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ABSTRACT 

The principles of elasto/viscoplastic finite element analysis were presented and explained, and the results and 
the analysis of some geotechnical problems were presented in this work. Plasticity models such as von-Mises, 
Tresca, Drucker-Prager and Mohr-Coulomb models with associated and non-associated flow rules were 
incorporated in the viscoplastic algorithm. The ultimate bearing capacity of a rigid surface footing on 
weightless clayey soil, Tresca material, predicted by the elasto/viscoplasticity approach agrees very well with 
that obtained by Prandtl exact solution (only 1% above Prandtl exact solution). Solution was also presented 
for complex problems with no available solution such as the problem of an anchor buried in sands (Mohr-
Coulomb materials), where large zones within the soil domain are dominated by tensile stresses as well as 
sharp changes in shear stresses. 

KEYWORDS: Viscoplasticity algorithm, Plasticity models, Associated flow rule, Non-associated 

flow rule, Foundations, Anchors. 

 
INTRODUCTION 

 
Soils are highly non-linear materials with 

anisotropic and inhomogeneous nature. Therefore, exact 
solutions for problems with such complex nature are not 
achievable. Early developments were to incorporate the 
non-linear elastic models such as the hyperbolic model 
in the finite element method (Kondner, 1963; Duncan 
and Chang, 1970). Other types of nonlinear functions 
such as the spline function were also incorporated in 
finite element analysis (Desai, 1971). Non-linear 
elasticity provided solutions, but with limited success. 
Nonlinear elasticity could not model or simulate soil 
dilation on shearing which is an important phenomenon 
for cohesionless soils. Accordingly, analysis 
incorporating such models experience immense 

deficiency in simulating and predicting soil 
deformations as well as stresses developed within soil 
domain due to applied loads and stresses. Plasticity 
modeling, however, represented an enormous step in 
pursuit of accurate prediction of soil behavior even 
under very complex stress systems such as tensile 
stresses and zones of very sharp changes in shear 
stresses. Early works on plasticity modeling with finite 
element method was mainly applied to metal stress 
analysis (Zienkiewicz and Nayak, 1971; Nayak and 
Zienkiewicz, 1972). Implementation of viscoplasticity 
with finite elements (Zienkiewicz and Cormeau, 1972, 
1974; Cormeau, 1974) was intended for solving general 
problems in solid mechanics. Applications of 
viscoplasticity with finite elements using diversity of 
plasticity models were advanced, specifically for 
solving complex problems in geotechnical engineering 
(Abdullah, 1983, 1987a, 1987b, 2008). The various 
plasticity models used were; von-Mises, Tresca, Accepted for Publication on 15/4/2011. 
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Drucker-Prager, Mohr-Coulomb, Rowe’s stress-
dilatancy model, and the critical state model, with 
associated and non-associated flow rules. 

 
Scope of the Work 
1. To illustrate the principles and implementation of 

the viscoplastic algorithm coupled with plasticity 
models in the finite element method. 

2. To demonstrate the powerful nature of the 
elasto/viscoplastic approach for precise analysis of 
complex geotechnical engineering problems. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: Mohr-Coulomb and Tresca plastic yield surfaces 
 

PLASTICITY MODELS 
 
The use of plasticity is intended to model the 

inelastic behavior of soils. This includes the detection of 
inelastic behavior, finding out the amount of 
irrecoverable strains and accounting for changes in 
material strength after plastic yielding had occurred; 
usually called hardening/softening (Nayak and 
Zienkiewicz, 1972; Zienkiewicz and Nayak, 1971; 
Zienkiewicz and Cormeau, 1972; Zienkiewicz and 
Cormeau, 1974; Cormeau, 1974; Abdullah, 1983, 
1987a, 1987b, 2008). In a uniaxial stress system, the 
stress that limits elastic behavior is called the yield 
strength. In three- dimensional stress systems, plastic 

yielding is represented by a surface called the plastic 
yield surface, which separates the elastic state from the 
plastic state. There are several types of plastic yield 
surfaces. The shape of each of these surfaces is 
dependent on the type of soil it represents. Broadly 
speaking, the shapes of the plastic yield surfaces are 
divided into two categories. The first category is the 
hydrostatic stress independent surfaces, such as the von-
Mises and Tresca surfaces which are appropriate for 
modeling cohesive soils (Fig.1, Fig. 2 and Fig.3). The 
second category is the hydrostatic stress dependent 
surfaces, such as Mohr-Coulomb and Drucker-Prager 
surfaces which are appropriate for cohesionless soils or 
mixed soils (Fig.1, Fig. 2 and Fig.3). Mathematically, 
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the plastic yield surface (Table 1) is represented by, 
 

                (1) 
 

where: σ represents the stress components, εp 
represents the accumulated plastic strains and κ is the 
hardening coefficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Drucker-Prager and Von-Mises plastic yield surfaces 
 
Mohr-coulomb and Tresca plastic yield surfaces and 

Drucker-Prager and von-Mises plastic yield surfaces are 
shown in Fig.1 and Fig.2, respectively. The π-plane of 
some commonly used plastic yield functions is shown in 
Fig. 3. 

