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Abstract 

This paper presents the results of evaluation of possible biophysical methods for registering of infrared 

thermal field of the human body in the electromagnetic range. Many types of emissions (electromagnetic 

waves, infrared radiation, thermo radiation, bioluminescence) emitted from the human body were 

researched. There were shown the results with infrared thermography (IRT) results. Some important 

physical characteristics were also demonstrated (energy of hydrogen bonds, wetting angle, surface tension) 

of water by the methods of non-equilibrium energy (NES) and differential non-equilibrium energy (DNES) 

spectrum of water, that helps understand in general how electromagnetic radiation interacts with water and 

establishes the structural alterations of water. The spectral ranges of NES and DNES are in middle infrared 

range.  
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1.  Introduction 

All living organisms have a cellular, and therefore, a molecular organized structure. The living processes 

inside them run on a cellular and a molecular level. Bioelectrical activity is one of the very important 

physical parameters of living organisms (Ignatov et al., 1998). Bioelectric potentials generated by various 

cells are widely used in medical diagnostics and are recorded as electrocardiogram, electromyogram, 

electroencephalogram, etc. It was proved that the human body and tissues emanate weak electromagnetic  

waves, the electric voltage of which is denoted as resting potential, action potential, omega-potential etc. 

(Dobrin et al., 1979; Adey, 1981). Between the outer surface of the cell membrane and the inner contents of 

the cell there is always the electric potential difference, which is created because of different concentrations 

of K
+
, Na

+ 
and Cl

-
 inside and outside of the cell and their different permeability through the cell membrane 

(Kiang et al., 2005). Their value in the human body varries 50–80 mV, and is defined by the galvanic 

contact of a voltmeter input with an object that indicates the galvanic type of their source (Cleary, 1993). 

When excited, a living cell changes the membrane electric potential due to changes in membrane 

permeability and active ion movement through the membrane. In cells of excitable tissues (muscle, 

nervous), these processes can occur within a very short time intervals (milliseconds) and are called “current 

action” potential. Their magnitude makes up 120 mV. Electromagnetic fields refer to non-ionizing 

radiation (NIR), e.g. the radiative energy that, instead of producing charged ions when passing through 

matter, has sufficient energy only for excitation. Nevertheless it is known to cause biological effects 

(Kwan-Hoong, 2003). The NIR spectrum is divided into two main regions, optical radiations and 

electromagnetic fields. The optical spectrum can be further sub-divided into ultraviolet, visible, and 

infra-red. The electromagnetic fields are further divided into radiofrequency (microwave, very high 

frequency and low frequency radio wave). NIR encompasses the long wavelength (> 100 nm) and low 

photon energy (<12.4 eV) portion of the electromagnetic spectrum, from 1 Hz to 3
.
10

15 
Hz. Research 

carried out in the 1990ies and subsequent years established the property of animal and plant tissues to 
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generate relatively strong transient NIR electric fields due to mechanical stresses and temperature changes 

in biological structure (Anderson, 1993). These electric fields are mainly due to the piezoelectric and 

pyroelectric voltage electric polarization of natural biological structures. Owing to cell metabolism, electric 

dipoles (polar and ionized molecules) involved in polarization of biostructures are continuously destroyed 

and restored, i.e. this is a non-equilibrium polarization (Barnes & Greenebaum, 2006). Such type of 

non-equilibrium electric polarization is known as a main characteristic of electrets (Gubkin, 1978). 

Electrets include dielectric insulators and semiconductors, which, under certain conditions, e.g. under the 

influence of a strong electrostatic field or ionizing radiation, light and other factors, acquire the property to 

generate an external electric field, existing for a long time (days, years) and slowly diminish due to the 

destruction of their substance by polarization (Sessler & Gerhard-Multhaupt, 1998). Along with the 

electromagnetic field, electrets generate specific elecric currents produced by heating – thermally 

stimulated current (TSC) (Gross, 1964). Electrets belonging to the non-galvanic type of electrical sources 

tend to a strong electric field (up to 10
6
 V/m) and to the infinitesimal electric current (10

-14 
A/mm

2
). By 

analogy with the physical fields, the electric field emitted from the human body and its physical alterations 

resemble the electric field generated by electrets. The electrets play an important role in the functioning of 

many biological structures as they themselves possess electret properties. The bioelectret fields registered 

on the surface of the human body are basically generated by the basal cells of the epidermis (Marino, 1988). 

