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ABSTRACT 

An elastoplastic method for calculating the contact pressure distribution under rigid foundation has been 
developed and presented in this paper. The developed method is based on an elastoplastic approach. The first 
step is to find the point separating the elastic and plastic regions; i.e., the extent of the elastic and plastic yield 
zone under a specific load level. The contact pressure distribution is then found by combining a “modified” 
elastic distribution within the elastic zone and the contact pressure distribution within the plastic yield zone. An 
advanced elastoviscoplastic finite element analysis on rigid foundations was conducted to evaluate the accuracy 
of both the developed method and the Schultze method. It was found that the developed method yields better 
results than the Schultze method for all types of soils. The extent of plastic yielding using the developed method 
was found in complete agreement with the elastoviscoplastic finite element analysis. The Schultze method was 
found to overpredict the extent of plastic yielding underneath the foundation by about 12% at high load levels to 
30% at low load levels. 

KEYWORDS: Contact pressure, Rigid foundations, Elastic, Plastic, Viscoplasticity, Finite element 

method. 

 
INTRODUCTION 

 
Stress distribution induced by foundation loads at the 

soil-foundation interface represents the starting point for 
safe and economic design of foundations. Contact 
pressure distribution based on the elastic theory is not 
realistic in view of the fact that plastic yielding begins at 
the foundation's edges and spreads out toward the center 
of the foundation. Plastic yielding is initiated even at low 
load levels and is dependent on the type of the 
foundation’s soil as well as the depth of foundation. 
Plastic yielding for foundations on surfaces of pure sandy 
soils is initiated immediately once load is applied on the 

foundation. 
Normally practicing engineers assume constant 

contact pressure distribution under foundations. This 
assumption, besides its inaccuracy, is not on the safe side. 
The finite element method with nonlinear elastic or 
viscoplastic modeling may be used to determine very 
accurately the contact pressure distribution. However, the 
finite element method is a sophisticated and elaborate 
method which needs time, effort and experience. 
Therefore, the finite element method may not be available 
to all practicing engineers. Moreover, for small and 
medium sized tasks and due to its needed elaborate nature 
and required time and effort the finite element method 
may not be the right choice. Accordingly, there is a need 
for a method which accurately calculates the contact 
pressure distribution and requires less time and effort Accepted for Publication on 18/12/2007.  
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than the finite element method, and yet available for all 
practicing engineers. 

Schultze in 1961 developed a method for calculating 
the contact pressure distribution. The method predicts the 
contact pressure distribution with reasonable accuracy. 
However, Schultze method overpredicts the amount of 
plastic yielding under the foundation and at all load levels 
by an average percentage of about 20%. The 
overprediction of Schultze method is the inevitable 
outcome of the assumption of linear distribution of 
pressure in the plastic zone. Overprediction of the plastic 
yield zone reduces the bending moment by reducing the 
arm of the resultant force of the contact pressure 
distribution rendering the RC foundation’s design not on 
the safe side proportional to the amount of the 
overprediction. 

This research work presents an elastoplastic method 
for calculating the contact pressure distribution under 
rigid foundations. Complete derivation of the new 
method is given in this paper. Examples for calculating 
the contact pressure distribution for various types of soils 
are given. Comparisons of the outcome of the developed 
method with Schultze method as well as results obtained 
from an advanced elastoviscoplastic finite element 
solution (Abdullah, 1982) were presented in this work for 
fair and just evaluation of the developed method and 
Schultze method. 

 
SCOPE OF THIS WORK 

 
The purposes of the present work are: 

1. Developing a new elastoplastic method for 
predicting the contact pressure distribution. 

2. Evaluating the developed method by using an 
advanced elastoviscoplastic finite element solution. 

3. Evaluating the extent of plastic yielding as compared 
with finite element solution. 

 
Elasto-Plastic Model for Contact Pressure 
Distribution 

The two most important characteristics of an 
elastoplastic pressure distribution model are: 

