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ABSTRACT 

The present study is a contribution to free surface flow simulation by numerical resolution of Saint-Venant's 
equations, which form a nonlinear hyperbolic system. For reasons of stability and accuracy, we apply finite 
volume method, based on Riemann problem’s resolution using shock capturing schemes. Application tests for 
steady and unsteady flows confirm the capacity of these schemes to maintain stability and precision. 
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INTRODUCTION 

 
The natural phenomena such as floods and 

inundations, as well as the damages which produce 
make the subject of several researches. Chow (1959), 
Henderson (1966) and Cunge et al. (1980) explored the 
free surface flow studies on rivers and in particular on 
channels. But the great improvement returns to Barré de 
Saint-Venant (1871) who established, for the first time, 
his one-dimensional model which governs flows in 
shallow water. It was successfully applied to simulate 
several phenomena such as; flood inundations (Ying et 
al., 2004), dambreaks (Fennema and Chaudhry, 1987) 
and tsunami waves (George, 2006). 

Mathematically, such phenomena are governed by 
conservation laws which are represented by systems of 
non-linear hyperbolic PDEs. The nonlinearity in the 
Saint-Venant system presents shock and rarefaction 
waves. This theory and its approximation have been 
well detailed by Le Veque (Garcia-Navarro and 
Saviron, 1987), Lax-Wendroff (George, 2006) and 
Gallouet (George, 2004). Given the importance of these 
studies, several techniques have been developed in 
recent decades, using a variety of numerical methods. 
Among them, shock capturing finite volume schemes, 
based on Riemann problem solution, are developed in 

this modest work. 
Fabre (2001) explores this study by applying the 

one-dimensional Saint-Venant model. However, Le 
Veque (1998) illustrates various possible situations for 
analytical solutions of Riemann problems and the 
numerical treatment of shock and rarefaction waves. 

Thus Riemann's approach is explored by Roe (1981) 
using first-order Godunov's scheme (Godunov, 1959) 
and second order Lax's scheme (Lax, 1972) which is a 
scheme without slope limiters. Van Leer (1977) and 
Warming and Beam (1975) introduce these slope 
limiters to prove the accuracy of such schemes. 

Based on Fennema's and Chaudhry's works 
(Fennema and Chaudhry, 1987), Liggett and Cunge 
(1975) and MacDonald et al., (1997), we present 
various tests of steady and unsteady flows. Dambreak 
problems on dry bottom and wet bottom are studied. 
Thereafter, we treat the source terms represented by a 
flow over a concave bed. 

 
MATHEMATICAL MODEL 

 
Free surface flows, as their name indicates, are 

runoff flowings under the influence of gravity. They are 
managed by a system of PDEs (shallow water 
equations) (cf. Figure (1)). This one-dimensional model 
rises from two principles of conservation; that of mass: 
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where: hu is the unit discharge; h is the average 

depth of water; g is the gravitational acceleration and 
b(x) is the bed slope.  

One-dimensional vectorial form of this conservation 
law, with source term, is written as follows: 

( ) ( , )q f q x txt ψ+ =                                                  (3) 
where q is the conservative variables' vector; f (q) is 

the flux vector and ψ  is the source term vector. 
Knowing that: 
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u is the average velocity,  
 

 
Figure 1: Different parameters in 

shallow water model 
 
Shallow water equations represent a nonlinear 

hyperbolic system of PDEs, where the Jacobian matrix 

( ) 0 1
J 2

2
f q

u gh u
′= =

− +

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                     (4) 

 
is diagonalisable with real and distinct eigenvalues  
 

1 u ghλ = − , 2 u ghλ = + . 

RESOLUTION OF SAINT-VENANT EQUATIONS 
 
A particular characteristic of hyperbolic systems is 

the existence of discontinuous solutions, such as shock 
waves. Several approaches are used to treat these cases. 
In the present study, we explore that based on Riemann 
problem’s resolution.  