Dermis cells adjacent to the bottom layer of basal cells are surrounded by a conductive interstitial fluid 

whose electric voltage while grounding on the human body is close to zero (so called ground potential). 

This interstitial fluid screens off electromagnetic fields of underlying tissues. With the average thickness of 

the epidermis (0.1 mm) and the maximum value of electric voltage (30.0 V), the electric field strength 

can reach significant values at 300000 V/m (Seto et al., 1992). The strength of the electric field is quite 

sufficient for its influence on the biological processes in cells and surrounding tissues, including the 

synthesis of proteins and nucleic acids (Liboff at al., 1984; Frey, 1993; Shimizu et al., 1995). This electric 

field along with the field of transmembrane assymetry of ions concentrated at the inside and outside of the 

membrane (10
5
 V/cm

2
) can participate in the cooperative effects in cell membrane structures (Holzel & 

Lamprecht, 1994; Miller, 1986). Thus, owing to the bioelectret condition of certain subcellular structures in 

the cell and its surroundings a slowly oscillating electric field is generated that is strong enough to influence 

the biological processes. This field and the electric field due to the piezoelectric voltage and intramembrane 

electric field form the total electromagnetic field of the cell and its supracellular structures. It is known that 

the human skin emanates electromagnetic waves in close ultraviolet range, optic range and also in close 

infrared range. Infrared thermal bioradiation is found in the middle infrared range at wavelengths from 8 to 

14 µm. At a wavelength of 9.7 µm infrared bioradiation has its maximum value at t = 36.6 
0
С. At this 

temperature the skin emission is closest to the emission of an absolute black body (ABB) having the same 

temperature. Infrared emission penetrates the skin surface at a depth of 0.1 mm, and is reflected in 

accordance with the physical laws of reflection of the visible part of the electromagnetic spectrum. 

Evidently, radiation energy influences tissues while being absorbed by them. Yu.V. Gulyaev and E. E. 

Godik (Gulyaev & Godik, 1984) determined that the threshold of skin sensitivity for infrared radiation 

compiled 10
-14 

W/cm
2
. When thermal influence is applied to the point of threshold skin sensitivity, there  

develops a physiological reaction toward the thermal flow. The intensity of the radiated thermal flow 

generated by the skin makes up 2.6
.
10

-2 
W/cm

2
. The second component of electromagnetic waves is 

bioluminescence (Young & Roper, 1976; Chang et al., 1998). It is supposed that biophotons, or ultraweak 

photon emissions of biological objects, are weak electromagnetic waves in the optical range of the 

spectrum (Cohen & Popp, 1997). The typical observed emission of biological tissues in the visible and 

ultraviolet frequencies ranges from 10
−19

 to 10
−16

 W/cm
2
 (1–1000 photons

.
cm

-2.
sec

-1
) (Edwards et al., 1989; 

Choi et al., 2002). This light intensity is much weaker than the one to be seen in the perceptually visible 

and well-studied spectrum of normal bioluminescence detectable above the background of thermal 

radiation emitted by tissues at their normal temperature (Niggli, 1993). Bioelectric emission from parts of 

the human body like thumbs can be easily detected with the method of Color coronal spectral analysis by 

applying gas electrical discharge of high voltage and frequency developed by I. Ignatov (Ignatov, 2005). Its 

advantages include safety, sterility, clarity and interpretability of the data obtained, ease of storage and 

subsequent computer data processing, the ability to monitor the development of processes in time, 

comparing the structural, functional and temporal processes, etc. The purpose of this research was the  

studying of possible biophysical methods and approaches for registering various NIR wave’s types emitted 
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from the human body (electromagnetic waves, infrared radiation, thermo radiation) and methods of their 

visualization by different techniques including magnetography, infrared thermography, chemiluminescence 

and coronal gas discharge spectral analysis.   

