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ABSTRACT 

Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possible only 

when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Using the commercial F.E.A. 

program ANSYS (v.12.0) (to model the Winkler and Brick-full bond models) and program ABAQUS(v.6.9) (to model the Brick-

interface model), the stress matrix considering a dynamic load was superposed on the stiffness matrix of the structure. A time domain 

solution is recommended, using the generalized Morison’s equation by FORTRAN90 program to construct a program to calculate the 

wave forces, and Airy's linear and Second Order Stoke's wave theories are employed to describe the flow characteristics by using 

MAPLE13 program (to solve and apply the boundary conditions of the problems on Laplace's equation), and the results are 

compared and discussed. Both free and forced vibration analyses are carried out for two case studies. 

KEYWORDS:  Natural frequency, Fixed jacket offshore, Finite element method, Validity of wave theory, Dynamic 
analysis. 

 
INTRODUCTION 

 
The development of the offshore oil industry led to 

numerous installations of offshore platforms. The 
major use of these platforms is in the drilling for oil 
and gas beneath the seafloor. Other uses include, but 
are not limited to, military applications, navigational 
aid to ships and generating power from the sea. 

Modal test which is one of the examination 
assessments is the method to analyze the dynamic 
characteristics. It is a method to measure frequencies, 
finding the natural frequency of the fixed jacket 
platform and forecasting the vibration phenomenon for 
mode shape. In case of domestic applications, the study 
of fixed jacket platform system has been actively 
conducted in some big corporations, small and medium 
enterprises and national researches. But it was 
impossible to obtain systematic data.  

Based on this design, we calculated the complex 
load on the offshore (fixed jacket platform). 
Calculations in the offshore have to take into account 
wave load(caused by waves). However, since current 
load is insignificant compared to wave load, it can be 
ignored. 
 

LOAD CALCULATION IN OFFSHORE 
 
The loads that strongly affect offshore structures 

can be classified into the following categories; 
1. Permanent (dead) loads. 2. Operating (live) loads. 
3. Environmental loads. 4. Construction-installation 
loads. 5. Accidental loads. 

Whilst the design of buildings onshore is usually 
influenced mainly by the permanent and operating 
loads, the design of offshore structures is dominated by 
environmental loads, especially waves, the impact and 
loads of which arise in the various stages of 
constructional installation. Accepted for Publication on 14/6/2012. 
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Environmental loads are those caused by 
environmental phenomena such as wind, waves, 
currents, tides, ice and marine growth. Their 
characteristic parameters, defining design load values, 
are determined in special studies on the basis of 
available data. 

In this study, the effect of wave, impact and ground 
motion will be taken into consideration in the dynamic 
analysis of the offshore structures. 

For an offshore platform, the most important loads 
are the hydrodynamic loads and impact loads which are 
included in this study. These hydrodynamic forces are 
governed by sea waves, while impacts usually occur 
during berthing of ships. The most widely used 
approach to determine the hydrodynamic loads (water 
wave forces) acting on the members of a structure is 
normally the semi-empirical Morison's equation. This 
equation is originally developed to compute the 
hydrodynamic forces acting on a cylinder at a right 
angle to the steady flow, and is given as: 

 
2 1

        
4 2m d

D
dF C a ds D C V V dsρπ ρ= +

    
(1) 

 
In this equation, it is assumed that the wave force is 

acting on the vertical distance (ds) of the cylinder due 
to the velocity (v) and acceleration (a) of the water 

particles, where (ρ) is the density of water, (D) is the 
cylinder diameter, (Cm) and (Cd) are inertia and drag 
coefficients (Madhujit and Sinha, 1988). 

Various methods exist for the calculation of the 
hydrodynamic loads on an arbitrarily oriented cylinder 
by using Morison's equation. The method adopted here 
assumes that only the components of water particles 
and accelerations normal to the member produce loads 
(Qian and Wang, 1992). 