 
Riemann Problem 

Riemann problem represents a system of PDEs with 
special initial conditions which are constant on both 
sides of discontinuity, (cf. Figure (2)). Here, 
discontinuity is localised in (x = 0). 

If we neglect the source term, the Riemann problem 
is written as:    

( ) 0q f q xt + =  with; 

( ) if  0  ,0
 if  0

q xlq x
q xr

⎧ <⎪
= ⎨

>⎪⎩
                                                   (5) 

 
Therefore, the resolution of Riemann problem is to 

find an intermediate state qm between the left state ql  
and the right state qr. 

 
In Saint-Venant's system, we consider four 

configurations (Fabre, 2001), (cf. Figure (3)): 
1. Two centred shock waves (from origin) which 

correspond to a collision of two waves. 
2. Two centred rarefaction waves (from origin) which 

correspond to a separation of two waves. 
3. One rarefaction wave propagates towards the left 

side and one shock wave propagates towards the 
right side which represents the configuration of a 
dambreak. 

4. One shock wave propagates towards the left side 
and one rarefaction wave propagates towards the 
right side which represents a configuration of a 
hydraulic jump.  

The first case (two shock waves) corresponds to the 
solutions of Saint-Venant’s equations with initial 
conditions;   

( ) ( )     if  0
,0 ,     ,0   with  0

  if  0
u xlh x u x ulu xl

⎧ <⎪
= >⎨

− >⎪⎩
 

 
The solution is represented by two shock waves 

emanating from the origin, which create a stationary 
intermediate state, (cf. Figure (4)). The determination of 
this intermediate state is calculated by applying the 
jump’s condition of Rankine-Hygoniot: 
( ) ( ) ( )* *s q q f q f q− = −                                                    (6) 
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Figure 2: Illustration of Riemann’s problem 

 

 
Figure 3: Four configurations of Riemann problem for Saint-Venant's equations 

 

 
Figure 4: Riemann problem solutions for Saint-Venant equations with ul = - ur > 0 (a) depth, (b) discharge 
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This results in a system of two equations;     
 

( )

( ) ( )
* * *

12 2 2 2
* * * * *2

s h h h u hu

s h u hu h u hu g h h

⎧ − = −
⎪
⎨

− = − + −⎪
⎩

                    (7) 

 
Graphically, this state represents the intersection of 

two Hugoniot’s curves plotted from the left and right 
states, (cf. Figure (5)). 

 

 
 

Figure 5: Construction of two-shock’s solution for 
Riemann problem of Saint-Venant equations 

 
In the second case (two rarefaction waves), the 

problem is posed with the following initial conditions;   

( ) ( )     if  0
,0 ,     ,0   with  0

  if  0
u xlh x u x ulu xl

⎧ <⎪
= <⎨

− >⎪⎩
 

 
This solution is schematized as (cf. Figure (6)). 
 
This solution is calculated by applying the Riemann 

invariants relation such as;   
1 2

2 2

w u gh

w u gh

= +

= −
                                                 (8) 

 
Intermediate sate is given by: 

( )
( )

2

2

u u gh ghl mm l

u u gh ghr mm l

= + −

= − −
                                (9) 

Graphically, the relation q=f (h) is called the 
integrals curve and the intermediate state qm represents 
the intersection of the two integral curves, (cf. Figure 
(7)).  

 

 
Figure 6: Riemann problem solutions for Saint-

Venant equations with ul = - ur < 0 (a) depth, 
(b) discharge 

 
Figure 7: Construction of two-rarefaction waves 
solution for Riemann’s problem of Saint-Venant 

equations 
For the general case (rarefaction and shock waves) 

which illustrates a dambreak problem with the 
following initial conditions: 

( ) ( )    if  0
,0   with  ,0 0

    if  0
h xlh x u
h xr

⎧ <⎪
= =⎨

>⎪⎩
, 
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Figure 8: Riemann problem’s solutions for a dam 

break (a) depth, (b) discharge 
 

a shock wave propagates towards the right side and a 
rarefaction wave propagates towards the left side, (cf. 
Figure (8)), therefore the solution is obtained by applying 
Rankine-Hugoniot’s relation for the shock wave and 
Riemann invariant’s relation for the rarefaction wave, (cf. 
Figure (9)). 