1. The extent of the region of plastic yielding 
underneath the foundation at a particular load level. 

2. The model by which the contact pressure is 
distributed within the plastic region. 

As a matter of fact, the model proposed for calculating 
the contact pressure distribution within the plastic zone 
directly influences and controls the extent of the plastic 
region underneath the foundation area. This fact is a direct 
consequence of the necessity of a statically admissible stress 
field underneath the foundation in equilibrium with the 
applied foundation load. The statically admissible stress field 
requires that the failure criterion should not be violated in 
any point within the soil domain under elastic equilibrium 
and represent a point on the plastic yield function such that 
in the plastic region: 
 

0)( , <jiF σ   within the elastic region   (1) 
 

0)( , ≥jiF σ    within the plastic region   (2) 
 

xd(x)σP z
a

a∫
+

−
=     (3) 
 
where F  is the plastic yield function, ji,σ  is the 

stress at a point in the soil domain, P is the applied load 
on the foundation, and )(xzσ  is the vertical stress at the 
soil-foundation interface at point x  away from the center 
of foundation, which also means the contact pressure. 

The influence of the point of separation and the model 
for distributing the pressure distribution and vice versa 
would be discussed with necessary details when the 
proposed model would be introduced. 

Foundation loads; due to the nature of (finite loaded 
area); are discontinuous outside the foundation area. The 
discontinuity of load causes high intensity of shear 
stresses at and also near the points of load discontinuity; 
i.e., at the edges of the foundation. High shear stress 
intensity at any point in soil is the source for plastic flow. 
In the plasticity and viscoplasticity terminology, high 
intensity of shear stresses at a point in soil causes 
violation of the plastic yield criterion. The level of 
violation of the plastic yield criterion is dependent on the 
extent by which the plastic yield surface was exceeded. 
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Therefore, the stresses induced in the supporting 
foundation soil and due to the applied loads are partly 
elastic and partly plastic. As the foundation load 
increases, the shear stresses increases accordingly and the 
zone of plastic yielding expands starting from the 
foundation edges towards the center of the foundation. 

Finding the extent of the plastic zone represents a 
prerequisite for any elastoplastic model for calculating 
contact pressure distribution. The point of extension of 
the plastic region, also, represents the point of separation 
of the plastic region and the elastic region. The stress 
distribution within the elastic region is governed by the 
Boussinesq solution (Poulos and Davis, 1974). The stress 
distribution within the plastic region may, however, be 
determined by an appropriate model. Schultze proposed a 
linear distribution within the plastic region. In reality, the 
stress distribution within the plastic zone could never 
assume linear distribution. This fact is based on the 
results obtained from many observed measurements of 
pressure distributions made in many parts of the world by 
different investigators (Schultze, 1961). Moreover, 
assuming a linear distribution within the plastic region 
would necessitate prediction of larger extent of the plastic 
state region than the real situation. 

 
THE PROPOSED ELASTOPLASTIC METHOD 

 
The pressure distribution under rigid foundations is in 

fact not linear neither in the elastic region nor in the 
plastic region. Assuming it linear in either the elastic or 
plastic region introduces error in the contact pressure 
distribution. Initially, the location of the point of 
separation between the elastic region and plastic region 
would be affected. Assuming linear distribution in the 
plastic region causes overestimation of the extent of the 
plastic region. Consequently, the elastic region would be 
smaller than what it should be. 

In order to obtain better estimation of the contact 
pressure distribution under rigid foundations, the point of 
separation of the elastic and plastic regions must be 
determined accurately. Moreover, the distribution of 
stresses within the plastic region must be improved by 

assuming a nonlinear model. 
The characteristics of any elastoplastic contact 

pressure distribution are: 
1. The extent to which the plastic region spreads out 

towards the center of the foundation; i.e., the point 
that separates the elastic and the plastic regions. 