To formulate the hydrodynamic load vector Fw, 
consider the single, uniform, cylindrical member (i) 
between nodes I and J as shown in Fig. (1). The forces 
are found by the well-known semi-empirical Morison's 
formula (Equation(2)). It also represents the load 
exerted on a vertical cylinder, assuming that the total 
force on an object in the wave is the sum of drag and 
inertia force components. This assumption (introduced 
by Morison) takes the drag term as a function of 
velocity and the inertia force as a function of 
acceleration (Zienkiewicz et al., 1978; Dean and 
Dalrymple, 1984; McCormick, 1973), so that: 
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Figure 1: Water particle velocities along member i
MEMBER i                        s
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which can be simplified to: 
 

)v(.)(.C.D..C.D.F nndnmn νρνπρ
2
1

4
2 +′=                  (2.b) 

 
where: 
Fn: nodal hydrodynamic force normal to the cylinder.   
D: Outer diameter of cylinder.     ρ: Sea water density. 
Cd: Drag coefficient.   nν ′ : Water particle acceleration. 
Cm: Inertia coefficient.     vn: Water particle velocity. 

nu′ : Structural velocity. nu ′′ : Structural acceleration. 
Equation (2.b) neglects the non-linear terms of drag 

coefficient (Al-Jasim, 2000; Sarpakaya and Issacom, 
1981), water particle velocity and acceleration can be 
evaluated by potential velocity computed from wave 
theories, the absolute value of velocity is needed to 
preserve the sign variation of the force. 

Generalizing the one-dimensional form of 
Morison's equation to the three-dimensional from of 
the hydrodynamic force per unit length along the beam 
element at location (s) measured from its end to the 
nearest node is given as (Zienkiewicz et al., 1978): 
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                 (3) 
The hydrodynamic force per unit length vector is 

given as: 
 
{ }

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)s(F
)s(F
)s(F

)s(F

z

y

x

w                                                 (4) 
 
and the normal water particle velocity and 

acceleration vectors are given as: 
{Vn(s)}=[s]{u(s)} and {an(s)}=[s]{a(s)}                   (5) 
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where; I: is the (3x3) identity matrix, s : is the unit 

directional vector along the member and S1, S2 and S3 

are directional cosines in x, y and z directions, 
respectively (Zienkiewicz et al., 1978), and: 
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These velocity and acceleration components are 

derived in detail in the next section. 
Now, to calculate the load vector in global 

coordinates system, the element is divided into two 
parts by using equation (4) distributing the wave 
effects on the beam element equally to the end nodes as 
nodal forces. Therefore, the element of hydrodynamic 
load vector { }ef  corresponding to the element nodal 
displacement vector{q} can be expressed as follows: 

 
ENVIRONMENTAL LOADS 

 
The external loads include hydrostatic pressure, 

wind, waves, currents, tide, ice, earthquakes, 
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temperature, fouling, marine growth and scouring. 
 

Hydrodynamics of Water Waves 
Ocean waves are undulations in the water's surface 

resulting in the transfer and movement of energy. The 
disturbance is propagated by the interaction of 
disturbing (e.g. wind) and restoring (e.g. gravity) 
forces. The energy in most ocean waves originates 
from the wind blowing across the water's surface. 
Large tsunami or seismic sea waves are generated by 
earthquakes, space debris, volcanic eruptions or large 
marine landslides. On the other hand, tides, the largest 
of all ocean waves, result from the combined 
gravitational force exerted on the oceans by the sun and 
the moon (Glossary, 2002). 

Dean (1968, 1974) presented an analysis by 
defining the regions of validity of wave theories in 
terms of parameters H/T and d/T, since T is 
proportional to the wavelength. Le Mehaute (1969) 
plotted a figure to aid in the selection. This figure 
shows the validity of different water waves based on 
the water depth(d), the wave height(H) and the wave 
length (L) as shown in Fig.(2). 

For the sake of comparison, two wave theories are 
used to evaluate the velocity and acceleration of water 
particles: Airy wave theory (linear) and Stoke's second 
order theory (non-linear). The loads resulting from 
using these theories with Morison's equation are 
applied on the platform and the resulting bending 
moments, axial forces and displacement variations with 
time of the platform (at a point on the top of the 
platform and near the sea bed on the platform) are 
plotted to show the differences between the theories. 

Both Le Mehaute and Dean recommend cnoidal 
theory for shallow-water waves of low steepness and 
Stoke’s higher order theory for steep waves in deep 
water. For low steepness waves in transitional and deep 
water, linear theory is adequate but other wave theories 
may also be used in this region. Fenton's theory is 

appropriate for most of the wave parameter domain 
(Demirbilek and Vincent, 2002). 

Airy linear theory is the common linear wave 
theory. Stoke’s theory assumes that wave motion 
properties such as velocity potential (φ) can be 
represented by a series of small perturbations. The 
linear Airy wave theory can be used when the wave 
height to wave length 1

( )
50

H

L
≤  as given in 

(McCormick, 1973). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Hydrodynamic Forces 

In order to calculate the hydrodynamic forces 
acting on the members of an offshore structure, it is 
required first to describe the sea state as occurring in 
nature which determines the wave surface profile and 
then the characteristics of the water wave particles 
hitting the structure. It is always assumed that the water 
waves are represented as two-dimensional plane waves 
that propagate over a smooth horizontal bed in water of 
a constant undisturbed depth (h). 