 

2. Materials and methods 

 

2.1. Infrared thermography (IRT) 

The research was made using infrared thermography (IRT) method according to M. Marinov. The range of 

the infrared thermal-imaging camera was in the middle infrared range from 9 µm to 14 µm. The 

temperature range was from 24.0 
0
С to 38.0 

0
С. The first camera was Inframetrics/FLIR ThermaCam PM 

290 wave type. FLIR ThermaCam PM 290, FLIR 390, Inframetrics PM 250 and Inframetrics PM 350 

thermal infrared cameras were of FLIR short wave type, handheld, Focal Plane Array cameras are capable 

of temperature measurement. These cameras stored images on a PCMCIA Card, and the images were 

further analyzed using one of several available FLIR software packages (Thermogram 95, FLIR Reporter 

2000 Software, Researcher 2000). The second camera (D.I.T.I.) was a totally non-invasive clinical imaging 

camera for detecting and monitoring a number of diseases and physical injuries, by revealing the thermal 

abnormalities present in the human body’s patterns. It was used as a tool for diagnosis and prognosis, as 

well as monitoring therapy progress; the type of this device was TB 04 K.  

 

2.2. Registration of electromagnetic fields  

The registration of electromagnetic fields was used with super conductive detectors based on Joseffson 

junctions – device made by sandwiching a thin layer of insulating nonsuperconducting material between 

two layers of superconducting cooper pairs (S-I-S).This allows the registering of magnetic fields 10
10 

times 

weaker than the Earth’s magnetic field. The study of electric field emitted by the human body was done 

using a standard Faraday cage formed by conducting material (aluminum foil) blocks with external static 

and non-static electric fields by channeling electricity through the conducting material, providing constant 

voltage on all sides of the enclosure.  

 

2.3. NES and DNES experiments on interaction of electromagnetic field with water 

The research was made with the method of Non-equilibrium spectrum (NES) and Differential 

non-equilibrium spectrum (DNES). The device measures the angle of evaporation of water drops from 72
0
 

to 0
0
. As the main estimation criterion was used the average energy (∆EH...O) of hydrogen O...H-bonds 

between H2O molecules in water’s samples. The spectrum of water was measured in the range of energy of 

hydrogen bonds 0.08–0.1387 eV or 8.9–13.8 µm with a specially designed computer program.  

 

3. Results and discussion 

 

3.1. Electric fields 

The electric field surrounding the human body with frequency ν = 1
.
10

3
 Hz is created by electrochemical 

processes in the organism and is modulated by the rhythm of internal organs (Gulyev, Godik, 1984). The 

spatial distribution of the electric field around the body reflects the teamwork of the different organs and 

systems in the organism. There are also electric fields, which are generated by accumulation of triboelectric 

(caused by friction) charge on the epidermis, which depends on epidermal electric resistance and varies 

from 10
9
 to 10

11
 Ω/cm

2
. Radiothermal emission is being detected in the centimeter and decimeter range of 
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the spectrum. This type of emission is connected with the temperature and the biorhythms of the internal 

organs, and is being absorbed by the surface skin layer at a depth from 5 cm to 10 cm (Gulyaev & Godik, 

1984). Long persistent electric field emitted from the human body can be detected with an electrometer 

voltmeter after neutralizing electric charges on the skin caused by triboelectric charges. The electric 

strength of this field is undergoing slow oscillations, and most patients exert its value within the range of 

100–1000 V/m at a distance of 5–10 cm from the body. People in a state of clinical death usually have the 

electric field strength’s value reduced to 10–20 V/m after 2–3 hours of cardiac arrest. Intensity vector of the 

detected electric field is found to be normal at the surface of the skin, and the electric voltage is inversely 

proportional to the distance. On the skin surface the electric voltage of the field (the difference of its 

electric potential with respect to ground potential) reaches essential values of 10000 mV or more, i.e., is 

about 1000 times greater than the source electric voltage of the electric unit above the bioelectric potentials. 

This allows us to characterize the electric field detected from the human body as relatively strong electric 

field emitted from living tissues. Its electric voltage was measured by electrometric methods, identified by a 

non-galvanic type of its source. If the physical basis of the generation of a relatively strong electric field in 

the human tissue is non-equilibrium electric polarization of the substance due to metabolic processes, the 

electric field strength should depend on these processes. As noted above, this dependence is actually 

observed: inhibition of tissue metabolism due to hypoxia during cardiac arrest was accompanied by drop in 

the electric field strength. This relationship is confirmed in experiments on animals (Geraldy et al., 2008). 

For example, in rats inhibition of metabolism of the tissue due to cardiac arrest (death of the animal) or by 

general anesthesia is accompanied by a significant drop in the electric field strength (Bars & Andre, 1976). 