2. A model for expressing the elastic pressure 
distribution within the elastic region. 

3. A model for expressing the plastic pressure 
distribution within the plastic region. 

4. A mechanism for the redistribution of the excess 
stress in the plastic region to the neighboring elastic 
region. 

Initially, the contact pressure distribution due to 
applied load on the foundation is elastic (Fig. 1). As the 
load level (which is the applied load divided by the 
ultimate load capacity) on the foundation increases, the 
shear stresses at the edges of the foundation increase 
accordingly. In soils; shear stresses are the source of 
plastic yielding. Therefore, when the shear stresses are 
built up due to the increase of load level, the plastic yield 
function would be violated ( ) )0( , ≥jiF σ . Plastic yielding 
in these areas develops and spreads out towards the center 
of the foundation as load level increases. Eventually, at 
ultimate load capacity (qult × B; qult is the ultimate 
bearing capacity and B is the foundation width), where 
the load level is equal to 1, the stress distribution is 
totally plastic (Fig. 2). 

The pressure distribution in the elastic region is 
governed by the well known Boussinesq distribution, as 
given by the following equation (Poulos and Davis, 
1974): 

 
( )

2

1 





−

=

a
xa

Pxz

π

σ                  (4) 
 
 
 
Where )(xzσ  is the contact pressure at point x away 

from the center of the foundation, P is the applied load on 
the foundation and “a = B/2” which is a half the 
foundation width (Fig. 1). 
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Fig. (1): Elastic contact pressure distribution under rigid foundation of width B = 2m. 

 
 

 
 

Fig. (2): Contact pressure distribution under rigid foundation at ultimate condition for a c – φ soil. 
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Fig. (3): Contact Pressure distribution under rigid foundation at load level below ultimate condition 

for a c – φ soil. 
 

 
Fig. (4): Bearing capacity factor Nγ. 
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The Boussinesq distribution (Eq. 4) predicts an 
infinite value of pressure at the edges of the foundation  
 







 = 1

a
x , and as can be demonstrated by Fig.1. Such high  

 
values of stresses at the edges can not be tolerated by the 
soil and thus, immediately, cause plastic yielding at these 
locations. The stresses at the edges can not exceed the 
ultimate strength, and hence should have a finite value of 
stress at these locations. The excess stress above the 
ultimate stress would then be redistributed to the 
neighboring regions. Obviously, redistributed excess 
stress would go to the elastic region and will be 
distributed according to an elastic formula. Following the 
redistribution process, the resulting elastoplastic contact 
pressure distribution looks as shown in Fig.3. 

 
Development of the Model 

As long as there is an exact solution in the elastic 
region (Boussinesq distribution represented by Eq.4), 
then it should be used to determine the contact pressure 
distribution in that region. 

In the other extreme state; i.e., at the ultimate bearing 
capacity, there is no unique or exact solution to determine 
the plastic pressure distribution. 
 

γγ NBqNNcq qcult 22
1

++=    (5) 
 

where c is the soil cohesion, q is the overburden 
pressure at foundation level Df, B is the width of 
foundation, γ1, γ2 are the unit weight above and below 
foundation level, respectively, Nc, Nq and Nγ are the 
bearing capacity parameters. 

Schultze assumed linear distribution under ultimate 
condition; i.e., plastic equilibrium. As mentioned earlier, 
observations made on real foundations have demonstrated 
that the distribution in the plastic region is non-linear. 
The observed contact pressure distributions (Schultze, 
1962) are, basically, quadratic. Therefore, the developed 
model adopted a quadratic model for the distribution in 
the plastic region. 
 

Quadratic Distribution–Determination of Parameters 
For a surface foundation on frictional soil (cohesion; 

c= 0, and depth of foundation; Df =0), the ultimate load 
carrying capacity of the foundation is: 
 

BqP ult ×=      (6) 
 

where B is the foundation width and B = 2 a, and qult 

is the ultimate bearing capacity of the foundation, given 
as: 
 

γγ NBqult 22
1

=     (7) 
 

Hence, the ultimate load capacity of the foundation 
would be: 
 

( ) γγγ γγγ NaaNaBNBP 2
2

22
1

22
1 222* =××==    (8) 

 
The sought quadratic equation is of the form: 
 

( ) vxuxz += 2σ      (9) 
where u and v are two quadratic constant parameters 

to be determined to fit the following two boundary 
conditions: 
1. -he pressure at the edges are zero; i.e., 
2. The area covered by the quadratic distribution = 

ultimate load capacity of the foundation “P”. 
 