It is also assumed that the waves maintain a 
permanent form, which means that there is no 
underlying current and that the free surface is 
uncontaminated. The fluid (water) is taken to be 
incompressible and inviscid and the flow to be 
irrotational (Dean and Dalrymple, 1984). 

Figure 2: Validity of water wave theory (Al-Jasim, 2000) 
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Fig.(3) indicates the general form of the xz-plane 
wave train conforming to these assumptions. Here, the 
wave is progressive in the positive x-direction and the 
z-axis measured positive upwards from the mean water 
level, the wave height being H, the wave length L, the 
wave period T and η the elevation of the water above 
the mean water level (Al-Salehy, 2002). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Definition of terms used in the wave equations 

 
The surface must satisfy the special linear form of 

the wave equation of Laplace solution to obtain the 
velocity potential ( )φ  and is subjected to the above 
conditions and linearized boundary conditions.   
 
 2 2
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To solve Equation (9), some BCs must be satisfied 

(Al-Salehy, 2002; Dean and Dalrymple, 1984; 
McCormick, 1973): 
1- At the Sea Surface (Air-Water Interface) 
(a) The velocity of a particle must be tangential to the 

surface, the kinematic condition is: 
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(b) The pressure is zero and the energy equation must 
be satisfied, the dynamic condition is: 
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2- At the Sea Floor Where the Vertical Velocity is 
Zero 
That is: 
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The components of water particle velocity can be 

given as (Essa and Al-Janabi, 1997): 
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whereas, the components of the local particle 

acceleration, which are only taken into account in the 
computation of the hydrodynamic force are given as: 
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The major problem in solving for ( )φ  arises from 

the boundary conditions to be applied at the air-water 
interface, η (t), being itself part of the solution sought. 
Therefore, there are several solutions in common use. 
These are linear wave theory in deep water, Stoke’s 
higher order wave theories, stream potential function 
theory and Cnoidal theories in shallower water 
(Sarpakaya and Issacom, 1981). 

In the present study, only the linear (Airy) wave 
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theory and Stoke’s second order theory are considered 
to compute the characteristics of water particles and the 
hydrodynamic forces. 

To find velocities and accelerations that are used in 
Morison’s equation, Laplace equation must be solved 
by considering the BCs at the sea surface η(t), being 
itself part of the solution sought. Therefore, different 
wave theories are used as mentioned.    

The linear wave theory (Airy theory) is used only to 
find velocities and accelerations at different depths, 
locations and times. 

 
Wave Theories 

All wave theories obey some form of wave 
equation in which the dependent variable depends on 
physical phenomena and boundary conditions (Al-
Salehy, 2002). In general, the wave equation and the 
boundary conditions may be linear or non-linear.  

Some of these theories are shown in profiles 
Fig.(4): 

 
1- Airy Wave Theory: (Sinusoidal Waves) 

This theory: 
- is most accurate for low amplitude waves in deep 

water.  
- is less accurate for predicting wave behavior in 

shallow water.  
- is the most commonly used wave theory because it 

is the least mathematically complex one. 
- does not take into account the effect of wave height 

in determining wave velocity.  
 

Stoke’s Wave Theory (Trochoidal Waves) 
This theory: 

- can be used for deep, intermediate and shallow 
water waves.  

- is mathematically complex.  
- takes into account the effect of wave height on 

velocity.  

- more accurately describes orbital velocity 
asymmetries. 
 
 
 
 
 
 
 
 

Figure 4: Wave profile shapes of 
different progressive gravity waves 

(Demirbilek and Vincent, 2002) 
 
Airy Theory (Linear Wave Theory) 

This theory is termed following a linearization of 
the boundary conditions at the air-water interface. In 
this theory, the essential idea or restriction is that the 
wave height (H) must be much smaller than both the 
wave length (L) and the still water depth (d); that is 
(H<<L, d). The linear wave theory for two-
dimensional, free, periodic, waves is developed by 
linearizing the equations that define the free surface 
boundary conditions. With these and the bottom BCs, 
the periodic velocity potential is sought that satisfies 
the requirements of irrotational flow. The free surface 
BCs may now be applied directly at the still water level 
(Dean and Darlymple, 1984). 