The treatment of the Riemann problem is made more 
flexible thanks to specific numerical methods named 
shock capturing methods which we will present 
hereafter. 
 
Finite Volume Method (FVM) 

Among all the numerical techniques, the finite 
volume method is well adapted to treat conservation 
laws, hyperbolic and nonlinear problems such as Saint-
Venant's equations by applying the Riemann solver. 
This method is based on the discretization of the 
integral form, by subdividing the domain in a number of 
finite volumes (cells) (Le Veque, 2004). In each cell, the 
integral relations are applied locally and the exact 
conservation in each cell is realized, (cf. Figure (10)).  

Each cell is defined by:  ( ),1/ 2 1/ 2C x xi ii = − +  

As shown in Figure (10), the value nQi represents the 
approximation of the average value on the interval (i) at 
time tn , we write: 
 

( ) ( )
1 21 1, ,
1 2

xinQ q x t dx q x t dxn ni x xx Ci i

+
≈ ≡∫ ∫
∆ ∆

−
                  (10) 

The integration of equation (10) in time gives the 
general form of finite volume method applied to the 

conservation laws; 
 

1
1 2 1 2

tn n n nQ Q F Fi i i ix
∆ ⎛ ⎞+ = − −⎜ ⎟+ −∆ ⎝ ⎠

                               (11) 

 
where 1 2

nFi−  is an approximation of the flux 

at 1 2x xi= − , so: 
 

( )( )11 ,1 21 2

tnnF f q x t dtii x tn

+
≈ ∫ −− ∆

                                (12) 

 
First Order Godunov's Scheme 

Classes of methods that provide a stable and 
consistent approximation to the numerical fluxes (12) 
are the Godunov-type methods. The original Godunov 
method (Godunov, 1959) is a first order upwind-type 
scheme, where Riemann problems are solved at each 
grid cell interface before each time step to determine the 
numerical flux for that time step. This approach is based 
on three following stages: 
• Approximation of the solution by a piecewise 

constant function on each interval (cf. Figure (11)); 
• Solving in each interface xi +1/2 Riemann problem; 
• Evolving the solution by writing: 

1
1/ 2 1/ 2

tn n n nQ Q F Fi ii i x
∆+ ⎡ ⎤= − −⎢ ⎥+ −⎣ ⎦∆

 

 

 
Figure 9: Construction of rarefaction-shock waves 

solution for Riemann’s problem in dambreak 
problem 
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Figure: 10: Principle of the finite volume method 
 

 
 

Figure 11: Principle of Godunov’s scheme 
 

 
 

Figure 12: Slope's variable in each cell 
 
High Order Schemes 

Godunov’s scheme is conservative. It respects the 
entropy condition, but it is a first order scheme and 
requires an iterative resolution in each time step. For 
more accuracy, Van Leer proposed adding a second 
order term (Van Leer, 1977), whereas Lax Wendroff 
(1960) and Roe (1981) developed other Riemann 

solvers (Roe, 1981). 
 
Roe’s Solver. It is the most known and used solver. 