Electric fields depend on the magnitude of the electric voltage and the distance from the source 

(Kwan-Hoong, 2003). Generally, the electric voltages are stable and remain the same; however electric 

fields are easily perturbed and distorted by many surrounding objects. Relatively strong electric field 

investigated in humans and animals is being formed evidently by the skin’s biostructures, since the electric 

fields of the underlying tissues are largely shielded by conductive interstitial fluid (Goodman et al., 1995; 

Gulyaev & Godik, 1990). The basal cells of the epidermis – the top layer of the skin, contribute the most to 

the detected electric field. Electric polarization vector of these cells is normal to the surface of the skin, i.e., 

coincides with the electric voltage’s vector field, and yet it is inherent in the metabolism intensity, 

conditioning the generation of the electric field.  

 

3.2. Magnetic fields 

Magnetic field of a living organism can be caused by three reasons. First of all, it is ion channels arising 

from the electrical activity of cell membranes (primarily muscle and nervous cells). Another source of 

magnetic fields are the tiny ferromagnetic particles, trapped or specially introduced into the human body. 

These two sources create their own magnetic fields. In addition, at imposition of external magnetic field 

there appears inhomogeneity of the magnetic susceptibility of different organs and tissues distorting the 

external magnetic field (Wikswo & Barach, 1980). The magnetic field in the last two cases is not 

accompanied by the appearance of the electric field, so the study of the behavior of magnetic particles in 

the human body and the magnetic properties of various organs are applicable only with magnetometric 

methods. Biocurrents, on the contrary, except for the magnetic fields, create the distribution of electric 

potentials on a body’s surface. Registration of these electric potentials has long been used in research and 

clinical diagnostics – in electrocardiography, electroencephalography, etc (Cohen, 1968). It would seem 

that their magnetic counterparts, i.e. magnetocardiography and magnetoencephalography recording the 

signals from the same electrical processes in the body, will give almost the same information about the 

studied organs. However, as follows from the theory of electromagnetism, the structure of the electric 

current source in the electric conductive medium (the body) and the heterogeneity of the medium have 

significantly different impact on the distribution of magnetic and electric fields: some types of bioelectric 

activity manifest themselves primarily in the electric field, giving a weak magnetic signal, while others – on 

the contrary, create a rather strong magnetic signal (Zhadin, 2001; Anosov & Trukhan, 2003). Therefore, 

there are many biophysical processes whose observation is preferable by magnetographic methods. 

Magnetography does not require direct contact with the investigated object, i.e., it allows carrying out 

measurements over a bandage or other obstructions. It is not only practically useful for diagnostics, but has 
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a fundamental advantage over electrical methods towards data recording, as the attachment of the 

electrodes on the skin can be a source of slowly varying contact electric potentials. There are no such 

spurious noises while using magnetographic methods, therefore, magnetography allows, in particular, to 

reliably explore slowly occurring processes (with the characteristic time of tens of minutes). Magnetic 

fields rapidly diminish with distance from the source of the activity, as they are caused by relatively strong 

currents running in the body, while the surface potentials are determined mainly by the weaker and 

“smeared” electric currents in the skin. Therefore, magnetography is more convenient for accurate 

determination (localization) of bioelectric activity parts on the human body. And finally, the magnetic field 

vector is characterized not only by the absolute value but also by the direction, which also may provide 

additional useful information. However, it should not be assumed that the electricity and magnetographic 

methods compete with each other. On the contrary, it is their combination that gives the most complete 

information about the processes being investigated. But for each of the individual methods, there are 

practical areas wherein the use of any one of them is preferable. Water is the main substance of all living 

organisms and the magnetic field exerts a certain influence on water. This influence is a complex 

multivariate influence, which the magnetic field exerts on dissolved in water metal cations (Fe
2+

, Fe
3+

) and 

the structure of the hydrates and water associates (Mosin, 2011). It was experimentally proved that the 

magnetic field acts much weaker on still unmoved water, because water has a conductivity; as water moves 

in the electromagnetic field, a small electric current is generated (Mosin, 2012). The research performed 

with superconductive detectors based on Joseffson junctions shows that magnetic fields around the human 

body are in the range from 1 to 100 Hz. The magnetic activity of the brain for example makes up 30
.
10

15
 

T/Hz
1/2

. The magnetometric system has a sensitivity of 10
.
10

15
 T/Hz

1/2
 in the range of 1 to 100 Hz (Gulyaev 

& Godik, 1990).  