Therefore, the free surface BCs, as expressed in 
Equation (12.a) and Equation (12.b), are reduced to: 

 
0
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By using separation of variables and BCs (Equation 

12.a, b), the velocity potential ( )φ  can be found as 
(Othman and Dawood, 2002): 

STOKE’S WAVES 
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in which: 

k: wave number (݇ ൌ ଶ.గ
௅

); T: wave period; 
 
Ω: wave circular frequency ( 2 .

T
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Ω = ); 

 
h: depth of water; H: wave height. 

Now, it is simple to obtain the velocities and 
accelerations as: 
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These velocities and accelerations in Equation (14) 

and Equation (15) are used in Morison's equation to 
calculate load vectors of hydrodynamic loading by 
using linear Airy wave theory after being transformed 
from global coordinates for each member of the 
offshore platform. 
 
Stoke’s Second Order Wave Theory 

Stokes (1874) employed perturbation techniques to 
solve the wave boundary value problem and developed 
a theory for finite—amplitude wave that he carried to 
the second order. In this theory, all the wave 
characteristics (velocity potential, celerity, surface 
profile, particle kinetics…etc) are formulated in terms 
of a power series in successively higher orders of the 
wave steepness (H/L).  

A condition of this theory is that (H/d) should be 

small so that the theory is applicable only in deep water 
and a portion of the intermediate depth range. 

For engineering applications, the second-order and 
possibly the fifth-order theories are the most commonly 
used (Sorensen, 2006). 

Stoke’s wave expansion method is formally valid 
under the conditions (Iraninejad, 1988): 

 
H/d << (kd)2  for   kd < 1  and   H/L << 1. 
 
Stoke’s wave theory is considered most nearly valid 

in water where the relative depth (D/L) is greater than 
about (1/10) (Patal, 1989). 

Stoke’s theory would be adequate for describing 
water waves at any depth of water. In shallow water, 
the convective terms become relatively large, the series 
convergence is slow and erratic and a large number of 
terms is required to achieve a uniform accuracy (Muga, 
2003). 

The fluid particle velocities are then given by: 
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The fluid particle accelerations are then given by: 
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These velocities and accelerations in Equation(16) 

and Equation(17) are used in Morison's equation to 
calculate load vectors of hydrodynamic loading by 
using Stoke’s wave theory after being transformed 
from global coordinates for each member of the 
offshore platform. 

 
DYNAMIC ANALYSIS 

 
In offshore structures, the applied loads 

(environmental loads) generally have a dynamic nature. 
To study the behavior of these structures, free vibration 
and forced vibration must be considered in order to 
understand the actual (as possible) behavior and 
response. 

 
Free Vibration Analysis 

The equations of motion for a freely, undamping 
system can be obtained by omitting the damping matrix 
and applied load vector from Equation(2) to get: 
 
ሾܯሿ ൛ ሷܷ ൟ ൅  ሾܭሿሼܷሽ ൌ 0                                  (18) 

 
The solution of this equation, which is known as an 

eigenproblem, can be postulated to be of the form: 
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where { }U  is the vector of amplitudes of motion 

(which does not change with time). The substitution of 
equation (19) into the equation of free vibration 
equilibrium (18) gives: 
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Since the sine term is arbitrary and may be omitted, 

the above equation is reduced to the form: 
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According to the Cramer's rule, the solution of this 

set of simultaneous equations is of the form:  
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Hence, a nontrivial solution is possible only when 

the denominator determinant vanishes. In other words, 
finite amplitude free vibrations are possible only when:  
 
[ ] [ ]2

0ωΚ − Μ =                                  (23) 
In general, equation (23) results in a polynomial 

equation of degree N in 2ω  for a system having N 
degrees of freedom. This polynomial is known as the 
characteristic equation of the system. The N roots of 
this equation, which are called the eigenvalues, 
represent the frequencies of the N modes of vibration 
which are possible in the system (Paz, 1980). 