It is an approximate Riemann solver by replacing the 
exact Jacobian of Saint-Venant's system in each interval 
by a constant Jacobian. Roe gives this Jacobian as 
follows: 

 
0 1

ˆ
1/ 2 2ˆ ˆ2

Ai u gh u

⎡ ⎤
⎢ ⎥=− ⎢ ⎥− +⎣ ⎦

                                           (13) 

 
The depth and the average velocity are given by: 

 

( )1
12

h h hi i= +−  and  1 1ˆ
1

h u h ui i i iu
h hi i

+− −=
+−

             (14) 

 
Flux Limiters: The first order schemes give stable 

but less accurate solutions. However, the second-order 
schemes give accurate solutions but oscillate at 
discontinuities. The idea is, thus, to combine the 
advantages of these two schemes by applying flux 
limiters. The purpose of this idea is to improve the 
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behavior of the high order schemes. This technique 
appeared at the beginning of the Seventies in the hybrid 
scheme of Harten and Zwas (1972). More generally, we 
can combine any formula of first order flux 

( , )1F Q QL i i−  (such as upwind flux) by high order flux 
( , )1F Q QH i i− (such as Lax-Wendroff) to obtain a flux 

limiter scheme, such as: 
 

( ) ( ) ( )F , F , F ,1 1 11/ 2 1/ 2
n nF Q Q Q Q Q QL i i H i i L i ii i ⎡ ⎤= +Φ −− − −⎣ ⎦− −  

 
• If 0-1/ 2

n
iΦ = , it is a first order scheme; 

• If 11/ 2
n
iΦ =− , it is a high order scheme. 

So, the limiter represents a function ( )θΦ  in which 
θ  is the variable's slope in each cell. 

Slope Limiters: These are based on piecewise linear 
reconstitution (Le Veque, 2004), where the variable 
represents a piecewise linear function having a slope in 
each cell, (cf. Figure (12)), and we write: 

( ) ( ),n n nq x t Q x xii i iθ= + −%  
According to the evaluation of these slopes's 

functions, we set various schemes that are: 

 
Schemes Minmod Superbee Van Leer Monotonized Centered MC

Slope's variable ( ) ( )min mod 1,φ θ θ=  ( ) ( )( )max 0,min 1,2 ,min 2,θ θ ( )
1
θ θ

φ θ
θ

+
=

+
 ( )( )( )max 0, min 1, / 2,2,2θ θ  

 
 

Source term Treatment 
When the effects of the source term are important 

(influence of the friction and bottom topography), we 
have to introduce the source term vector. We talk so 
about balance laws and we write; 

 
( ) ( ), ,q f q q x tt x ψ+ =  

where: 

( ) 0
, ,q x t

ghbx
ψ

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
Fractional Step Method: Le Veque (1998) explores 

two principal numerical methods to treat these balance 
laws. These are the quasi-steady method and the 
fractional step method which splits the balance law into 
two equations; 

 
• Homogeneous conservation law ( ) 0q f q xt + = ; 

• Ordinary differential equation ODE 
    ( )/ ,dq dt q xψ= . 

The solution is obtained by alternating between the 
solutions of these two equations in each time step. 

 
 
 

 
 

Figure 13: Initial conditions for dambreak test (a) on wet bottom (b) on dry bottom 
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Figure 14: Froude’s number analysis for dambreak test (a) on wet bottom (subcritical flow)   
(b) on dry bottom (supercritical flow) 

 
 
 

NUMERICAL TESTS 
 
The essential goal of these tests is to compare the 

various schemes, first order Godunov scheme and 
second-order slope limiter schemes. The comparative 
study involves the examination of steady flows 

(dambeak) (Ying et al., 2004). Thereafter, we treat the 
source term which represents a flow over concave bed 
(Van Leer, 1977; Liggett and Cunge, 1975). We use a 
finite volume code “Clawpack” (Internet) (Conservation 
Law Package) by introducing the appropriate changes. 