 

3.3. NES and DNES analysis of water  

Water seems to be a good model system for studying the interaction with electromagnetic fields and 

structural research. Recent data indicated that water is a complex associated non-equilibrium liquid 

consisting of associative groups (clusters) containing from 3 to 50 individual H2O molecules (Keutsch & 

Saykally, 2011). These associates can be described as unstable groups (dimers, trimers, tetramers, 

pentamers, hexamers etc.) in which individual H2O molecules are linked by van der Waals forces, 

dipole-dipole and other charge-transfer interactions, including hydrogen bonding (Ignatov & Mosin, 2013c). 

At room temperature, the degree of association of H2O molecules may vary from 2 to 21. The 

measurements were performed with NES and DNES methods. It was established experimentally that in the 

process of evaporation of water drops, the wetting angle θ decreases discreetly to 0, and the diameter of 

water drop basis is only slightly altered, that is a new physical effect (Antonov & Yuskesselieva, 1983). 

Based on this effect, by means of measurement of the wetting angle within equal intervals of time is 

determined the function of distribution of H2O molecules according to the value of f(θ). The distribution 

function is denoted as the energy spectrum of the water state. A theoretical research established the 

dependence between the surface tension of water and the energy of hydrogen bonds among individual 

H2O-molecules (Antonov, 1995). The hydrogen bonding results from interaction between electron-deficient 

H-atom of one Н2О molecule (hydrogen donor) and unshared electron pair of an electronegative O-atom 

(hydrogen acceptor) on the neighboring Н2О molecule; the structure of hydrogen bonding may be defined 

as О···Нn+–О
n-

. For calculation of the function f(E) represented the energy spectrum of water, the 

experimental dependence between the wetting angle (θ) and the energy of hydrogen bonds (E) is 

established: 

f(E) = b  f(θ)/1 – (1 + b  E)
2
)

1/2
  (1) 

where b = 14.33 eV
-1  

(2)    

The relation between the wetting angle (θ) and the energy (E) of the hydrogen bonds between H2O 

molecules is calculated by the formula: 

θ = arcos (-1 – 14.33E) (3) 
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The energy spectrum of water is characterized by a non-equilibrium process of water droplets evaporation, 

therefore, the term non-equilibrium spectrum (NES) of water is used. The energy of hydrogen bonds 

measured by NES is determined as Ē = -0,1067 ± 0,0011 еV. 

The difference ∆f(E) = f (samples of water) – f (control sample of water)  

– is called the “differential non-equilibrium energy spectrum of water” (DNES). 

Thus, DNES spectrum is an indicator of structural changes of water as a result of various external factors. 

The cumulative effect of these factors is not the same for the control sample of water and the water sample 

being under the influence of this factor. Fig. 1 shows NES-spectrum of deionized water that was used as a 

model system for studying the interaction of electromagnetic field with water. On the X-axis are given three 

scales. The energies of hydrogen bonds among H2O molecules are calculated in eV. On the Y-axis is shown 

the energy distribution function f(E) of H2O molecules measured in eV
-1

. It was shown that the window of 

transparency of the earth atmosphere for the electromagnetic radiation in the middle IR-range almost covers 

NES-spectrum of water. Arrows A and B designate the energy of hydrogen bonds among H2O molecules. 

Arrow C designates the energy at which the human body behaves itself as absolute black body (ABB) at 

optimum temperature 36.6 
0
С and adsorbs the thermal radiation. A horizontal arrow designates the window 

of transparency of the earth atmosphere for the electromagnetic radiation in the middle IR-range. 

 

Fig. 1. Non-equilibrium energy spectrum (NES) of water as a result of measurement for 1 year:  –   

wavelength, k – wave number. 

Another important physical parameter was calculated with NES and DNES methods – the average energy 

(∆EH...O) of Н…О-bonds between H2O compiled -0.1067±0.0011 eV. The most remarkable peculiarity of 

Н…О-bond consists in its relatively low strength; it is 5–10 times weaker than chemical covalent bond. In 

respect of energy hydrogen bond has an intermediate position between covalent bonds and intermolecular 

van der Waals forces, based on dipole-dipole interactions, holding the neutral molecules together in gasses 
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or liquefied or solidified gasses. Hydrogen bonding produces interatomic distances shorter than the sum of 

van der Waals radii, and usually involves a limited number of interaction partners. These characteristics 

become more substantial when acceptors bind H atoms from more electronegative donors. Hydrogen bonds 

hold H2O molecules on 15 % closer than if water was a simple liquid with van der Waals interactions. The 

hydrogen bond energy compiles 5–10 kcal/mole, while the energy of covalent О–Н-bonds in H2O molecule 