( ) ( )dxvxudxvxuNaP
ax
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ax
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+=+== ∫∫
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−=

+=

−=
22

2
2 222 γγ

 
                   (10) 

From the first boundary condition, we have: 
 

02 =+ vau                   (11) 
 

And from the second boundary condition, we have: 
 

( ) γγ Nadxvxu
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Solving Eq.(12) and Eq.(15) for the two quadratic 

parameters “u” and “v”, we get: 
 

a
N

a
u γγ 2

2
3

−=                  (16) 
 
 

γγ Nav 22
3=                   (17) 
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or: 
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2
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By letting 
a
x

=ξ , Equation 19 becomes: 
 

( ) [ ]2
2 1

2
3 ξγσ γ −= Naxz                 (20) 

 
Finally, the contact pressure distribution at ultimate 

condition at any point below the foundation is given as: 
 

( ) ( )2
22

3 1 ξγσ γ −++= NaNqNcx qcz                      (21) 
 

Development of the Elastoplastic Model 
In this part, the real state of stress will be considered; 

namely, the contact pressure distribution at a load level 
intermediate between the elastic state of stress where 
elastic state of stress under the foundation prevails (in 
equilibrium with the foundation load) and the state where 
plastic state of stress under the foundation is in equilibrium 
with the applied load on the foundation. In such case, it is 
anticipated that plastic yielding has developed the amount 
which is dependent on the load level. Let the extent of the 
elastic region be at a normalized distance ξ1 = x1/a from 
the center of the foundation (Fig. 3). 

Equilibrium of vertical stresses requires that load 
applied on the foundation equals the area of the contact 
pressure distribution. The area of the contact pressure 
distribution is the sum of the area under the elastic as well 
as the plastic pressure distributions. Since there is 
geometric symmetry and loading symmetry of the 
foundation, the derivation considers only half a of the 
contact pressure distribution. 

The area under the pressure distribution in the elastic 
region is obtained from Eq.(4) and is given as: 

 

1
11

20
1 sin

1

1 ξ
ππ

−=



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

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xd
a

P
A

x
Elastic              (22) 

 
 
The area under the pressure distribution in the plastic 

region is obtained from Eq.(21) and is given as: 
 

( )( ) ( )( )dxNaNqNcaA a
xa

xqcPlastic
2

22
3

11 11 −++−= ∫ γγξ   
              (23) 

Integrating Eq. (23) yields: 
 

( ) ( ) ( )3
112

2
2
1

1 321 ξξγξ γ +−++−= NaNqNcaA qcPlastic  
                   (24) 

Thus the condition of equilibrium of contact pressure 
with the foundation load yields: 
 

( )( ) ( )3
112

2
2
1

11
11 321sin

2
ξξγξξ

π γ +−++−+= − NaNqNca
PP

qc   
 
                                                       (25) 

where P1 is the amount of foundation’s load needed to 
redistribute the excess stresses above yielding (stresses 
that caused yielding). 

There are two unknowns to be determined, so that the 
full contact pressure distribution is totally known. These 
two values are the values of P1 and ξ1 separating the 
elastic and plastic regions. Continuity of the contact 
pressure distribution requires that the value of pressure at 
the interface of the elastic and the plastic regions should 
be the same; namely: 

 





 −++=

−
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2
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1)( 2
12

2
2
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( ) ( )[ ]2
12

2
2
32

11 11 ξγξπ γ −++−= NaNqNcaP qc    (27) 
 

Substituting P1 from Eq. 27 into Eq. 26 we get the 
following non-linear equation with only one unknown; 
namely ξ1. The final equation becomes: 
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                   (28) 

Eq.28 may be written in the standard form of 
nonlinear equations and thus we solve it for the unknown 
ξ1 using the bisection method. 
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Once the value of ξ1 is determined by solving Eq. 29, 
P1 is determined using Eq. 27, the elastic pressure 
distribution is determined using Eq. 26 and the plastic 
distribution is determined using Eq. 26. 