The conditions for F are; 
F < 0.0  Elastic state of stress; 
F = 0.0  Plastic flow; 
F > 0.0  Not permitted. 
The flow theory of plasticity establishes a 

relationship between increments of stress and strain 
rates, usually known as “normality condition”. The 
latter does not give the magnitude of plastic strain but 
establishes the ratio of the strain components, such that; 

 

                  (2) 
 
 
and                  (3) 
 
where: Q is the plastic potential function and may be 

represented in a fashion similar to the plastic yield 
surface (Eq. 1). d  is a non-negative proportionality 
constant which may vary throughout the loading history. 

The plastic potential may assume the same function 
as that of the plastic yield function, and in this case we 
have what is commonly known as “associated flow 
rule”, such that; 

 
                  (4) 
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Figure 3: π-plane for some commonly used plastic yield functions 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 4: One-dimensional elasto/viscoplastic model 
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Figure 6: Load settlement relationship for a rigid smooth foundation on weightless soil; 

Tresca yield criterion, Plane strain condition, critical time stepping (Abdullah, 1983) 
 
Changes in the state of the yield surface whether in 

shape, size and location compared to its previous state 
are loosely called “hardening”. Hardening is called 
isotropic if and only if the size of the plastic yield 
surface changes, whilst the location and shape does not 
change. On the other hand, hardening is called 
“kinematic” if the location of the yield surface translates 
along the direction of the plastic strain increment. 

Isotropic hardening usually involves one simple 
parameter denoting the state of the material. If plastic 
work is used as the hardening parameter, the process is 
called “Work-Hardening”. It establishes a relationship 
between the plastic work done by the external agency 
and the hardening produced by the plastic deformation, 
which is eventually related to the parameter κ (Eq. 1), 
such that; 

 
                  (5) 
 
where: Wp is the amount of plastic work per unit 

volume. However, the rate of plastic work may be 
positive, zero or even negative depending on the type 
and state of the material. Negative rate of plastic work 
signifies softening rather than hardening. 

If the accumulated plastic strain is taken as the 

measure of hardening, then the process is known as 
“Strain Hardening”. It establishes a relationship 
between the accumulated plastic strain and hardening, 
which is related to parameter κ (Eq. 1), such that; 

 
                    (6) 
 
H is always an increasing function of plastic strain. 

However, the rate of H may become negative as in the 
case of softening. The incremental plastic stress-strain 
law may be given directly from the normality principle 
(Eq. 3), such that; 

 
               (7) 

 
and 

 
 

      or                               (8) 
 
 
 
and 
 

                                                                                      (9) 
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Equation 8 may be rewritten as; 
 
                    or                                                       (10) 
 
where, 321 , aandaa  are the derivatives of 

3, Jandm σσ  with respect to the components of 
stresses and such that; 

 
 
 

                                                                          ;       
 
 
 
 
 
 
                                                               +                  (11) 

 
 
 
 
θ0, σm, σ , Sx, Sy, Sz and J3 are given in the 

Appendix. 
B1, B2 and B3 are constant parameters related to a 

particular plastic yield function (Table 2). 
 

Viscoplasticity Algorithm 
Viscoplasticity is a physically more logical approach 

for simulating material inelasticity behavior than the 
plasticity approach. Moreover, numerically the 
viscoplastic approach eliminates some numerical 
difficulties associated with the elasto-plastic modeling, 
such as strain softening and non-associated flow rules. 
The time factor involved in the viscoplastic model may 
be used to obtain real time dependent solutions, given 
that the parameters involved in the model are 
experimentally determined. It could also be used as a 
pure computational artifice leading to an elasto/plastic 
solution (Nayak and Zienkiewicz, 1972; Zienkiewicz 
and Nayak, 1971; Zienkiewicz and Cormeau, 1972; 
Zienkiewicz and Cormeau, 1974; Cormeau, 1974; 

Abdullah, 1983, 1987a, 1987b, 2008). 
The concept of the elasto/viscoplastic modeling is 

that the material behaves elastically on loading as long 
as the stresses stay within the plastic yield function 
(F<0). Beyond that, there is an additional time 
dependent component of strains (called viscoplastic) the 
rate of which is dependent on the amount of excess 
stress beyond the plastic yield surface. Therefore, the 
total strain rate may be obtained as; 

 
                         (12) 

 
where: [D] = elasticity matrix,   = fluidity parameter, 

F = plastic yield function and Q = plastic potential 
function. 

