres with a diameter ~5–10 µm resemble cell membrane, which in certain conditions (the increased pH value) may be double (Figure 6). The catalyst for their formation could serve sulfur and its derivatives which were found in ancient rocks in the form of grains of sulfides, as well as pyrite sands. Synthesis of proteinoid microspheres from a mixture of thermal proteinoids is important because it provides material for the next stage of the evolution of life. This is the stage from disparate organic molecules to organized proteinoid molecules having organized structure and separated from the surrounding environment by the primitive membrane.

Gas electric discharge with color coronal spectral analyses was applied in this type of experiment analogous to S. Miller’s experiments (Ignatov & Tsvetkova, 2011). In S. Miller’s experiments one of the basic conditions is electric gas discharge. The analogous experiment was conducted by the authors under laboratory conditions. The first living structures were most probably formed in warm and hot mineral water with more bicarbonate and metal ions (Na, Ca, Mg, Zn, K). There occurred gas electric discharge (lightning) in the primordial atmosphere close to the water surface. In the course of experiment was used the similar gas coronal electric discharge on water drops placed on the electrode of the device for gas coronal electric discharge formation. Water drops were heated to the boiling point in an electric field of high frequency and voltage and an electric discharge was applied, analogous as in the primordial atmosphere. As a result, an organized structure with a size of ~1.2–1.3 mm was formed in inter-electrode space (Fig. 7). It was formed as a result of the accretion of elementary structures sized of ~5–10 µm in the biggest structure with size 1.2–1.4 mm and concentrated in a space where the basic electric voltage was applied.
The large structure was preserved with original size for some time in the absence of the electric discharge. Moreover, in experiments was observed formation of small structures and their further “adjoining” to the larger structure. The organized structure in water sample subjected to the temperature +100°C in the electric field of high voltage and frequency. The material of the electrode – hostafan; electric voltage – 15 kV, electric impulse duration – 10 μs; electric current frequency – 15 kHz.

It should be noted that no structure was organized in a control sample of water placed on the electrode. Before its placement on the electrode, the water was heated to the boiling point and then cooled. The structure organization increased with the increase of the duration of the gas electric discharge. Moreover, in experiments was observed formation of small structures and their further “adjoining” to the larger structure. The large structure was preserved with original size for some time in the absence of the electric discharge.

This experiment shows that the organization of structures in water under certain external conditions as the temperature may take place. In natural conditions water is heated up to +100 °C by the magma. The structure formed from heated water was evidently a result of self-organization. Living organisms are complex self-organizing systems. Thermodynamically they belong to the open systems because they constantly exchange.
substances and energy with the environment. The changes in the open systems are relatively stable in time. The stable correlation between components in an open system is called a dissipative structure. According to I. Prigogin, the formation of dissipative structures and the elaboration to living cells is related to changes in entropy (Nikolis & Prigogin, 1979).

Taking into account these views it may be concluded that the initial stage of evolution, apparently, was connected with formation at high temperature of the mixtures of amino acids and nitrogenous substances – analogues of nucleic acids. Such synthesis is possible in aqueous solutions under thermal conditions in the presence of H₃PO₄. The next stage is polycondensation of amino acids into thermal proteinoids at temperatures 65–95 °C. After that stage in a mix of thermal proteinoids in hot water solutions were formed membrane-like structures.

Our data confirm are confirmed by experiments of T. Sugawara (Japan), who in 2011 created the membrane-like proto cells from aqueous solution of organic molecules, DNA and synthetic enzymes under temperature close to water’s boiling point +95 °C (Sugawara, 2011). This data confirm the possibility that first organic forms of life originated in hot water.

3.3. IR-Spectroscopy of Water with Varying Content of Deuterium

Numerous studies carried out by us with various biological objects in D₂O, proved that when biological objects being exposed to water with different deuterium content, their reaction varies depending on the isotopic composition of water (the content of deuterium in water) and magnitude of isotope effects determined by the difference of constants of chemical reactions rates k_D/k_H in H₂O and D₂O. The maximum kinetic isotopic effect observed at ordinary temperatures in chemical reactions leading to rupture of bonds involving hydrogen and deuterium atoms lies in the range k_D/k_H = 5–8 for C–H versus C–D, N–D versus N–D, and O–D versus bonds.