 
Comparison between the Developed Method and the 
Schultze Method 

Two examples would be introduced for comparing the 
contact pressure distribution under rigid foundation 
obtained from the developed method and the Schultze 
method. The first example considers the contact pressure at 
various load levels for sandy soil. The other example 
considers the contact pressure at various load levels for 
mixed (c – φ) soil. The soil properties for both examples 
are given in Table 1. Obviously, the bearing capacity 
factors Nc, Nq and Nγ are required to calculate the bearing 
capacity of the foundation. For real soils (weight of soil is 
not ignored); there is no exact solution for the bearing 
capacity problem (Chen, 1975). Consequently, there are no 
unique values for the bearing capacity factors. The most 
debated factor as well as many investigators have 
developed methods for predicting it; is Nγ. For sandy soils, 
Nγ value varies significantly depending on the method of 
bearing capacity analysis and the assumed failure 

mechanism. For instance, Prandtl proposed three 
mechanisms with the resulting Nγ values differ 
significantly from one mechanism to the other. The used 
value for the Nγ was taken from Eq.(30) and Fig. 4, which 
was found to yield good results as was found from high 
accuracy finite element solutions. The bearing capacity 
factors used for the solved problems are given in Table (2). 
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 +














 ++=

s
eN φπ

φ
φπφπ

γ 4
tan)(tan

24
tan12 2)(tan  

 
             (30) 

The extent of the plastic region as determined by the 
two methods was, also, a focus for comparison. As shown 
in Fig. 5, the extent of the plastic region is )ξ( 1 1−  thus 
the extents of the plastic region as predicted by the 
Schultze method and the developed method are 

)ξ( 1 1s−  and )ξ( 1 1d− , respectively. The Ratio of the 
extent of plastic region as determined by Schultze method 
to that determined by the developed method is calculated 
as: 
 ( )

( )1d

1s

ξ1
ξ1

−
−

=ℜ                                (31) 
 
For the pure φ-soil (first example) the contact 

pressure distributions obtained by the developed method 
and the Schultze method were compared at two different 
load levels (83% and 95%). The results are shown in Fig. 
6 and Fig. 7, respectively. Load level is defined as the 
applied load divided by the ultimate load; i.e., the bearing 
capacity of the foundation. The Schultze method, as 
mentioned earlier, overpredicts the extent of the plastic 
region for all load levels. The extent of the plastic region 
predicted by both methods is given in Table (3). 

The second example presents the contact pressure 
distribution of rigid strip foundation on c – φ soil. The 
width of the foundation and the soil properties are given 
in Table 1. The contact pressure distribution using both 
method at load levels, 75%, 83.3% and 95% are given in 
Fig. 8, Fig. 9 and Fig. 10, respectively. Yet again the 
Schultze method overpredicts the extent of the developed 
plastic region due to applied foundation’s load as 
illustrated by Table (4). 
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Fig. (5): Extent of the plastic region as determined by the developed method and Schultze method. 

 
Fig. (6): Contact pressure distribution under rigid foundation on sandy soil, B = 1.2 m, φ = 40°, γ = 17.3 kN/m3, 

load level = 83%. 

(  

 

ξ1s

ξ1d
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Fig. (7): Contact pressure distribution under rigid foundation on sandy soil, B = 1.2 m, φ = 40°, 
γ = 17.3 kN/m3, load level = 95%. 

 

 
Fig. (8):Contact pressure distribution of rigid foundation on c- φ soil, c = 24.5 kN/m2, φ = 40°, γ= 17.3 kN/m3,  

B = 1.2 m, load level = 75%. 
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Fig. (9): Contact pressure distribution of rigid foundation on c- φ soil, c = 24.5 kN/m2, φ = 40°, 

γ = 17.3 kN/m3, B = 1.2 m, load level = 83.3%. 

 
Fig. (10): Contact pressure distribution of rigid foundation on c -  φ soil, c = 24.5 kN/m2, 

φ = 40°, γ = 17.3 kN/m3, B = 1.2 m, load level = 95%. 
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Fig. (11): Finite element idealization of the investigated domain. 
 
Elasto-viscoplastic Finite Element Solution 

The finite element method is a well developed method 
which can vigorously analyze complex and difficult 
engineering and scientific problems with high degree of 
exactness. The 8-noded isoparametric finite element was 
utilized for this analysis. The finite element domain for 
the analyzed foundation problem is shown in Fig. 11. The 
domain consists of 110; 8-noded isoparametric elements. 
Well known research workers (Zienkiewicz, 1977; 
Zienkiewicz and Taylor, 1989; Zienkiewicz et al., 2005) 

have found that the 8-noded isoparametric elements are 
the most appropriate elements for analysis as far as 
accuracy and stability of the results are concerned. 
Reduced integration was adopted using 2 by 2 Gauss 
integration points for each element. 

Nonlinear finite element analysis was performed 
using the elastoviscoplasticity algorithm. Soil shear 
strength was modeled using Mohr-Coulomb failure 
criterion. Associated and non-associated flow rules were 
employed for calculating the viscoplastic strains. 

B 

13 B 

Foundation 

6 B 
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Fig. (12): Close-up of the finite element mesh in the vicinity of the foundation’s edges. 

 

 
Fig. (13): Contact pressure distribution under rigid foundation on sandy soil, B = 1.524 m, 

φ = 40°, γ = 17.3 kN/m3, load level = 33.3%. 

B 

Foundation 

http://www.pdfcomplete.com/cms/hppl/tabid/108/Default.aspx?r=q8b3uige22


New Elastoplastic…                                                                                                                          Waddah Salman Abdullah 
 

- 84 - 

 
Fig. (14): Contact pressure distribution under rigid foundation on sandy soil, B = 1.524 m, 

φ = 40°, γ = 17.3 kN/m3, load level = 53%. 

 
Fig. (15): Contact pressure distribution under rigid foundation on sandy soil, B = 1.524 m, 

φ = 40°, γ = 17.3 kN/m3, load level = 82%. 
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Conceptually, elastoviscoplasticity is more superior to the 
elastoplasticity in the sense that it can model soil 
behavior in real time, given the parameters of the soil are 
known. Otherwise, it may be used as a numerical artifice. 

Details of the elastoviscoplasticity were given 
elsewhere (Abdullah, 1987a; Abdullah, 1987b; Abdullah, 
1982). The basic idea of the elastoviscoplasticity is that 
soils (or any other materials) behave elastically as long as 
the failure criterion is not violated; 0)( <ijF σ . Once 
plastic yielding is developed (i.e., failure criterion is 
violated )0)( ≥ijF σ  in the soil domain, viscoplastic 
strain rate is developed )( vpε&  whose value depends on 
the type of the plastic potential function and the amount 
of stresses by which the failure criterion was violated. 
The strain rate for an associated material is given as: 

 
[ ] [ ] [ ] ( )

][
1

σ
ϕγσε δ

∂
∂

+= − F
FD &&                 (32) 

 
and for a non-associated material (where Q ≠ F) is 

given as: 
 

[ ] [ ] [ ] ( )
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1

σ
ϕγσε δ

∂
∂

+= − Q
FD &&                 (33) 

 
where: 
[ ]ε&  = total strain rates, 
[ ]D  = elasticity matrix, 
 γ    = fluidity parameter, 
F = plastic yield function, 
Q = plastic potential function, 
[ ]σ  = stresses at a particular point in the soil domain, and 
[ ]σ&= stress rates. 
The square brackets  mean: 
 

δϕ )(F  = 0.0 for F<0.0 failure criterion is not violated, 
  

δδ ϕϕ )()( FF =  for F ≥ 0.0 failure criterion is violated. 
 

