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ABSTRACT

The approximate solutions of stresses and displacements were obtained for fixed-fixed anisotropic beams

subjected to uniform load. A stress function involving un-known coefficients was constructed, and the

general expressions of stress and displacement were obtained by means of airy stress function method. Two

types of the description for the fixed end boundary condition were considered. The introduced unknown

coefficients in stress function were determined by using the boundary conditions. The approximate solutions

for stresses and displacements were finally obtained. Numerical tests show that the solutions agree with the

FEM results. These solutions are achieved by using Maple software.
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INTRODUCTION

The plane stress problem of beams is a classical
subject in the elasticity theory and is also frequently
encountered in practical cases. Isotropic beams have
been investigated by Timoshenko and Goodier (1970)
for many cases, such as tension, shearing, pure
bending, bending of a cantilever subjected to a
transverse load at the end, bending of a simply
supported beam under uniform load and other cases of
continuously loaded beams. Lekhnitskii (1968) studied
the deformations of anisotropic beams including
tension, shearing, pure bending, bending of a cantilever
loaded at the end, bending of simply supported beams
and cantilever beams under uniform load or linearly
distributed load. For uniformly loaded, both ends fixed
beams, Gere and Timoshenko (1984) presented the
expressions of deflection and stress by employing
Euler-Bernoulli beam theory. Approximate solutions of
fixed-fixed anisotropic beam subjected to uniform load
are reported in this paper.
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Basic Equations
In x-y plane, the basic functions for anisotropic
material can be expressed as:
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Figure 1: Fixed-fixed beam subjected to a
uniform load
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u, v, 6,, 6,, T, are the components of compliance constants, S;=8;- Stress function @D
displacement and stress, respectively, S; are elastic with:
o’ o'd R
o, =— c,=— Ty = (2)
Oy 0x 0x0y

in which the stress function ® must satisfy the
following compatibility equation:
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S -2s +2(S;, +S) -2s +5 =0 3)
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Approximate Solutions for Fixed-Fixed Anisotropic and the length and height are, respectively, [ and h.
Beam by Using Maple Software
Consider a fixed-fixed beam with rectangular cross- The stress function is recommended in
section subjected to a uniform load q as shown in polynomial form as:
Figure 1. Suppose that the width of the beam is unit,
® = Ay’ +Bxy* +Cy* + Dx’y’ + Exy’ + Fy’ + Gxy® + Hy” + Lx’y + Jxy + Kx’ 4)
>
phi:=A*y*5+B*x*y*4+C*y 44+D*x*2*y " 3+E*x*y*3+F*y”*3+G*x*y 2+H*y*2+L
Ky 2 X ud Jhehy Ry
G EAF SRy @Gy ID eyt By PR E L Gy FH L K

A,B,C,D,E, F,G, H,L,Jand K are 11 unknown constants. Substituting Eq.(4) into Eq.(3) yields:

>phisub:=s22* (diff (phi,x,x,x,x)) -
2xs26* (diff (phi x;x x V) ){42* (s124s66) *(daff(phil x ,x v v))-
2*s16* (diff (phi,x,y,y,y))+sll*(diff (phi,y,y,y,y))=0;

phisub =24 (s12+5s66)Dy—2516(24 By+12Dx+6E)
+s11 (1204y+24Bx+24C)=0

The parameters must be satisfied that phisup is can be derived as:
equal to O for the arbitrary values x, y. Three equations

>resultl:=diff (phisub,vy) ;
resultl =24 (s12+566) D —48 si16 B+ 120511 A=0 )
>result2:=diff (phisub,x) ; '
result?2 .= -24s16 D+24s1]1 B=0

>result3:=subs (x=0,y=0,phisub) ;
result3 = -12s16 E+24s11 C=0
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The substitution of Eq.(4) into Eq.(2) gives the
expressions of the stress as:

>sigmax:=diff (phi,y,y)
sigmax =204y’ +12Bxy*+12C»*+6Dx’y+6 Exy+6 Fy+2Gx+2 H

> sigmay:=diff (phi,x, x);
sigmay =2Dy’ +2Ly+2K (6)

= toxy:—-diff(phi x V)
joxy s 2B 6Dy aEd D@y O ]

By substitution of Eq.(6) into Eq.(1) and integration,
the expressions of the displacement are then obtained as:

>dudx:=sll*sigmax+sl2*sigmay+slé6*toxy;
dudi - sI1(04 1DByy 120y 16Dy 6E+y 6Byt 226G )H)

ts2@CDy 20y DK
A S0 e S S S e
>dvdy:=sl2*sigmax+s22*sigmay+s26*toxy;
dvdy =512 (04 s DB i D€ 6D i b6Ex w60t Gl H)
T2 0Dy 2Ly 2 K)
b AR Dy B D e L
> dudyplusdvdx:=sl6*sigmax+s26*sigmay+s66*toxy;
dudyplusdvdx =
S AY S e O D i g e A
SRR Rl
T e R Ny
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and