Corresponding to each eigenvalue, there will be an 
eigenvector, or natural mode { }nU , where: 
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The modes are determined only within a constant 

multiplier. Thus, modes can be normalized in any 
convenient manner. Therefore, if the value of one of 
the elements of the natural mode vector { }NU  is 
assigned as a specified value, say a unity for the first 
element, then the remaining (N-1) elements are 
uniquely determined. The process of normalizing a 
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natural mode is called normalization and the resulting 
modal vectors are called normal modes. For 
convenience, these normal mode vectors are usually 
expressed in a dimensionless form by dividing all the 
components by one reference component. The resulting 
vector corresponding to the nth eigenvalue is called the 
nth mode shape {φ n} (Clough and Penzien, 1975), 
thus: 
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In which nkU  is the reference component.  
The square matrix made up of the N mode shapes 

will be represented by[φ ]: 
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These mode shapes have certain special properties, 

which are very useful in the structural dynamic 
analysis. These properties are called the orthogonallity 
relationship (Biggs, 1964), which can be expressed for 
any system as:  
 
{ } [ ]{ } 0               for  m n

T

m n
φ φΜ = ≠    (26) 

and 
 
{ } [ ]{ } 0                  f o r   m n

T

m n
φ φΚ = ≠  

ANSYS12.0 and ABAQUS6.9 programs use a 
method of subspace iteration, this method requires the 
Jackobi method, Ritz reduction functions and iterative 
procedure as detailed in (Zienkiewicz et al., 1978; 
Bathe and Wilson, 1977). 

Forced Vibration Analysis 
To understand the response of offshore structures 

subjected to a load of dynamic nature, forced vibration 
analysis is used to get the response of the platforms to 
these forces. 

There are different methods available for evaluating 
the structural response to dynamic loads, such as 
frequency domain analysis, direct integration 
method,…etc. These are Newmark’s implicit, most 
flexible step-by-step integration methods in time 
domain, presented by Newmark (Zienkiewicz et al., 
1978; Bathe and Wilson, 1977; ANSYS, 1997; Vugts 
and Hayes, 1979). This method (including an improved 
algorithm called HHT (Chung and Hulbert, 1993) and 
using finite difference expansions  in the  time interval 
( t∆ )) is based on the following expressions for the 
velocity and displacement at the end of the time 
interval (Bathe and Wilson, 1977). 
 

(1 )t tt t t tu u t u t uδ δ+ ∆ + ∆= + ∆ − + ∆& & && &&        (27) 
 
ut+∆t= ut + ∆t 2)t(u t ∆+& ( α−

2
1 ) ttt u)t(u ∆α∆ ++ &&&& 2  (28) 

 
where α,δ are selected to produce the desired 

accuracy and stability. One of the most widely used 
methods is the constant average acceleration method 
when (δ=0.5, α=0.25) which is a conditionally stable 
method without numerical damping. This method is 
called an (implicit integration method), since it satisfies 
the equilibrium equation of motion at time t+∆t, or: 
 
M tttttttt FKuuCu ∆∆∆∆ ++++ =++ &&&               (29) 

 
This equation can be solved by iteration; however 

Equations (27), (28) and (29) can be combined into a 
step by step algorithm which involves the solution of a 
set of equations. Each time step is of the form: 
 
K* .U 

t+∆t  = F*                                                            (30) 
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Since K* is not a function of time, it can be 
triangularized only once at the beginning of the 
calculation. The computer solution time for this type of 
algorithm is basically proportional to the number of 
time steps required. 

 
LOAD CALCULATION IN OFFSHORE 

 
In order to investigate the dynamic response 

method in this study, a jacket type model of an offshore 
platform type structure has been considered in this 
paper, and for the sake of comparison, two wave 
theories are used to evaluate the velocity and 
acceleration of the water particles; namely the Airy 
wave theory (linear) and Stoke’s second order theory 
(non-linear). The loads resulting from using these 
theories with Morison's equation are applied on the 
platform and the resulting bending moments, axial 
forces and displacement variations with time of the 
platform (at a point on the top of the platform and near 
the sea bed on the platform) are plotted to show the 
differences between the theories.  

Finite element method is used for both spatial and 
temporal coordinate systems. 

To take the effect of soil-structure interaction into 
account, the two models are analyzed using Winkler, 
Interface (F.E.) and Full Bond (F.E.) methods which 
have different treatments in representing the soil-
structure relation as discussed earlier. The length of 
pile embedment in the soil, the end conditions of the 
pile: spring, hinged and fixed, and modeling of inertia 
forces as lumped mass are taken into account. 

 
Structure Description 

Fig. (5) shows that the fixed jacket offshore 
platform model described in (Al-Salehy, 2002; Carpon 
et al.) is adopted. The frame is descritized into (178) 
beam elements for superstructure and (240) beam 
elements embedded in elastic soil used to model the 

four piles embedded to a depth of (60m) below 
mudline in the sea bed that support the platform and 
(303) nodes. 