– 109 kcal/mole. With fluctuations of water temperature the average energy of hydrogen H...O-bonds in 

H2O molecule associates changes. That is why hydrogen bonds in liquid state are relatively weak and 

unstable: it is thought that they can easily form and disappear as the result of temperature fluctuations. The 

next conclusion that can be drawn from our research is that there is the distribution of energies among 

individual H2O molecules. Further we performed two types of temperature-dependent experiments on heat 

exchange from the surface of the human body by DNES-method. In the first experiment we studied heat 

exchange when the temperature of the human body was higher than the temperature of the surrounding 

environment (curve 1a and 1b on Fig. 2). In the second experiment there was heat exchange when the 

temperature of the human body was lower than that of the surrounding environment (curve 2a and 2b on 

Fig. 2). In both experiments a local maximum was detected at 9.7 µm on curve 1 and curve 2 (Fig. 2). This 

local maximum corresponds to the maximal level of heat emission from the surface of the human body and 

lays within the “transparency window” of the Earth atmosphere to electromagnetic radiation in the mid 

IR-range of the electromagnetic spectrum. In this range, the electromagnetic radiation emitted by the Earth 

in the surrounding space is being absorbed by the Earth atmosphere. There is a statistical difference 

between the results of heat emission from the surface of the human body to the surrounding environment 

and back to the human body according to the t-criterion of Student at p < 0.01. The local maximum on 

curve 1a is detected at 7.3 eV
-1

, while the local maximum on curve 2a – at 2.4 eV
-1 

(Fig. 2). 

 

Fig. 2. Differential non-equilibrium energy spectrum (DNES) reflecting the heat exchange of the human 

body with the surrounding environment. 

 

3.4. Infrared thermography (IRT)  

The human body as a biological body has an average temperature in the range from 36.6 to 36.8 
0
C, The 

main part of this radiation predominantly falls on human skin with a middle infrared range from 8 to 14 m. 

Maximum of spectral density covers the range approx. 10 m i.e. the middle wavelength IR range. The 

physical essence of the thermal radiation consists in the presence of charged particles (electrons and ions), 

which are in random motion and have the properties of electrical or magnetic polarity. Infrared radiation is 
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emitted or absorbed by excited atoms or ions when they change their rotational-vibrational movements. 

Electromagnetic waves propagate throughout the body and reach the surface, passing through the skin and 

partly emitted into the environment. The intensity of these processes is proportional to the body 

temperature. The wavelength of infrared radiation emitted by the body depends on the heating temperature: 

the higher the temperature, the shorter is the wavelength and therefore the higher the emission intensity. 

Studies have shown that in the long wavelength infrared range (8–14 m) the human skin radiates as a 

black body, regardless of age, degree of pigmentation and other features. Therefore, the emissivity of the 

human skin can be considered equal to 1 absolute unit. In practice, it is proved that the difference between 

the emission characteristics of the human skin and blackbody still exist, however, it is small and depends 

essentially on the influence of the surrounding background. The limit of effective temperature measurement 

is equal to the thickness of the emitting layer (skin layer) and is defined as the distance at which 

electromagnetic waves propagate from the object's surface before the layer in which the intensity decreases 

in 2.5 times. Under equal conditions, the greater the wavelength, the greater the depth, which can detect 

the temperature perturbations. The maximum intensity of thermal radiation at normal ambient temperature 

is located in the infrared rage of the spectrum (wavelength 10 m at t = 36.6 
0
C). The threshold of skin 

sensitivity according to Yu.V. Gulyaev and E.E. Godik compile 10
-14

 W/cm
2 

(Gulyaev & Godik, 1990). 

