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ABSTRACT 

This paper presents an implementation of a rational three-dimensional nonlinear finite element model for 
evaluating the behavior of reinforced concrete slabs strengthened with shear bolts under transverse load. The 
concrete was idealized by using eight-nodded brick elements. While both flexural reinforcement and the shear 
bolts were modeled as truss elements, a perfected bond between brick elements and truss elements was assumed. 
The nonlinear behavior of concrete in compression is simulated by an elasto-plastic work-hardening model, and 
in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. 
The steel was simulated using an elastic-full plastic model. The validity of the theoretical formulations and the 
program used was verified through comparison with available experimental data, and the agreement has proven 
to be good. A parametric study has been also carried out to investigate the influence of the shear bolts’ diameter 
and number of bolts’ rows around the column-slab connection, on the ductility and ultimate load capacity of 
slabs.  

KEYWORDS: Reinforced concrete plates, Nonlinear FE analysis of RC slabs, Shear capacity of 
concrete slabs, Shear bolts, Punching shear, Slabs strengthening. 

 
INTRODUCTION 

 
Reinforced concrete slabs are one of the important 

elements in most structural systems; they are relatively 
thin structural elements, whose main function is to 
transmit the vertical loading to their supports. Flat plates 
or beamless slabs have no beams, column capitals or drop 
panels, which make formwork very simple and widely 
used, but the great disadvantage of flat plates or slabs 
supported by columns is that they are highly susceptible 
to punching shear failure under concentrated loads, 
compared with slabs supported by beams or walls.  

In order to ensure the serviceability and strength 

requirements of such slabs, it is necessary to accurately 
predict their overall deformational characteristics 
throughout the range of their elastic and inelastic 
response as well as their strength at ultimate collapse. 
Although the need for experimental research to provide 
the basis for design equations continues, the development 
of powerful and reliable analytical techniques, such as 
finite element method, can, however, reduce the time and 
cost of otherwise expensive experimental tests, and may 
better simulate the loading and support conditions of the 
actual structure. Accurate results of finite element 
analysis, however, require adequate modeling of the 
actual behavior of reinforced concrete materials including 
nonlinearity. Reinforced concrete exhibits nonlinearity 
because of cracking, inelastic material behavior, 
stiffening and softening phenomena, complexity of bond Accepted for Publication on 18/12/2007. 
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between reinforcement and concrete and other factors 
(Chen and Saleeb, 1982). The derivation and 
implementation of various analytical finite element and 
material models to investigate the structural and 
deformational behavior of reinforced concrete slabs and 
materials modeling have been the subject of many 
researches. However, the majority of these researches 
studied different behavioral aspects of reinforced 
concrete slabs (Vidosa et al., 1988; Marzouk and Chen, 
1993; Marzouk and Jiang, 1996; Jiang and Mirza, 1997; 
Reitman and Yankelevsky, 1997; Polak, 1998, 2005; 
Staller, 2000; Salim and Sebastian, 2002; Vainiunas et 
al., 2004; Murray et al., 2005; Deaton, 2005; Smadi and 
Belakhdar, 2007) and others. 

On the other hand, the punching shear reinforcement 
has been studied by various researchers. Many 
experimental investigations are carried out on such 
reinforcements which are sometimes supported by 
theoretical investigations (Hawkins, 1974; Dilger and 
Ghali, 1981; Mokhtar, Ghali and Dilger, 1985; Elgabry 
and Ghali, 1990; Lim and Rangan, 1995; Marzouk and 
Jiang, 1996; El-Salakawy, Polak and Soliman, 2000; Alaa 
et al., 2000; Adetifa and Polak, 2005). These 
investigations confirm that shear reinforcement in slabs is 
effective in increasing punching shear, ductility and, 
therefore, increasing rotation capacities of the connection 
if the proper amount of reinforcement, placement and 
spacing and anchorage conditions are satisfied. 

The present work is a numerical study which is 
conducted to predict the behavior up to ultimate conditions 
of slab-column connections strengthened with shear bolts 
under transverse loads. The performance of slabs is 
evaluated in terms of load-deflection characteristics. The 
validity and calibration of the theoretical formulations and 
the program used is judged through comparison of analytical 
results with available experimental data. Finally, a 
parametric study is carried out to investigate the influence of 
bolts’ properties on the behavior of slabs.  
 

FINITE ELEMENT FORMULATION 
Modeling of concrete material in compression 
The behavior of concrete in compression is simulated 

by an elasto-plastic work hardening model up to the onset 
of crushing. Generally, according to the incremental 
theory of plasticity, the total strain increment is usually 
assumed to be the sum of elastic strain and plastic strain. 
The formulation of the constitutive relations in the work-
hardening plastic model is based on three fundamental 
assumptions (Chen and Saleeb, 1982; Kwak and 
Filippou, 1990; Al-Shaarbaf, 1990; Crisfield, 1994): The 
shape of the initial yield surface (failure criteria), the 
evolution of the hardening rule and formulation of an 
appropriate flow rule. However, the plasticity model and 
its constituents, and the modeling of concrete under 
triaxial state of stress, will be discussed in terms of the 
following elements: 1) Uniaxial stress-strain relationship, 
2) Failure criterion, 3) Hardening rule, 4) Flow rule and 
5) Crushing condition.  
 
Uniaxial stress-strain relationship 

Frequently, the widely used stress-strain relationship 
of concrete up to the peak stress is given as a parabolic 
relationship as follows (Foster et al., 1996; Pang and Hsu, 
1996; Bahn and Hsu, 2000; Wang and Hsu, 2001): 
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where ε0 is the strain at peak stress fc given by 
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In the present study, to accurately simulate the 
uniaxial stress-strain curve of both normal and high 
strength concrete, the equivalent uniaxial stress-strain 
relationship used is composed of two parts. The first is 
linear and the other is parabolic. The linear part is given 
by: 
 

.c eEσ ε=      (3) 
 
where εe is the elastic strain and σ is the corresponding 
stress. 
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The parabolic part alone has the same form as 
Equation (1). This part starts beyond the limit of 
elasticity which is limited at (ζ.fc), where ζ is the elastic 
limit coefficient (0 ≤ ζ ≤ 1) used to indicate the limit of 

elastic part and initiation of plastic deformation. 
Therefore, typical stress-strain relationship of concrete is 
obtained by using the assembled model shown in Fig. 1.  

 

 

Fig. (1): Stress-strain relationship for concrete. 

 
Thus, the total equivalent uniaxial stress-strain curve 

can be expressed as follows:  
For  σ ≤ ζ .ƒc 
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where εc is the total strain and 

0
ε  is the total strain at 

peak stress which can be calculated by: 
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In the current study, the elastic limit coefficient is 
taken to be ζ=0.3.  

In the presence of orthogonal cracks which are caused 

by shear or transverse tensile stresses, concrete exhibits 
lower compressive strength and stiffness than in the 
uniaxially compressed state. Such degradation or 
softening in compressive strength of concrete is taken 
into consideration in the present study by multiplying the 
uniaxial compressive concrete stress defined in Equations 
(4) and (5) by a softening factor λ, as shown in Fig. 2. 
Among various compression reduction models available 
in literature, the model suggested by Vecchio et al. (1994) 
is implemented in the present finite element formulation. 
The model can be expressed as: 
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where Kc represents the effect of the transverse cracking 
and straining, Kf represents the dependence on the 
strength of the concrete (fc), and Kc and Kf are given by: 
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 11126290552 .fc'..K f ≤−=
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where εr is the tensile strain normal to the cracked plane 
given by: 
For cracked sampling point in the principal direction (1) 
 

1εε =r                  (10) 
For doubly cracked sampling point in both directions 

(1) and (2) 
 ( )2

1
2
2

2
1 εεεr +=                (11) 

Where ε1 is the transverse tensile strain in the 
principal direction (1) normal to the cracked plane, ε2 is 
the tensile strain in the second direction (2) normal to 
the second crack plane. 

 
Fig. (2): Compression reduction of transversely 

cracked concrete. 
Failure criterion 

Under triaxial state of stress, the failure criterion for 
concrete is generally assumed to be dependent on three 
stress invariants. However, the failure criterion used in 
this study is dependent on two stress invariants and has 
proved to be adequate for most practical situations and 
has been successfully used by many investigators for 
analyzing reinforced concrete plate and shells (Figueiras 
and Owen, 1984; Cervera and Hinton, 1986; Naji, 1989; 
Al-Shaarbaf, 1990) which can be expressed as: 
 
( ) ( ) 03 02121 =−+== σβ Jα I,J I f  σf              (12) 

where: 
I1 is the first stress invariant; 
J2 is the second deviatoric stress invariant; 
σ0 is the equivalent effective stress at the onset of plastic 

deformation,  
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where γ is a constant to be determined from the equal 
biaxial compression state, which is given by: 
 

0γσσσ yx −==                  (15) 
 
However, the constant was found by Hussein and 

Marzouk (2000) to have values of 19, 14 and 9% for 
42.7, 73.7 and 96.5 MPa, respectively; thus in the present 
study, the value of γ =19 is adopted. 
 
The hardening rule and flow rule 

An isotropic hardening rule is adopted in the present 
study which implies a uniform expansion of the initial 
yield surface without translation as plastic deformation 
increases. The required incremental stress-strain 
relationship may be obtained by differentiation of 
equivalent stress-strain relationship with respect to the 
plastic strain. This operation leads to the slope of the 
tangent of effective stress-plastic strain curve which 
represents the hardening coefficient, which is needed in 
the formulation of the incremental stress-strain 
relationship. In order to calculate the plastic strain 
increment for a given stress increment, a flow rule must 
be defined. The associated flow rule has been widely 
used to concrete application by many researchers for 
reason of simplification (Al-Shaarbaf, 1990; Marzouk 
and Chen, 1993), and it was adopted in the present study. 
 
The crushing condition  

The experimental tests of concrete under multiaxial 
loading indicate that the crushing is a strain related 
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phenomenon (Chen and Saleeb, 1982), so concrete is 
considered to crush when the strain reaches a specified 
ultimate value, after that the current stresses drop suddenly 
to zero and the concrete is assumed to lose completely its 
resistance against further deformation. Hence, the crushing 
criterion is directly obtained by using the same form of yield 
criterion but in terms of strains, as follow: 
 

( ) cuε.J.C.IC.I =++ 2
2

11 3 β                 (16) 
 

where: 
I1: The first strain invariant; 
J2: The second deviatoric strain; 
εcu: The ultimate concrete strain that can be obtained from 

the uniaxial compression test. 
If Eqn. (16) is satisfied or the strain is greater than the 

specified εcu, in this case the concrete is assumed to be 
crushed and the structure is ruptured, therefore the analysis 
stopped. Frequently, the ultimate concrete crushing strain εcu 
is estimated to be in the range of 0.0030 as suggested by 
ACI-318-02 and NZS-95 codes to 0.0035 as given by 
BS8110 and CSA-94 codes. Based on experimental tests of 
singly reinforced concrete beams or eccentrically loaded 
columns without lateral confinement steel, the ultimate 
strain measured at the extreme compression face at failure 
was found to decrease as the ultimate compressive strength 
of concrete increases as shown in Fig. 3 (ACI Committee 
363R-92, 1997). Consequently, the value of the crushing 
strain εcu is taken as 0.0035. 
 
Modeling of concrete materials in tension 

When tensile stress exceeds a limiting value, a crack 
is assumed to form in the plane perpendicular to the 
direction of that stress and concrete behaves no longer 
isotropic, and, therefore, the normal stiffness is reduced 
through tension-stiffening concept. Once concrete has 
cracked, fixed smeared cracking model is used in the 
current study to model the crack. The gradual release of 
tensile stresses normal to the cracked plane is represented 
by bilinear average stress-strain curves to simulate the 
tension stiffening behavior. Noting that the majority of 
models used in numerical analysis and implemented in 

finite element formulation are idealized as linear or 
bilinear curves (Sam and Lyer, 1995; Staller, 2000; 
Polak, 2005) as follows (Fig. 4):  
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where: 
σn , εn are the stress and strain normal to the cracked 

plane; 
σcr , εcr are the cracking stress and its corresponding 

cracking strain; 
α1  is the parameter of tension stiffening which represents 

the rate of stress release as the crack widens; 
α2  is the parameter of tension stiffening which represents 

the sudden loss of stress at the instant of cracking. 
 

 

Fig. (3): Ultimate compressive strain versus 
compressive strength of concrete (ACI Committee 

363R-92, 1997). 
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The shear stiffness is also reduced when cracking 
occurs, because it retains the two major mechanisms by 
which shear is transferred across the crack (the aggregate 
interlock of the rough crack surfaces and dowel action of 
the reinforcing bars crossing the crack planes). A bilinear 
shear retention model is used as shown in Fig. 5. This 
model can be represented as follows:  

For  εε crn ≤  
01.β =                   (19) 

 
For cr ncr ε γ  ε ε 1≤≤  

 

31
1

32

1
 γ 

ε
ε

γ 
γ

γγ
β

cr

n +⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=               (20) 
 
For crn ε γ ε 1>  

3γβ =                  (21) 
where  γ1, γ2, γ3 are shear retention parameters. 
γ1 represents the rate of decay of shear stiffness as the 
crack widens; 
γ2 is the sudden loss in shear stiffness at the instant of 
cracking; 
γ3  is the residual shear stiffness due to the dowel action. 

The material parameters used in the analysis are as 
follow:  

Tension stiffening:  α1 = 5, α2 = 0.6; 
Shear retention:  γ1 = 10, γ2 = 0.5,  γ3 = 0.04. 
Besides, at onset of cracking Poisson’s ratio (υc) is set 

to zero.  
 

 
Fig. (4): Bilinear average tensile stress-strain of 

concrete. 

 
Fig. (5): Bilinear shear retention model. 

 
Material modeling of reinforcement  

In contrast to concrete, the material modeling of steel 
is rather simple. Frequently, the steel is modeled using 
linear elastic-full plastic model, as shown in Fig. 6.  

 
Fig. (6): Modeling of steel reinforcing bars. 

 
FINITE ELEMENT IDEALIZATION 

 
The concrete is represented by using 8-noded brick 

element. The reinforcing bars and the shear bolts are 
modeled as one dimensional element subjected to axial 
force only, and perfect bond is assumed to occur between 
the two materials, as shown in Fig. 7.  

The non-linear equations of equilibrium have been 
solved using the incremental-iterative technique based on 
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the modified Newton-Raphson method. The convergence 
of the solution was controlled by a load convergence 
criterion.  

By taking advantage of symmetry, a segment 
representing one quarter of the slabs has been considered 

in the finite element analysis, as shown in Fig. 7. A fine 
mesh size has been used which consists of 2048 brick 
elements, noting that the same mesh characteristics were 
kept throughout this study. 

 

 

Fig. (7): Finite element mesh. 

VALIDATION OF THE ANALYTICAL RESULTS 
Description of selected experimental slabs  

Four simply supported square slabs strengthened 
against punching shear using shear bolts were used to 
validate and corroborate the predicted analytical results. 
The selected experimental slabs were carried out by 
Adetifa and Polak (2005).The slabs have the same 
dimensions of 1800 x 1800 x 120 mm, where the simple 
supports were applied at the in-plane distances of 1500 x 
1500 mm as shown in Fig. 8. All slabs have same amount 
and placement of orthogonal longitudinal reinforcement. 
9.5 mm-diameter shear bolts were arranged in concentric 
rows parallel to the perimeter of the column. Each 
concentric row consisted of eight bolts two parallel to 
each face of the square column. The first row was placed 
at approximately 50mm from the face of the column and 
subsequent rows were spaced at 80mm as shown in Fig. 
9. Additional information on material and geometric 
properties of these slabs are fully listed in Table 1. The 
following material properties are assumed in the FE 
analysis: Es=200.000MPa, 4700.Ec fc=  and νc=0.20. 

 
Fig. (8): Geometrical dimensions of selected slabs. 
 

Results of the analysis  
The results of the present nonlinear finite element 

analysis of the investigated slabs in terms of ultimate 
load are compared against the experimental 
measurements and listed in Table 2. Fig. 10 shows load-
deflection curves of selected slabs of the present finite 
element analysis and experimental results. Table 2 
indicates that the predicted to experimental ultimate load 
ranges from 0.986 to 1.083 with a standard deviation of 
0.042. According to Fig. 10, it can be observed that the 
present finite element model performs satisfactorily and 
it predicts accurately the real behavior of slabs. 
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Table 1: Slabs’ geometric and material properties. 

Slab 
Compressive 

strength 
(MPa) 

Tensile 
concrete 
strength, 

(MPa) 

Yield strength 
of flexural 

reinforcement, 
(MPa) 

No. of rows 
of shear 

bolts 

Yield 
strength 
of shear 

bolts, 
(MPa) 

SB1 44 2.2 455 - - 
SB2 41 2.1 455 2 381 
SB3 41 2.1 455 3 381 
SB4 41 2.1 455 4 381 

 
 

 
Fig. (9): Locations of shear bolts. 