A FORTRAN program is constructed to calculate 
the water particle velocity and acceleration by using 
two theories: Airy theory and Stoke’s second order 
theory. Also, this program calculates the wave forces at 
each node in the superstructure embedded in the fluid 
medium by using Morison's equation.  

 
The forces on each member are calculated and then 

distributed on the nodes for x, y and z-directions. 
 
The deck mass is modeled using the lumped mass 

in five nodes forming a pyramid (Al-Salehy, 2002; 
Carpon et al.). This model is the same model adopted 
by Al-Salehy (2002) taking the Winkler model with 
isolated springs at nodal points only to represent the 
soil resistance taking into account normal and 
tangential moduli of subgrade reaction in three 
directions for each node. Table (1) contains the 
properties of the piles, while the properties of the steel 
and physical properties of the soil are defined in Table 
(2). 

 
Table 1. Properties of piles 

 

Member 
Number 

Shape 
Outer 
Dimension 
(m) 

Thickness 
(mm) 

1 
Circular 
Pipe 

2.0 55 

2 
Circular 
Pipe 

1.525 38 

3 
Circular 
Pipe 

0.91 25 

4 
Circular 
Pipe 

0.75 25 
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Table 2. Properties of material 

Material 
Modulus of 
elasticity 
(Es) ( /

2

kN m ) 

Density 
( / 3ton m ) 

Poisson’s 
ratio (µ) 

Steel 200E6 7.8 0.3 

Soil 45E3 1.9 0.3 

 
Soil Properties 

The effect of soil type on the dynamic response is 
studied by using three types of soil in addition to the 
soil of the case study 1. The soil properties including 
elastic modulus, Poisson's ratio and density are given in 
Table (3) (Rubin and Coppolina, 1983). 

 
Table 3. Physical properties of soils 

Soil 
Modulus of 
elasticity (Es) 
( )/kN m 2

 

Density
( )3/ton m  

Poisson’s 
ratio (µ) 

Soft clay 15E3 1.8 0.3 

Medium 
clay 

30E3 1.9 0.4 

Hard 
clay 

60E3 1.9 0.3 

 
Free Vibration Analysis 

Free vibration analysis is carried out taking into 
account the length of pile embedment in the soil, the 
end conditions of the pile: spring, hinged and fixed, 
and modeling of inertia forces as lumped mass. 

Table (4) compares the fundamental four modes of 
natural frequencies of the present work for spring pile 
tip in Winkler model and for fixed pile tip in [Brick 
model(Full bonding) and Brick model with interface 
element] with that reported by Al-Salehy (2002). Al-
Salehy used isolated springs to represent the soil-
structure interaction. The tabulated data shows that the 
results obtained by the present work for Winkler model 
are higher than those given by Al-Salehy for sway, 

bending and axial modes due to stiffer model adopted 
in the present study. But the values of natural 
frequencies are close in torsion mode. This is because 
the pile legs of the structure prevent the superstructure 
from rotation and there is no effect of the torsional 
stiffness of the piles at different lengths of the piles on 
the torsional stiffness of the entire structure. 

The main variables adopted in the free vibration 
analysis are soil properties (according to type of soil). 
The first four values of cyclic natural frequencies 
obtained from the different three models (Winkler, Full 
bond and Interface) (Al-Salehy, 2002) are shown in 
Table (5). 

 
Table 4. Natural frequencies for basic modes of 
vibration for different models of soil-structure 

interaction for case study 

Mode 

Present work (ANSYS and 

ABAQUS) Lumped (Hz) 
Al-Salehy 

(2002) 

(STAADIII)

(Hz) 
Winkler

Brick (Full 

Bonding) 

Brick 

(Interface) 

Sway 0.38297 0.37947 0.31137 0.207 

Torsion 0.69980 0.69789 0.57251 0.725 

Bending 1.51347 1.47543 1.52865 1.507 

Axial 1.53777 1.51501 1.55023 0.940 

 
Table 5. First four natural frequencies for 

different types of soils (case study) 

Soil 

Type 

Model 

Winkler 

(Hz) 

Brick 

(Full 

Bond) 

(Hz) 

Brick (with 

Interface Element) 

(Hz) 

Soft clay 

0.11534 0.08553 0.06384 

0.3401 0.32121 0.2397 

1.09171 1.05369 1.0756 

1.3455 1.19533 1.13723 
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Medium 

clay 

0.28723 0.2400 0.19694 

0.3499 0.34196 0.28053 

1.51347 1.3879 1.43796 

1.5378 1.4469 1.48054 

Hard 

clay 

0.62233 0.52192 0.44202 

0.7155 0.60223 0.50966 

1.9457 1.85244 1.6004 

2.08617 1.9361 1.96207 

 
Forced Vibration Analysis 

Different computer programs are used in 
calculating the dynamic response of the adopted case 
studies. Software ANSYS12 for Winkler and Brick 
(Full Bond) models and software ABAQUS6.9 for 
Brick (with interface element) model are used. 