The chemical structure of D₂O molecule is analogous to that one for H₂O, with small differences in the length of the covalent H–O-bonds and the angles between them. The molecular mass of D₂O exceeds on 10% that one for H₂O. The difference in nuclear masses stipulates the isotopic effects, which may be sufficiently essential for the H/D pair. As a result, physical-chemical properties of D₂O differ from H₂O: D₂O boils at 101.44 °C, freezes at 3.82 °C, has maximal density at 11.2 °C (1.106 g/cm³) (Lobishev & Kalinichenko, 1978). In mixtures of H₂O with D₂O the isotopic exchange occurs with high speed with the formation of semi-heavy water (¹HDO): D₂O + H₂O = ¹HDO. For this reason deuterium presents in smaller content in aqueous solutions in form of ¹HDO, while in the higher content – in form of D₂O. The chemical reactions in D₂O are somehow slower compared to H₂O. D₂O is less ionized, the dissociation constant of D₂O is smaller, and the solubility of the organic and inorganic substances in D₂O is smaller compared to these ones in H₂O. Due to isotopic effects the hydrogen bonds with the participation of deuterium are slightly stronger than those ones formed of hydrogen.

The comparative analysis of IR-spectra of H₂O solutions and its deuterated analogues (D₂O, HDO) is of considerable interest for biophysical studies, because at changing of the atomic mass of hydrogen by deuterium atoms in H₂O molecule their interaction will also change, although the electronic structure of the molecule and its ability to form H-bonds, however, remains the same. The IR spectra of water usually contain three absorption bands, which can be identified as 1 – absorption band of the stretching vibration of OH group; 2 – absorption band of the first overtone of the bending vibration of the molecule HDO; 3 – absorption band of stretching vibration of OD group. OH group is able to absorb much infrared radiation in the infrared region of the IR-spectrum. Because of its polarity, these groups typically react with each other or with other polar groups to form intra- and intermolecular hydrogen bonds. The hydroxyl groups not involved in formation of hydrogen bonds are usually given the narrow bands in IR spectrum and the associated groups – broad intense absorption bands at lower frequencies. The magnitude of the frequency shift is determined by the strength of the hydrogen bond. Complication of the IR spectrum in the area of OH stretching vibrations can be explained by the existence of different types of associations, a manifestation of overtones and combination frequencies of OH groups in hydrogen bonding, as well as the proton tunneling effect (on the relay mechanism). Such complexity makes it difficult to interpret the IR spectrum and partly explains the discrepancy in the literature available on this subject.

The local maximums in IR-spectra reflect vibrational-rotational transitions in the ground electronic state; the substitution with deuterium changes the vibrational-rotational transitions in H₂O molecule, that is why it appear other local maximums in IR-spectra. In the water vapor state, the vibrations involve combinations of symmetric stretch (v₁), asymmetric stretch (v₂) and bending (v₃) of the covalent bonds with absorption intensity (H₂O)

\[v_1 = 3653; v_2 = 3653; v_3 = 3653 \text{ cm}^{-1}. \]

For liquid water absorption bands are observed in other regions of the IR-spectrum, the most intense of which are located at 2100, cm⁻¹ and 710–645 cm⁻¹. For D₂O molecule these ratio compiles 2723.7, 1403.5 and 3707.5 cm⁻¹, while for HDO molecule – 2671.6, 1178.4 and 2787.7 cm⁻¹. HDO (50 mole% H₂O + 50 mole% D₂O) ~50 % HDO, ~25 % H₂O, ~25 % D₂O) has local maxima in IR-spectra at 3415 cm⁻¹, 2495 cm⁻¹ 1850 cm⁻¹ and 1450 cm⁻¹ assigned to OH-stretch, OD-stretch, as well as combination of bending and libration and HDO bending respectively.
In the IR-spectrum of liquid water absorbance band considerably broadened and shifted relative to the corresponding bands in the spectrum of water vapor. Their position depends on the temperature (Ignatov & Mosin, 2013b). The temperature dependence of individual spectral bands of liquid water is very complex (Zelsmann, 1995). Furthermore, the complexity of the IR-spectrum in the area of OH stretching vibration can be explained by the existence of different types of H2O associations, manifestation of overtones and composite frequencies of OH groups in the hydrogen bonds, and the tunneling effect of the proton (for relay mechanism) (Yukhnevitch, 1973). Such complexity makes it difficult to interpret the spectrum and partly explains the discrepancy in the literature available on this subject.