 
 
 

 
 

Figure 15: Comparison of different schemes – dambreak on a wet bottom (a) depth, (b) discharge 
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Figure 16: Comparison of different schemes – dambreak on a dry bottom (a) depth, (b) discharge 

 
Dam Break Test 

The first test is an examination of a dam break in a 
flat and horizontal channel (no friction effect), in two 
situations; on wet bottom and on dry bottom. We use a 
time step ∆t=0.1 during 60s. The length of the domain is 
x=2000m. The breakpoint is located at x=1000m. The 
initial upstream depth is hl = 10 m, while the depth in 
the downstream is initially hr=5 m (on wet bottom), and 
hr=0.0001m (on dry bottom). Initial unit discharge is 
null, hul = hur = 0 m2/s (cf. Figure (13)). 

Froude’s number analysis indicates that for the flow 
on a wet bottom, the flow regime is subcritical 
everywhere, while on a dry bottom, the flow regime is 
transcritical, since it passes from a subcritical to a 
torrential regime, (cf. Figure (14)). 

After time t = 60s, we observe that Godunov’s scheme 
diffuses near discontinuities, while Lax-Wendroff’s scheme 
oscillates at shock and rarefaction waves, (cf. Figure (15)). 
Though, in the case of a dambreak on a dry bottom, the 
Lax-Wendroff’s scheme fails completely, (cf. Figure (16)). 

 

 
Figure 17: Bottom of the channel 

 
Figure 18: Evolution of Froude’s number 
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Figure 19: Comparison between Godunov and MC schemes (a) depth, (b) discharge 

 
Flow over Concave Bed Test 

In this case, we neglect the friction effect. The bed 
(cf. Figure (17)) is determined by a function b(x) as; 
 

( ) ( )20.25 exp 33.75 /100 0.5  if    0 100

0                                                   otherwise

x x
b x

⎧ ⎛ ⎞− − < <⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪⎩

  (15) 

Initial depth and discharge are respectively h=0.8m, 
hu=1m2/s. The time of simulation is t = 60s and the 
length of horizontal channel is L=200m which is splitted 
into ∆x=1m. 

At the end of the simulation, we observe that a 
hydraulic jump was formed at the downstream of the 
bump. 

Froude number’s analysis shows that the flow mode 
is transcritical, since it moves from a subcritical to a 
torrential mode, (cf. Figure (18)). 

Using fractional step method and comparing 
Godunov's and Monotonized Centered schemes, we 
note that the Godunov’s scheme presents a numerical 
diffusion. However, discharge solution makes an 
artificial numerical jump (cf. Figure (19)). 
 

CONCLUSION 
In conclusion, we resume that Saint-Venant's 

equations represent a nonlinear hyperbolic conservation 
law. Such category has discontinuous solutions. 
Analytical resolution passes by the treatment of 
Riemann’s problem which represents the system of 
PDEs with constant initial conditions on both sides of 
this discontinuity. That operation is difficult. This 
imposes the use of numerical techniques. In our case, 
the choice of finite volume method is dictated by the 
conservative nature of Saint-Venant's equations. 

In this study, we explored first order Godunov’s 

scheme, second-order Lax-Wendroff scheme without 
limiters and second order slope limiters' schemes such 
as: Minmod, Superbee, Van Leer and Monotonized 
Centered schemes. From numerical tests and analysis of 
transitory and stationary flows, we note that slope 
limiters' schemes are most advantageous. They yield 
more accurate and stable solutions. Finally, we envisage 
introducing friction effects to examine real cases. 
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Notations 
A  -  Jacobian  matrix;   
b(x)   -  Bottom function;   
C I   -  Elementary cell; 
F   -  Flux vector terms through interfaces; 
Fr   -  Froude’s number;   
f(q)   -   Flux function; 
g   m/s2  Gravitational acceleration;   
h   m  Depth of water;  
hu   m2/ s  Unit discharge;  
Q   -  Conservative variables vector; 
qt   -  Partial differential in time; 
qx  -  Partial differential in space; 

n
iQ           -  Approximation of the dependent 

  variable; 
t s Time;   
u m/s Average velocity; 
x - Longitudinal co-ordinate;   
ψ - Source terms vector; 
∅ - Flux limiter function.  
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