The effect of wave theory used was studied in the 
forced vibration analysis of offshore jacket platform 
with soil–structure interaction subjected to wave 
loading only. 

To study the action of wave forces on the dynamic 
behavior of the offshore platform model shown in Fig. 
(5), the following wave parameters have been 
considered (Al-Salehy, 2002): 

Wave height = 21 m, Wave period = 12 sec, 
Wave length = 225 m, Water depth = 115 m, 
Water density = 1025 kg/m3. 
The assumed value of the viscous damping ratio is 

(5%) for all modes of vibration considering (2%) as 
hydrodynamic damping, whereas the remaining (3%) 
simulates energy dissipation from sources other than 
hydrodynamic, called structural damping (Al-Salehy, 
2002; Al-Jasim, 2000). 

The inertia coefficient  (CM)  and drag coefficient 
(C D) are estimated from laboratory experiments 
indicating a general range from 1.2 to 2 for 

MC  and 
from 0.6 to 1.2 for 

DC  depending on flow conditions 
and surface roughness (Rubin and Cappolina, 1983; 
Faltinsen, 1990). In this study, these coefficients are 

taken as (2.0) and (0.8), respectively. 
Fig. (7) shows the force-time curve for node (A) 

due to wave loads in three directions using Airy theory 
and Morison’s equation {Equation (2.b)}. 

Fig. (8) shows the comparison between the 
variation of wave forces at node (A) in x-direction with 
time for Airy and Stoke’s theories. 

Figs. from (9) to (20) show (for the case of lumped 
mass approximation using Airy and Stoke’s theories, 
respectively) for Winkler, Brick (full bonding) and Brick 
(with interface element) models, respectively, and (spring 
support for pile tip) with Winkler model, (fixed support 
for pile tip) with Brick (full bonding) and Brick (with 
interface element) models, the dynamic response for both 
the bending moment at deck level (member AB) and axial 
force in seabed level (member CD), respectively. It is 
shown that the two curves have a similar behavior and 
both of them reached a steady state condition after one 
period of time (only 24 sec), and it is shown that there is 
little increase in (max. value of the bending moment at 
deck level and in max. value of the axial force in sea bed 
level) when using the Stoke’s theory .  

 In addition, the structure response in the case of 
full bond model is less than that resulting from using 
interface model, and the least is for Winkler model. 
This is because the interface element considers relative 
displacement or slip movement between soil and 
structure. 
 

EFFECT OF WAVE THEORY USED ON THE 
PLATFORM DISPLACEMENT 

In this case, the platform model is analyzed to 
evaluate the effect of using different wave theories on 
the variation of displacement with time at point A (as 
shown in Fig.(5)) on the platform due to the variation 
of wave forces calculated by the different wave 
theories.  

Depending on the parameters (D/L) and (H/L) and 
from Fig. (2) (Al-Jasim, 2000), the appropriate wave 
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theory for the cases studied is given in Table (6). 
Table (7) shows the maximum deck displacements 

for all end conditions of pile tip (spring, hinge and 
fixed) and for all soil-structure interaction 
representations (Winkler, Brick (full bonding) and 
Brick (with interface) models). 

The comparison of the results of using other 
theories to using the most suitable theories is given in 
Table (8) for all end conditions of pile tip and for all 
soil-structure interaction representations. 

The comparison between Airy and Stoke’s theories 
by the plot of variation of displacements at node A 
with time for spring end condition of pile tip in 
Winkler model, and for fixed end condition of pile tip 
in Brick (full bond) and Brick (with interface element) 
models and for all soil-structure interaction 
representations is given in Fig. (21). It is obvious that 
there is a little difference in time variation of the 
displacement between the two theories for all soil-
structure interaction representations. 