In liquid water and ice the IR-spectra are far more complex than those ones of the vapor due to vibrational overtones and combinations with librations (restricted rotations, e.g. rocking motions). These librations are due to the restrictions imposed by hydrogen bonding (minor L1 band at 395.5 cm\(^{-1}\); major L2 band at 686.3 cm\(^{-1}\); for liquid water at 0 °C, the absorbance of L1 increasing with increasing temperature, while L2 absorbance decreases but broadens with reduced wave number with increasing temperature (Brubach et al., 2005). The IR spectra of liquid water usually contain three absorbance bands, which can be identified on absorption band of the stretching vibration of OH group; absorption band of the first overtone of the bending vibration of the molecule HDO and absorption band of stretching vibration of OD\(^{-}\) group (Max & Chapados, 2009). Hydroxyl group OH\(^{-}\) is able to absorb much infrared radiation in the infrared region of the IR-spectrum. Because of its polarity, these groups typically react with each other or with other polar groups to form intra- and intermolecular hydrogen bonds. The hydroxyl groups, which are not involved in formation of hydrogen bonds, usually produce the narrow bands in IR spectrum, while the associated groups – broad intense absorbance bands at lower frequencies. The magnitude of the frequency shift is determined by the strength of the hydrogen bond. Complication of the IR spectrum in the area of OH stretching vibrations can be explained by the existence of different types of associations of H\(_2\)O molecules, a manifestation of overtones and combination frequencies of OH groups in hydrogen bonding, as well as the proton tunneling effect (on the relay mechanism).

Assignment of main absorption bands in the IR-spectrum of liquid water is given in Table 2. The IR spectrum of H\(_2\)O molecule was examined in detail from the microwave till the middle (4–17500 cm\(^{-1}\)) visible region and the ultraviolet region – from 200 nm to ionization limit at 98 nm (Walrafen, 1972). In the middle visible region at 4–7500 cm\(^{-1}\) are located rotational spectrum and the bands corresponding to the vibrational-rotational transitions in the ground electronic state. In the ultraviolet region (200 to 98 nm) are located bands corresponding to transitions from the excited electronic states close to the ionization limit in the electronic ground state. The intermediate region of the IR-spectrum – from 570 nm to 200 nm corresponds to transitions to higher vibrational levels of the ground electronic state.

Table 2: The assignment of main frequencies in IR-spectra of H\(_2\)O and D\(_2\)O

<table>
<thead>
<tr>
<th>Vibration(s)</th>
<th>H(_2)O (t = 25 °C)</th>
<th>D(_2)O (t = 25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν({v_1}) + ν({v_2})</td>
<td>780-1645</td>
<td>2150</td>
</tr>
<tr>
<td>Composite ν({v_1}) + ν({v_2})</td>
<td>2150</td>
<td>1555</td>
</tr>
<tr>
<td>Valence symmetrical ν({v_1}), valence asymmetrical ν({v_2}), and overtone 2ν(_{v_2})</td>
<td>3290-3450</td>
<td>2510</td>
</tr>
</tbody>
</table>