 
 

PARAMETRIC STUDIES 
 

Effect of the shear bolts’ diameter 
A numerical analysis was carried out on the slab SB4 

using two values of bolts’ diameter (9.5mm and 12mm), 
the results of which are shown in Fig. 11. It can be seen 
that prior to yielding point the bolts’ diameter does not 

influence the load-deflection characteristics. However, 
after yielding, the load deflection curve becomes quite 
stiffer. Also both the ultimate load and deflection increase 
as the bolts’ diameter increases. From the load deflection 
curve, it can be observed that the bolts’ diameter alters 
the mode of failure where the slab behaviour becomes 
ductile in case of 12mm diameter. 

 
Effect of the number of rows 

 To study the effect of the number of rows on slab 
behavior, the selected slabs were analyzed keeping the 
same number of rows (0, 2, 3, 4 rows). The results 
obtained in terms of slab load-deflection relationships are 
presented in Fig. 12. From this figure, it can be seen that 
adding bolts on slabs has a significant effect on 
improving the load carrying capacity of slabs, and it 
increases the ultimate deflection. On the other hand, as 
the number of rows increases, the slab behavior becomes 
stiffer but more ductile just after cracking. 

Fig. 13 and Fig. 14 clarify the effect of both 
diameter of shear bolts and the number of bolts’ rows 
around the column on the predicted ultimate load and 
ultimate deflection. These figures show an 
improvement of slab strength with the increase in the 
number of shear bolts’ rows. Furthermore, the ultimate 
deflection using 4 rows is about 3 times greater than 
the same slab without shear bolts; hence, using shear 
bolts has a considerable effect on improving the 
ductility of column-slab connections.  

SB1 :Control 
No shear reinforcements 

SB2 : 2 rows 

SB3 : 3 rows SB4 : 4 rows 
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Table 2: Comparison of the predicted and experimental results. 

First yielding 
load 

Ultimate load 
Pu (kN) 

Ultimate central deflection 
Du (mm) 

Slab Exp. FEA Exp. FEA FEA / Exp Exp. FEA FEA / Exp 

SB1 240 245 253 260.50 1.03 11.9 14.32 1.20 
SB2 224 230 364 359.00 0.99 27.6 32.61 1.18 
SB3 260 233 372 375.20 1.01 31.0 34.70 1.12 
SB4 240 235 360 390.00 1.08 38.9 37.50 0.96 
        Ave. 1.03  Ave. 1.12 
        St.Dev. 0.04  St.Dev. 0.11 
 

 

 

Fig. (10): Comparison of predicted and experimental load-deflection curves. 
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Fig. (11):  Effect of the shear bolts’ diameter. 
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Fig. (12): Effect of the number of rows. 
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Fig. (13): Effect of the number of shear bolts’ rows and bolts’ diameter on the ultimate load of slab. 
 

 
Fig. (14): Effect of the number of shear bolts’ rows and bolts’ diameter on the central deflection of slab. 

 
 

CONCLUSIONS 
A computer program suitable for nonlinear analysis of 

three dimensional reinforced concrete members under 
monotonic increasing loads has been developed to 
simulate the behavior of slabs strengthened with shear 
bolts. The concrete is represented by using 8-noded brick 
elements, while the reinforcing bars and the shear bolts 
are modeled as one dimensional element. The nonlinear 

behavior of concrete in compression is simulated by an 
elasto-plastic work-hardening model up to the onset of 
crushing. A fixed smeared crack model has been used 
with tension-stiffening model. A shear retention model 
that modifies the shear stiffness and a softening model 
that reduces the concrete compressive strength due to 
cracking are also implemented.  

Various aspects of slab behavior were predicted using 
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proper material models and NLFE program and compared 
with available experimental data. The comparison was 
judged to be good, and the analytical formulations were 
capable of accurately predicting the total response and 
capacity of the concrete slabs. An analytical parametric-
study was carried out to investigate the effect of shear 
bolts’ parameters on the slab's behaviour. The following 
conclusions may be drawn from the present study: 
1- Nonlinear finite element method based on advanced 

3D models is a powerful and relatively economical 
tool which can be effectively used to simulate the 
true behavior of reinforced concrete slabs even 

under complex conditions.  
2- The choice of adequate material models for 

numerical simulation is the most important aspect in 
finite element modeling of concrete structures.  

3- Using shear bolts to strengthen column-slab 
connection against punching shear phenomenon is 
simple and easy to install, and it effectively 
improves the capacity of the slab. 

4- The use of shear bolts increases the maximum 
deflection and consequently increases ductility, 
which improves the column-slab connection 
capacity. 
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