 
Table 6. The most suitable wave theory for 

waves used 

Case 
Study 

Wave 
length 
(m) 

D
L  

H
L  

Wave 
Theory 

1 225 0.5 0.09 Stoke’s 

2 261 0.08 0.04 Airy 

 
Table 7. Maximum deck displacement with end 

conditions and soil representations 
 

Theory 

Soil-Structure 

interaction 

model 

End 

conditions 

of pile tip 

Max.displacement

(mm) 

 

 

 

Winkler 

Spring 9.1075 

Fixed 8.3555 

Hinge 8.3555 

 

Airy 

 

Brick (full 

bonding) 

Fixed 15.0972 

Hinge 15.0972 

Brick 

(with 

interface) 

Fixed 19.9381 

Hinge 19.9381 

 

 

 

 

 

Stoke’s

 

 

 

Winkler 

Spring 9.654 

Fixed 8.8568 

Hinge 8.8568 

Brick 

(full 

bonding) 

Fixed 16.0332 

Hinge 16.0407 

Brick 

(with 

interface) 

Fixed 21.1942 

Hinge 21.1942 

 
Table 8. Comparison of maximum deck 

displacement with end conditions and soil 
representations from different theories 

Winkler Model 

Case of comparison Displacement ratio 
S A T
S S T  0.943 
F A T
F S T  0.943 
H A T
H S T  0.943 

Brick (full bonding) model 
F A T
F S T  0.942 
H A T
H S T  0.942 

Brick ( with interface) Model 
F A T
F S T  0.941 
H A T
H S T  0.941 

 
SAT: Spring end condition of pile tip, Airy theory. 
FAT: Fixed end condition of pile tip, Airy theory. 
HAT: Hinge end condition of pile tip, Airy theory. 
SST: Spring end condition of pile tip, Stoke’s theory. 
FST: Fixed end condition of pile tip, Stoke’s theory. 
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Figure 10: Time variation for the maximum 
bending moment at the level of deck due to wave 

forces for (Winkler) model by Stoke’s theory 
 

 
 
 
 
 

 
 
 
 

Figure 11: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 

(Winkler) model by Airy theory 
 
 
 
 
 
 
 
 

 
 

Figure 12: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 

(Winkler) model by Stoke’s theory 
 
 
 
 
 
 
 
 
 
 
Figure 13: Time variation for the maximum 

bending moment at the level of deck due to wave 
forces for Brick (full bond) model by Airy theory 

 
 
 
 
 
 
 
 
 

 
Figure 14: Time variation for the maximum 

bending moment at the level of deck due to wave 
forces for Brick (full bond) model by Stoke’s theory 

 
 
 
 
 
 
 

 
 

 
Figure 15: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 
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Brick (full bond) model by Airy theory 
 
 
 
 
 
 
 
 
 

Figure 16: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 

Brick (full bond) model by Stoke’s theory 
 
 
 

 
 
 
 
 
 
 
Figure 17: Time variation for the maximum 

bending moment at the level of deck due to wave 
forces for Brick (interface) model by Airy theory 

 
 
 
 
 
 
 
 
 
 

 
Figure 18: Time variation for the maximum 

bending moment at the level of deck due to wave 

forces for Brick (interface) model by Stoke’s theory 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 

Brick (interface) model by Airy theory 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: Time variation for the maximum axial 
force at the level of sea bed due to wave forces for 

Brick (interface) model by Stoke’s theory 
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Figure 21: Time variation of deck displacement for 
different theories (Airy and Stoke’s) and for 
different soil-structure interaction models 

 
CONCLUSIONS 

 
This research compared the results of forced 

vibration analysis that applied the periodic load to 
exciting force expressed by natural frequency results. 

This research shows the concept of dynamic design 
about two types of wave theories. Therefore, the 
following concluding remarks can be drawn: 
1. The overall dynamic response of the structure 

(offshore structure) is sensitive to the soil-structure 
interaction model. The natural frequencies of the 
interface model adopted in this work are less than 
natural frequencies of other models considered in 
this study, because the interface model considers 
the soil block in addition to the pile foundation 
leading to an increase in the model mass and a 
decrease in the natural frequencies. 

2. The interface element model gave more acceptable 
and reasonable results than the other models 
considered in this study. 

3. The interface model gives more realistic results in 
comparison with the Winkler model. This is 
because the Winkler model concentrates the 
physical properties of soil at the locations of 
springs, while in the interface model the soil 
parameters are distributed among the block 
elements, thus giving the true representation of soil 
behavior. 

4. Wave characteristics represented by wave theories 
used in the present work have a smaller effect on 
behavior and response of the offshore platform. 

5. The results showed a variation in maximum deck 
displacement of about (6%). For the case of 
different wave theories on case study 1, therefore, 
with such range of difference, Airy wave theory 
can be used to reduce the computation effort, 
especially in the first design stages. 
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