Also, the following means; 
 
    for F < 0                        (13a) 
 
                               for F > 0                       (13b) 
 

For a uniaxial model, the viscoplastic concept is 
shown in Fig. 4. It consists of an elastic spring 
connected in parallel with a Bingham unit, which 
consists of a plastic unit capable of taking a stress σy 
and a dashpot. The total stress σ may exceed the yield 
value σy by an amount, which is a fact that has a 
physical justification (Perzyna, 1966) and is the 
fundamental difference between plasticity and 
viscoplasticity. The plastic yield surface F, the plastic 
potential surface Q, the normality condition and the 
hardening/softening phenomenon have the same 
meaning as in the context of plasticity. The function F 
may assume a number of forms, linear, exponential, 
logarithmic …etc. The linear form of ))(( FF =δφ is 
fairly adequate to describe the behavior of many 
materials (Zienkiewicz and Cormeau, 1972; Abdullah, 
1983). The viscoplastic solution involves the integration 
of matrix equations in time. There are a large number of 
these stepping schemes. Euler’s forward time marching 
scheme has been shown to be efficient (Cormeau, 1974; 
Abdullah, 1983). In this scheme, it is assumed that 
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viscoplastic strain rate pνε&  remains constant within 
each time interval after it has been determined from a 
state of stress assumed to remain constant at the 
beginning of that time interval. Numerical instability 

may occur if the time interval length is too large. Firstly 
empirical rules were introduced (Zienkiewicz, and 
Cormeau, 1972, 1974), such as; 

 
 

     
p
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≤                                            (14) 
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where; 
 
                                                                              (16a) 
 
 
                             (16b) 
 
 

     (16c) 
 

 
                                                                                                                                                                                  (16d) 
 

 
It was found from numerical experiments that τ 

values ranging from 0.01 to 0.15 gave stable solutions. 
Experiments have shown that none of the empirical 
rules was satisfactory as far as stability and economy of 
the solution were concerned. For associated flow rules, 
and based on the viscous properties of the material, a 
critical time interval length was obtained (Zienkiewicz 
and Cormeau, 1974). For von-Mises, Tresca and Mohr-
Coulomb plastic yield functions, the critical time 
interval length is given as; 
 
Von-Mises                                       (17a) 
 
Tresca                          (17b) 

 

Mohr-Coulomb 
 
                                                                             (17c) 
 
where: E = modulus of elasticity, ν = Poisson’s ratio,  
φ = friction angle and γ = fluidity parameter. 
 

VERIFICATION OF 
THE VISCOPLASTIC APPROACH 

 
In order to demonstrate the powerful nature of the 

viscoplastic approach, a rigid strip surface footing 
resting on weightless clayey soil was considered. 
Prandtl (1920 and 1921) obtained an exact analytic 
solution for a rigid strip surface footing resting on 
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weightless clayey soil. Prandtl (1920 and 1921) found 
that yielding occurs at a bearing pressure equal to πC, 

and the ultimate bearing capacity qu = (2+π) C or qu/C = 
(2+π); (C is the soil cohesion). 

 
 
 
 
 
 
 
 
 
 

Figure 7: Failure mechanism for surface footing elasto-viscoplastic approach and 
Prandtl solution (Abdullah, 1983) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Vertically pulled rigid anchor 
 
For the elasto/viscoplastic finite element solution, 

the soil domain was idealized with a carefully designed 
finite element mesh (Fig. 5). The mesh provided small-
sized elements at areas of load discontinuity and very 
sharp shear stress changes in order to account for such 
sharp changes. The finite elements used were 8-noded 
isoparametric elements, and the material was modeled 
as Tresca type material (Abdullah, 1983). The ultimate 
bearing capacity predicted by the viscoplastic finite 
element approach (Abdullah, 1983) yielded an excellent 

result (Fig. 6) as compared with Prandtl exact solution 
(only 1% above Prandtl exact solution). The load 
settlement relationship (Fig. 6) for the rigid strip surface 
footing resting on weightless clayey soil demonstrates 
that initial yielding started at q/C = π as predicted by 
Prandtl exact solution (Abdullah, 1983). The plastic 
zone or the failure mechanism predicted by Prandtl 
exact method and the plastic zone predicted by the 
viscoplastic finite element solution (Fig. 7) are both 
identical (Abdullah, 1983). 
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Figure 9: Finite element mesh for the anchor problem (Abdullah, 1983) 

 
 
 

 
 

Figure 10: Load displacement relationships for the anchor problem (Abdullah, 1983) 
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Figure 11: Vector displacement field for the anchor problem (Abdullah, 1983) 
 

Table 1: Common plasticity models 
Type of plastic 

model 
Plastic yield function 

Von-Mises  
Tresca  

Drucker-Prager 
 

  

Mohr-Coulomb 
 

 
Table 2: Parameters for some common plasticity models 

Plastic 
model B1 B2 B3 

Von-
Mises 0  0 

Tresca 0  
 

Drucker- 
Prager  1.0 0 

Mohr-
Coulomb   
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Undoubtedly, this example demonstrated that the 
elasto/viscoplastic finite element solution yielded very 
accurate results as far as initial yielding, ultimate 
bearing capacity and failure mechanism were 
concerned. Therefore, for any type of geotechnical 
problem where no exact solution is available, the 
elasto/viscoplastic finite element approach may be used 
to obtain a high precision solution. 

 
ANCHOR PROBLEM 

 
The second problem considered in this work was the 

anchor problem where, due to its complex nature, there 
is no available exact solution. In addition to the plastic 
nature of soils, the anchor problem produces large areas 
dominated by tensile stresses and very sharp changes in 
shear stresses (Fig. 8) which render the problem as 
insolvable by any analytical method. The soil domain 
was idealized by an appropriate finite element mesh 
(Fig. 9), that takes into account the very sharp changes 
in shear stresses as designated by the problem 
description (Fig. 8). The finite elements used were 8-
noded is oparametric elements and the material was 
modeled by Mohr-Coulomb yield criterion (Abdullah, 
1983). The normalized force versus normalized vertical 
displacement for an associated flow rule and a non-
associated flow rule (ψ = 15°, and ψ = 0°) differs, fairly, 
in behavior up till near failure, getting closer at later 
stages of loading, where the effect of dilation due to 
associated flow rule diminishes more and more at later 
stages(Fig. 10). The displacement field for the anchor 
problem shows a large amount of movements around 
the anchor as well as at the soil surface right above the 
anchor (Fig. 11). 

 
SUMMARY AND CONCLUSIONS 

 
Soils are highly nonlinear materials, therefore, 

assuming soils as linear elastic materials produces a 
gross amount of error. Non-linear elasticity was 
introduced, but only with limited success. Plasticity 
models incorporated in finite element analysis yielded 

solutions with a great deal of accuracy. Viscoplasticity 
approach is more realistic than plasticity in terms of 
reproducing actual material behavior and yields highly 
accurate results even for very complex problems. In this 
work, the viscoplasticity modeling and algorithm were 
incorporated in the finite element method (8-noded 
isoparametric elements). Various plasticity models were 
incorporated. These were; von-Mises, Tresca, Drucker-
Prager, Mohr-Coulomb, Rowe’s stress-dilatancy model 
and the critical state model, with associated and non-
associated flow rules. Evaluation of the performance of 
the viscoplasticity analysis was conducted on a problem 
with known exact solution. The considered problem was 
a rigid surface footing resting on a cohesive weightless 
soil (Tresca type material, φ = 0). Prandtl provided exact 
solution for the mentioned problem with the ultimate 
bearing capacity qu = (2+π) C. The elasto/viscoplastic 
finite element solution was in very close agreement with 
Prandtl exact solution (only 1% above the exact 
solution). This kind of result represents significant 
development for finding highly accurate results for very 
complex geotechnical problems which have no known 
exact solutions. The anchor problem represents one such 
complex problem with zones dominated by tensile 
stresses as well as very sharp changes in shear stresses. 

 
APPENDIX 

 
      = Lode angle, and is given as; 

 
                                                     with  
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Viscoplastic Finite Element…                                                                                                      Waddah Salman Abdullah 

 

- 314 - 

mzzmyymxx SSS σσσσσσ −=−=−= and 
 

222
3 2 xyzxzyyzxzxyzxyzyx SSSSSSJ ττττττ −−−+=  

                                                                                   (A4) 
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