=
trialu(x, y) :== (5 s16 A — (s12 + s66) B+ 526 D) y*

H((0511 4 4516 B+ 252D x+ 4516 € - (sl +566) E)y +(
3(25HB-sI6D)x +3(4511C _SI6E)x+3sl6F (512 1566)C
s D s Il b SlaC )y
+(s11 G-s16 L)x*+ (2511 H—s16J+2sI2K)x+wy + u0

=0 L

trialv(x, y) := (5512 A+ .5 522 D — 526 B) y* 7)
+(2(2512B-526D)x+4s512C-526E)y’
32D e Er i ) - 66G 1 92 L)y

+ (226G -6l + 0512 -6 ]2 Ky 5511Dyx 511 Es
— (3511 F-2s16G+(sI2+s66)L)x*+ (2516 H+2s26 K—566J)x—wx

+ v0

Timoshenko’s theory in (Timeoshenko and Goodier,

where uo, vo and o are arbitrary constants. So, the
1970) can be represented as:

displacement components involve 14 undetermined
constants. The boundary conditions BC1 for the

=h2 —-> o =0 =-h2 —> o =- =th/2 =0
y y ® Y y q @ Yy - Txy

x=0,y=0,- uzQV:QQX:O ® x=Ly=0,-> u=Qv=Q§X:O
ox ox

and x=12,y=0 »> u=0

We obtain 11 equations equal to 0:

> equationl:=subs (y=h/2,sigmay) ;

1
equationl :=ZD G

>equation2:=subs (y=-h/2,sigmay+q) ;

1
equation2 :=—1Dh3—Lh+2K+q
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>equation3:=subs (y=h/2, toxy) ;

1 3 3
equation3 =—=Bh —=Dx h*-

—_ 2_ — —
> 2 4Eh Gn 21Lx |

>equationd :=subs (y=-h/2, toxy) ;

1 3 3
equationd :=§Bh3—§th2—1Eh2+Gh—2Lx—J

>equation5:=subs (x=0,y=0, trialu(x,y))
equation$ = u(

>equation6:=subs (x=0,y=0,trialv(x,y))
equation6 := v0

>equation7:=subs (x=0,y=0,diff (trialv(x,y) ,x))
equation/ =2 sI6 H+2 526 K —s66 J— w

>equation8:=subs (x=1,y=0,trialu(x,y))
equations =15l G slo L) L e

>equation9:=subs (x=1,y=0, trialv(x,y))
equation9 =—5s11DI*—sl1 EPP— (3511 F-2516 G+ (s12+566)L) I*
+(2sI6 H+2 526 K—566J)]—wl+ vl

>equationl0O:=subs (x=1,y=0,diff (trialv(x,y) ,x));
equationl0 - 20sIIDF 8sITEPF 23sIIF D66 (sl :566)1)!
+2516 H+2 526 K— 566 J—w

>equationll:=subs(x=1/2,y=0,trialu(x,y));

1 ]
equationl] =, (s11 G - s16 L) e 5 (2511 H-516 J+2 512 K) I+ uf
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Together with the 3 equations in (5), we get 14 equations to determine 14 unknown constants:
=
sl6 S16 [ [
(G= q i q q

= - S e |
s C= o E=2 55 0=0,u0=0,D=2. -5, [ =4,
K =-.2500000000 ¢, w= 5000000000

g(2.x516>+3.1516*—1.516 512 h+2. 511 s66x—3. 511 566 1+526 hsll)
hsll

>)

L 2.x516—-3. 1516 +s12
J = 5000000000 M,HZ.ZSOOOOOOOO g(2 xsl6 3 1sloisl2h)
k hsil
. 000000000 LSz B sl vob 2 516 )q
i’ ’
Fo 3333333333 4 (s1I? P+ 511512 h* + 511 566 h* — 2. h* 516%)
. W sll? ;
B o s16 q}}
sl1 h

-

The components of stress:

=
Jls12 x5l s66-2 516 ) gy 74 &I :
sigmaxsub = 8.000000000 {511 S12+ 11566 - 2.5167) qy” 24.516qxy
sl1’h sI1h
sI6Gly 12gry 1Dgley
* = +
sl n’ h’ n
_2.000000000 g (s11% P + 511 512 h* + 511 566 h* - 2. h* 516%) y L 2sl6qx
B sll sI1h
, -5000000000 g (2. x 516 —3. 1516+ 512 h)
hsll (8)
= .
qy’ 2qy
sigmaysub = —4 7 t - .5000000000 ¢ (8b)
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= .
. <I6gy: 1Dgxy 64dly 95l6qy Dgx
toxysub = 8. T + T T
i .SOOOOOOOOth (2x=3. 1) (8¢)