Results of IR-spectroscopy with device Infra Spec VFA-IR show that at 4.1 μm, even at low concentrations of deuterium of 0.35 and 0.71%, there is observed a decline in the local maximums relative to the local maximum of 100% pure water (the local maximums in IR-spectra reflect vibrational-rotational transitions in the ground electronic state because at changing the atomic mass of hydrogen and deuterium atoms in the water molecule their interaction will also change, although the electronic structure of the molecule and its ability to form H-bonds, however, remains the same; with the substitution with deuterium the vibrational-rotational transitions are changed, that is why it appears other local maximums in IR-spectra. These results are shown in Figure 9. The result is reliable regarding the content of deuterium in natural waters from 0.015–0.03%.
At further transition from H$_2$O monomers to H$_2$O$_2$ dimer and H$_2$O$_3$ trimmer absorption maximum of valent stretching vibrations of the O-H bond is shifted toward lower frequencies ($\nu_3 = 3490$ cm$^{-1}$ and $\nu_1 = 3280$ cm$^{-1}$) (Eisenberg & Kauzmann, 1969) and the bending frequency increased ($\nu_2 = 1644$ cm$^{-1}$) because of hydrogen bonding. The increased strength of hydrogen bonding typically shifts the stretch vibration to lower frequencies (red-shift) with greatly increased intensity in the infrared due to the increased dipoles. In contrast, for the deformation vibrations of the H–O–H, it is observed a shift towards higher frequencies. Absorption bands at 3546 and 3691 cm$^{-1}$ were attributed to the stretching modes of the dimer [(H$_2$O)$_2$]. These frequencies are significantly lower than the valence modes of ν_1 and ν_3 vibrations of isolated H$_2$O molecules at 3657 and 3756 cm$^{-1}$ respectively). The absorption band at 3250 cm$^{-1}$ represents overtones of deformation vibrations. Among frequencies between 3250 and 3420 cm$^{-1}$ is possible Fermi resonance (this resonance is a single substitution of intensity of one fluctuation by another fluctuation when they accidentally overlap each other). The absorption band at 1620 cm$^{-1}$ is attributed to the deformation mode of the dimer. This frequency is slightly higher than the deformation mode of the isolated H$_2$O molecule (1596 cm$^{-1}$). A shift of the band of deformation vibration of water in the direction of high frequencies at the transition from a liquid to a solid state is attributed by the appearance of additional force, preventing O-H bond bending. Deformation absorption band in IR-spectrum of water has a frequency at 1645 cm$^{-1}$ and very weak temperature dependence. It changes little in the transition to the individual H$_2$O molecule at a frequency of 1595 cm$^{-1}$. This frequency is found to be sufficiently stable, while all other frequencies are greatly affected by temperature changes, the dissolution of the salts and phase transitions. It is believed that the persistence of deformation oscillations is stipulated by processes of intermolecular interactions, e.g. by the change in bond angle as a result of interaction of H$_2$O molecules with each other, as well as with cations and anions.

Thus the study of the characteristics of the IR spectrum of water allows to answer the question not only on the physical parameters of the molecule and the covalent bonds at isotopic substitution with deuterium, but also to make a certain conclusion on associative environment in water. The latter fact is important in the study of structural and functional properties of water associates and its isotopomers at the isotopic substitution with deuterium. The substitution of H with D affects the stability and geometry of hydrogen bonds in an apparently rather complex way and may, through the changes in the hydrogen bond zero-point vibration energies, alter the conformational dynamics of hydrogen (deuterium)-bonded structures of macromolecules as DNA and proteins in D$_2$O (Cleland, 1976).

4. Conclusion

The data obtained testify that origination of life and living matter depends on physical-chemical properties of water and external factors – temperature, pH, electric discharges and isotopic composition. Hot mineral alkaline water interacting with CaCO$_3$ is most close to these conditions. Next in line with regard to its quality is
seawater. For chemical reaction of dehydration-condensation to occur in hot mineral water, water is required to be alkaline with pH range 9–11. In warm and hot mineral waters the local maximums in IR-spectra from 8 to 14 µm were more expressed in comparison with the local maximums measured in the same water samples with lower temperature. The content of deuterium in hot mineral water may be increased due to the physical chemical processes of the deuterium accumulation as the solar radiation, volcanic geothermal processes and electric discharges in the atmosphere. These natural processes could lead to the enrichment of the hydrosphere by deuterium in the form of HDO which evaporates more slowly than H₂O, and condenses faster. If the primary hydrosphere really contained HDO, that this may explain the thermal stability of the first organic life forms in the hot mineral water, as the thermal stability of deuterated macromolecules like DNA and proteins in D₂O solutions is somewhat higher than their protonated forms due to the isotopic effects of deuterium.

Acknowledgements

The authors wish to thank M. Chakarova from Bulgarian Academy of Sciences for registering IR-spectra.

References:

