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ABSTRACT 

Utilization of symmetric condition in NASIR Galerkin Finite Volume Method for linear triangular element 
unstructured meshes is introduced for numerical solution of two dimensional strain and stress fields in a long 
thick cylinder section. The developed shape function free Galerkin Finite Volume structural solver explicitly 
computes stresses and displacements in Cartesian coordinate directions for the two- dimensional solid 
mechanic problems under either static or dynamic loads. The accuracy of the introduced algorithm is assessed 
by comparison of computed results of a thick cylinder under internal fluid pressure load with analytical 
solutions. The performance of the solver for taking advantage of symmetric conditions is presented by 
computation of stress and strain contours on a half and a quarter of the cylinder section. 

KEYWORDS: Symmetric condition, Unstructured finite volume method, Unstructured linear 
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INTRODUCTION 

 
Computation of strain and stress fields in the section 

of a long cylinder which is subjected to internal or 
external pressure requires two-dimensional plane strain 
analysis. On the other hand, proper numerical algorithm 
facilitates computational modeling of such a structural 
element with normal pressure on its curved boundaries. 
For the cases that the use of symmetric boundaries is 
considered, the algorithm should be able to handle 
specific boundary conditions (i.e., inclined sliding 
supports). 

Among the wide variety of numerical methods 
which have been proposed for the numerical solution of 
partial differential equations, Finite Element Method 

(FEM) has firmly established itself as the standard 
approach for problems in Computational Solid 
Mechanics (CSM), especially with regard to 
deformation problems involving non-linear material 
analysis (Lv et al., 2007; Zienkiewicz et al., 1989). 

It is well known that numerical analysis of solids in 
incompressible limit could lead to difficulties. For 
example, fully integrated displacement based lower-
order finite elements suffer from volumetric locking, 
which usually accompanies pressure oscillation in 
incompressible limit (Bijelonja et al., 2006). Also, there 
are some difficulties for producing stiffness matrix and 
shape function in order to increase the convergence rate.  

Although certain restrictions on mesh configuration 
had to be imposed to avoid locking, these restrictions 
were less severe than those of the equivalent FEM 
meshes.  Accepted for Publication on 15/4/2011. 
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The FVM has been developed from early finite 
difference techniques and has similarly established itself 
within the field of Computational Fluid Dynamics 
(CFD) (Slone et al., 2003; Bailey et al., 1999; Lv et al., 
2007). However, similar to FEM, FVM integrates 
governing equation(s) over pre-defined control volumes 
(Zienkiewicz et al., 1989), which are associated with the 
elements making up the domain of interest and, 
therefore, preserve the conservation properties of the 
equations. Although, the Finite Volume Method (FVM) 
was originally developed for fluid flow and heat and 
mass transfer calculations (Slone et al., 2003) recently, 
it has been generalized for stress analysis in isotropic 
linear and non-linear solid bodies. Therefore, the 
interest in FVM application to the structural analysis 
problems involving incompressible materials has grown 
during the recent years. From the results of several 
benchmark solutions, the FVM appeared to offer a 
number of advantages over equivalent finite element 
models. For instance, it can be stated that, unlike FDM 
solution, FVM solution is conservative and 
incompressibility is exactly satisfied for each discretized 
sub-domain (control volume) of the computational 
domain (Bailey et al., 1999). 

In principle, because of the local conservation 
properties, the FVMs should be in a good position to 
solve such problems effectively. Furthermore, 
numerical calculation with meshes consisting of 
triangular cells showed excellent agreement with 
analytical results. Meshes consisting of quadrilateral 
FVM cells displayed too stiff behavior, indicating a 
locking phenomenon (Demirdzic and Martinovic, 
1999). Therefore, researchers have applied FVMs to 
problems in CSM over the past decade (Slone et al., 
2003; Sabbagh-Yazdi et al., 2003) and it is now possible 
to classify these methods into two approaches; cell-
centered ones and vertex-based ones. 

In the previous work of the authors, the NASIR 
Unstructured Galerkin Finite Volume Method structural 
solver was introduced and applied for analysis of two-
dimensional strain and stress fields in a thick cylinder 
(in a form of a complete ring) with internal fluid 

pressure (Timoshenko and Goodier, 1982). Considering 
symmetric may provide considerable computational 
work load. However, implementation of proper 
symmetric boundary conditions (i.e., sliding supports in 
cut sections) is necessary for such a technique.  

In this paper, the explicit approach introduced is 
based on Galerkin approach with a kind of matrix free 
vertex base FVM on unstructured meshes of linear 
triangular elements. The accuracy of the introduced 
method is assessed by comparison of computed stresses 
and displacements for a thick cylinder with internal 
fluid pressure load with analytical solutions and the 
performance of the solver is demonstrated in terms of 
stress and strain contours as well as convergence 
behavior of the method to the steady state condition. 
Finally, the use of symmetric boundary conditions for 
reducing computational work load (without degradation 
of the accuracy of the results) is examined. 
 

MATHEMATICAL MODEL 
The governing equation for force equilibrium of any 

continuum in the absence of body forces is given by the 
following general form of Cauchy equation: 
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Here, ρ  is the material density and iu  is the 

displacement in the i direction. Considering direction 
i=1 as x and i=2 as y, stresses are defined as: 
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For plane strain problems: 
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In which E is the elastic modulus and υ  is the 
Poisson's ratio. 
 

NUMERICAL FORMULATION 
 
Following the Galerkin Finite Element Method for 

discretization of the spatial derivatives of the governing 
equation on a sub-domainΩ  consisting of linear 
triangular elements (Figure 1), after multiplying the 
residual of the above equation by the linear shape 
function ϕ  of node n and integrating over the sub-
domain, the weak form of the governing equation  may 
be written as: 
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Here, the stress vector is defined 

as ĵîF 2i1ii σσ +=
v

. 
It should be noted that since the shape function nϕ  

is equal to unity at node n and zero at the γ  boundary 
of sub-domainΩ , the last boundary term of the above 
equation vanishes for the internal sub-domains. 

Using the Finite Difference Method for discretizaton 
of the time derivative of i direction displacements, the 
shape function free Galerkin Finite Volume Method 
form the above equation can be formulated as (Lv et al., 
2007): 
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In the above formulation, the stresses can be 

computed as (Lv et al., 2007): 
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where kA  is the area of triangular element (with 

m=3 sides) associated with boundary side k of the sub-
domain nΩ (Figure 1). 
 

 
Figure 1: A sub-domain nΩ  formed by linear 

triangular elements meeting a node n  
 

COMPUTATIONAL STEPPING 
 
Note worthy is that the above formulation can be 

solved via explicit iterations without any matrix 
manipulations, considering proper limit computational 
step t∆ . The time step nt∆ for each control volume can 
be computed as (Lv et al., 2007): 
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Here, nr  is the average radius of equivalent circle 

that matches with the desired control volume 
( nnn P/r Ω= ). For any control volume n 
 
( ∑ =
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1k kn )xy( ∆Ω ), the perimeter can be 
 
computed using surrounding edges 
 
( ∑ =

= edgeN
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Due to the variations in sizes of unstructured control 
volumes' calculations, the allowable time step for the 
solution of dynamic problems for the entire mesh is 
limited to the minimum time associated with the 
smallest control volume of the domain. However, the 
large variation in grid size for the unstructured mesh 
will slow down the computations. 

In the present work, the local time step of each 
control volume is used for the computation of static 
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problems. In this technique, to accelerate the 
convergence to steady state conditions, the computation 
of each control volume can advance using a pseudo time 
step which is calculated for its own control volume. The 
use of local time stepping greatly enhances the 
convergence rate. 
 

COMPUTATIONAL RESULTS 
 
In this section, the computational results of stress 

and strain analysis of a thick cylinder under internal 
fluid pressure are presented. The numerical solution is 
performed by the application of Galerkin finite volume 
method on an unstructured triangular mesh. The 
analytical solution is used to verify the results and 
satisfaction equality obtained. The model specifications 
are illustrated in Table 1.  

In the present computation, it is assumed that the 
cylinder is considerably long, and thus the plane strain 
assumption is valid. For such a condition, radius stresses 
and tangential stresses from analytical solution are 
computed by following relations: 
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where r is the radius and 1C  and 2C  are two 

coefficients which can be calculated by using the 
following relations: 
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Here ip  and ir  are the interior pressure and interior 

radius, respectively; and op  and or  are the outer 
pressure and outer radius, respectively. 

In order to properly impose the pressure load on a 
thick cylinder section (complete ring), the unit normal 

vectors at boundary nodes are utilized, see Figure 2. The 
schematic diagram views a thick steel cylinder with 12 
kPa interior fluid pressure and zero outer pressure. 

Figure 2: Thick steel under internal pressure 

 
The properties of the cylinder material are tabulated 

in Table 1. 
 

Table 1: Specifications of a thick cylinder 
Parameter Value 

Young’s modulus, E 21 MPa 
Density, ρ  7850 kg/m3 

Poisson's ratio, υ  0.25 
Interior radius 0.5 
Outer radius 0.6 

Interior pressure 12000 Pa 
For Galerkin Finite Volume Method solution of this 

case, first an unstructured mesh of linear triangular cells 
is used (Figure 3). 

The history of computed maximum displacement is 
plotted in Figure 4. CPU time consumed for the 
computations of this case (100,000 iterations) was 
measured as 51.51 seconds on a P4 computer. This 
value presents the light computational work load of the 
described computational solid mechanic algorithm. 
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Figure 3: Unstructured computational mesh 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: The history of computed maximum 
displacement 

 
The computed normal and shear stresses for a 

complete ring present smooth and symmetric contours 
(Figure 5). The computed results of radial and 
circumferential stresses are compared with the 
analytical solution along the thickness of the case 
(Figure 6). As can be seen, the computed radial and 
circumferential stresses show good agreement with the 
exact solution of the case. 
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(c) xyσ          
Figure 5: Color coded maps of computed results for 

complete ring (Pa) 
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Figure 6: Radial stress compared with the analytical solution along the thickness 

B
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a) Half a cylinder 

 
b) A quarter of a cylinder 

Figure 7: Various symmetric boundary conditions and equivalent sliding supports 
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Figure 8: Color coded maps of computed results for a half of a ring (Pa) 
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(c) xyσ  
Figure 9: Color coded maps of computed results for a quarter of a cylinder (Pa) 
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Table 2: Accuracy of the results 

Error 
Analytical 
solution 

GFVM 
solution 

Parameter 

0.0436% 66545 66574 rσ  

0.32% -12000 -11961 tσ  

 
Table 3: Error for thick cylinder under internal pressure 

 
 
 
 
 
 
 
The accuracy of computed radial and circumferential 

stresses is compared with that of the analytical solution 
(Table 2). As can be seen from the table, the computed 
results present minor percentages of error in radial and 
circumferential stresses.  

In the next stage of this work, the use of symmetric 
boundary conditions by the application of sliding 
supports and the effects on the accuracy of the results 
are examined. Figures (7-9) show schematic views of 
the applied symmetric boundary conditions. 

In order to impose the symmetric boundary 
conditions (sliding supports) for a half and a quarter of 
the ring, displacements normal to the symmetric 
boundary are put to zero. The stress contours computed 
by imposing the symmetric boundary conditions for a 
half and a quarter of the cylinder are plotted (Figure 8 
and Figure 9). As can be seen from the tabulated values 
in the error report (Table 3), the implementation of 
symmetric conditions reduces the computational effort 
with acceptable errors. 
 

CONCLUSION 
The vertex base explicit matrix free Galerkin Finite 

Volume Method for the solution of two-dimensional 
Cauchy equations on an unstructured mesh of triangular 
elements is described and applied in this paper. Since 
there is no interpolation function in the numerical 
formulation of the present solver, the fine meshes 
provide more accurate results than the coarse ones. 

The present model is examined for stress-strain in a 
thick cylinder under fluid pressure. The comparison of 
the computed results with the analytical solution 
presents a promising agreement between the computed 
results for a complete thick cylinder section and the 
analytical solution of the case.   

Furthermore, the use of symmetric conditions 
(modeling a half and a quarter of the cylinder section) 
provides similar results due to efficiency of the 
developed numerical model as well as proper sliding 
(symmetric) boundary conditions. This technique 
provides considerable saving in the computational work 
load. 
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