This led to the feasibility of establishing IR thermal imaging (thermography) for the study of the 

temperature anomalies. However, the measurement of the thermal radiation of the human body in the IR 

range gives the true temperature for only the top layer of skin with thickness of 1 mm; after that the 

thermal radiation is reflected back into the environment. The temperature of the underlying tissues and 

organs can be judged indirectly when the temperature changes are “projected” on the skin. Infrared 

thermography is a scientific method for registering the thermogram – infrared image showing the 

distribution pattern of infrared waves emitted from the objects (Ring & Hughes, 1986). Thermographic 

cameras detect radiation in the infrared range of the electromagnetic spectrum (approx. 0.9–14 m), and 

on its basis are obtained thermographic images (thermograms) allowing to determine the locations of 

patterns having different temperatures. Thermograms therefore are actually visual displays of the amount of 

infrared energy emitted, transmitted, and reflected from the surface of the object. Since infrared radiation is 

emitted by all objects with the temperature according to Planck's formula for black body radiation, 

thermography allows to “see” the environment with or without visible illumination. The intensity of the 

thermal radiation of the body increases with the temperature, therefore thermography allows to see the 

temperature distribution on the surface of the body. As a result, warm objects are seen better on the cooler 

environment background; mammals and warm-blooded animals are better visible on the environment. That 

is why thermography may find many diagnostic applications and is often being used for breast diagnostics, 

tumor detection etc. Most thermographic cameras use CCD and CMOS image sensors having most of their 

spectral sensitivity in the visible light wavelength range. The most commonly used is a matrix of indium 

antimonide (InSb), gallium arsenide (GaAs), mercury telluride (HgTe), indium (In) and cadmium (Cd). The 

latest technology allows the use of the inexpensive uncooled microbolometer sensors. Their resolution is 

varied from 160×120 or 320×240 up to 768×1024 pixels in the most advanced camera models. Often the 

thermogram reveals temperature variations so clearly that a photograph is not necessary for further analysis. 

Usually a block of the focal planes of thermo images can detect radiation in the medium (3 to 5 m) and 

long (8 to 15 m) infrared wave band, designated as MWIR and LWIR corresponding to two infrared 

windows with high coeficient of transmittance. Improperly selected temperature range on the surface of the 

objects, indicates a potential problem. 
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Fig. 3. Thermovisual snapshot of the result of bioinfluence of Ch. Drossinakis on skin section of the back 

of a person suffering from radiculitis after 27 min 

 

It should be noted that the intensity of the thermal radiation of the human body in the microwave (MW) 

range is much smaller in magnitude than in the infrared part of the spectrum (Sisodia, 2007). In particular at 

a wavelength of 17 cm the intensity is less in 10 times, so the heat reception signals in this range of the 

spectrum require equipment with higher sensitivity. However, the advantage of this method is that the 

measurement range and the depth of radiation penetration is much greater, therefore it is possible to obtain 

data on the temperature parameters of the internal organs and structures of the human body, but the 

resolution is significantly reduced, therefore it is impossible to obtain reliable thermal image of the study 

area. Infrared thermography registered a thermal infrared radiation emitted by the capillary network of the 

skin, which is used in medicine for thermovisual diagnostics. The closer an ailing organ is to the skin, the 

more accurate the diagnosis based on a thermal signal. Today it seems to be an established fact that some 

people possess the ability to increase the temperature of the treated area of the human body. Figure 3 shows 

the thermovisual result of the temperature difference between the initial (t = 35.6 
0
С) and final skin section 

temperature (t = 37.3 
0
С) of the person before and after the treatment of Drossinakis. It was calculated that 

the temperature of the skin part was increased after the treatment on 1.7 
0
С. In this connection there should 

be noted two important empirical thermography results obtained by M. Marinov (Marinov & Ignatov, 2008), 

which allow the medical diagnostics of various human organs and monitoring of their condition and 

malfunction by this method. Fig. 4a shows the thermography snapshot of a patient having a benign tumour 

growth in the mammary gland, which has a higher temperature than the surrounding tissues’ lower 

temperature with 0.54 
0
C. Fig. 4b shows a patient having hyperfunction of thyroid gland, which has higher 

temperature than the surrounding tissues’ lower temperature at 0.76 
0
C. The middle value on the scale is 

36.6 
0
С. In the left side of the scale there are temperatures less than 36.6 

0
С. In the right side of the scale 

there are temperatures more than 36.6 
0
С. 
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          a)                                  b) 

Fig. 4. Thermovisual snapshots of the human body (Marinov, 2008): a) – patient having a benign tumor 

growth in the mammary gland; b) – patient having hyperfunction of thyroid gland  

 

4. Conclusions 

The approaches and methods for detecting of infrared thermal flow, electric and magnetic fields were 

presented of applied science and medical diagnostics. With methods as NES and DNES may be applied for 

studying the interaction of electromagnetic fields with water and structural studies.  
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