The components of displacement:

8

s16 (s11s12+s11 566 —2.516%) ¢q . 2.(s12+566)s16q 2s526¢q

2.000000000
sI1*n? sl h? n?
11512 +s11 566 —2.s16* . 516* 4512
v+ [[ 8.000000000 (11812511566 22.516%) g  8.5167g 451243
sIlh sIlh h
. 4s162?l_ 2(s12+3s66)ql v+, s16?x2 . 6s163qlx
sl h h h h
19999999999 5716 g (s11* > +s11 512 h* + s11 566 h* — 2. h* s16%)
- B 511> (Oa)
(s12+566)s16q 2526q) , (  sllgx’  6sll1qlx’
sl h * h v n * hl *
22 2 2 2 2
—5.000000000 q(sl1=F+sllsl2h +s13] s66 h™—2. h~sl6 )+ 2512 ¢q
sll h h
2516° g q(2.xs16—-3.1s16+s12h)
- S]]h] xj y+ (.5000000000 ;
. 16q(2.x-3.1
- SOOOOOOOOOS;"( *=3-D _ 5000000000 qlejx—.SOOOOOOOOO g
(=2.x516%+3. 1516 —1.516 512 h+2. 511 566 x— 3. s11 66 [+ 526 h s11) y/(
hsll)
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. 2
v = 2.000000000 s12 (sl s]2+s]§ sf6 Zslo)g 10 s§2q i 2. s26s136q 4
s11”h h si1 h

. _4.s12s163q+2s236q x+4s12s1§ql_2s2(§ql Pl
sl h h silh h

5 g x* L2qlx 3333333333 4 (sI1? P+ 511512 h* + 511 s66 h* - 2. h* s16°)
n n’ n s1l?
]_s26s16q s22q] . ( (s12s16q_s26qjx

Wiy i h

B .5000000000 s72 g (2. xs16 —3.1s16+s12 h)
hsll

5000000000 526 ¢ (2. x - 3. 1)
h

1.0 s11 g x*
h3

—.5000000000 s22 q)y +

dsllgly
i
25167 12 + 566

g q+(s +s )q]x2+[

A (sIIZE il si2h tslls6oh =2 I slo)
sl k®

P (—.999999999

sl h h

s16 g (2. xsl6 — 3. [sl6 + 512 h)
h sl

_ 5000000000 566 g (2. x~3.1)
h

(-2. x516%+ 3. 1516°— 1. 516 512 h+ 2. s11 566 x— 3. sl 566 1+ 526 h 511 ) x/(

.5000000000

- .5000000000 526 g

j x + .5000000000 g

hsll)

(9b)

The boundary conditions BC2 for the Goodier ’s represented as:
theory in (Timoshenko and Goodier, 1970) can be

=h2 —- o =0 =-h2 - o _=- =+h2 —
y y @ Yy y q @ vy TXy

ou
x=0,y=0, > uzo,v:o,a—u:o S x=Ly=0,—> u=0,v=0,—
oy oy

and x=12, y=0, > u=0

Similarly, we will have the results of stresses and displacements.
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Example and comparison of the results of BC1, BC2
and FEM

Suppose that the geometric parameters of the beam
are: span 10 m, height Im and width unit. The uniform
load intensity is q =10" N/m. The material properties
are: s, =11.162x10"2, 5, =-4.557x107"7,

-12 -12

s, =1.847x1072, 5, =11.970x1072,

$,0=2171x10", 5, =33.778 x10™  (unit;

008 —

0.0

.05

12

0ol

ILIx - ol
'I:I.I:I i i .0 (L L.

0
Figure 2: Dimensionless displacement
component v at y =0

CONCLUTION

fixed-fixed
anisotropic beam subjected to uniform load are

The approximate solutions for

presented in this paper. The solutions supply a classical
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m*.N"). Figure 2 shows the curve of displacement
component v at y=0 (the deflection of the neutral axis)
and Figure 3 shows the curve of displacement
component u at y = —h/2, for BC1, BC2 and FEM finite
element method. The FEM results are achieved by
ABAQUS. The boundary conditions for FEM are
treated as: (i) x=0,1,-h2<y<h/2,u=v=0; (ii)) y=
h2,0<x<], 5w=0,=0, (iij) y=-h/2,0<x <1, 06, =
10 Pa, 1,, = 0. The Quad4 element of 0.01 mx 0.01 m
is employed and the total elements for the whole beam
are 1000.
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Figure 3: Dimensionless'ta!isplacement
component u at y =—h/2

example for the elasticity theory. Numerical tests show
that the solutions agree with the FEM results. The
approximate solutions of the two types of description
for fixed-end boundary provide a theoretical range for
FEM results.
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