When stresses at a particular point in the soil domain 
exceed the stresses allowed by the plastic yield criterion, 
the excess stresses would be redistributed viscoplastically 
to the surrounding region where stresses at any particular 
point are satisfied by 0)( , <jiF σ . The viscoplastic 

strains are dissipated in time steps using Euler's marching 
scheme (Abdullah, 1987a; Abdullah, 1987b; Abdullah, 
1982). Critical time stepping (Zienkiewicz and Cormeau, 
1972, 1974) was used to ensure numerical stability of the 
solution. The time step for a Mohr-Coulomb plastic 
potential function is given by Zienkiewicz and Cormeau 
as: 
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−+
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vE

vvtcrit                  (34) 
 
where: 
E = Modulus of elasticity, γ is the fluidity and υ is the 

Poison's ratio of the material. 
For a Mohr-Coulomb material, the plastic yield 

function is given by the following function; 
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where: 
φ = friction angle, 

0θ  = Lode angle, and is given as: 
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Prandtl Solution Using Elastoviscoplastic Finite 
Element 

Prior to calculating the contact pressure distribution 
using the elastoviscoplastic finite element approach, the 
accurateness of this approach was examined. The 
precision was examined by comparing the result obtained 
from the elastoviscoplastic finite element model with that 
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Table 1. Soil properties of the two considered examples. 
Example Number Foundation Width 

B 
(m) 

Cohesion 
c 

(kN/m2) 

Friction Angle ϕ 
(°) 

Unit Weight 
γ 

(kN/m3) 
1 1.2 0 40 17.3 
2 1.2 24.5 40 17.3 

 
Table 2. Bearing capacity factors for the solved problems. 

Bearing Capacity Factors Example 
Number 

Friction Angle ϕ 
(°) 

Cohesion 
c 

(kN/m2) Nc Nq Nγ 
1 40 0 75.34 64.21 145.3 
2 40 24.5 75.34 64.21 145.3 
3 30 0 30.14 18.4 21.9 

 
Table 3. Extent of the plastic region as determined by the developed method and 

the Schultze method for problem 1. 
Load Level  

(%) 
Schultze 
Method 

Developed 
Method 

( )
( )1d

1s

ξ1
ξ1

−
−

=ℜ  

83  0.378 0.489 1.22 

95 0.216 0.325 1.17 

 
Table 4. Extent of the plastic region as determined by the developed method and 

the Schultze method for problem 2. 
Load Level  

(%) 
Schultze 
Method 

Developed 
Method 

( )
( )1d

1s

ξ1
ξ1

−
−

=ℜ  

75 0.611 0.669 1.18 

83.3 0.511 0.584 1.18 

95 0.297 0.39 1.15 

 
Table 5. Extent of the plastic region as determined by the developed method and 

the Schultze method for problem 3. 
Load Level  

(%) 
Schultze 
Method 

Developed 
Method 

( )
( )1d

1s

ξ1
ξ1

−
−

=ℜ  

33.3 0.756 0.811 1.3 

53 0.629 0.709 1.28 

82 0.392 0.503 1.22 
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of the Prandtl exact solution of a surface continuous 
foundation located on weightless cohesive soils. The 
predicted bearing capacity using the elastoviscoplastic 
finite element was only 1% above the Prandtl exact 
solution. This amount of error which was 0.01 of the 
exact solution may, even, be reduced further by 
specifying smaller tolerance value for the termination 
criterion of viscoplastic iteration scheme. Such high 
accuracy (compared to Prandtl exact solution) can not be 
achieved even by nonlinear elasticity finite element 
approach and can only be obtained from the 
elastoviscoplastic approach. This conclusion was reached 
from experience with other forms of nonlinear finite 
element analysis such as the nonlinear elasticity 
approach. 

Adopting an accurate model for the analysis can not, 
in itself, assure accurate results unless the soil domain is 
accurately modeled and appropriately represent regions 
of sharp changes in stresses, particularly shear stresses. 
Therefore the finite element mesh represents the second 
most important (next to the elastoviscoplastic model) 
feature of a precise analysis. The mesh shown in Fig. 11 
was carefully thought of and designed to achieve the 
required goals. This mesh idealizes the regions of sharp 
changes in stresses, at the edges of the foundation, with 
small finite elements. Fig. 12 furnishes a close up of the 
style of distribution of the finite element within critical 
regions of sharp changes in stresses. 
 
Evaluating the Accuracy of the Developed Method 
and the Schultze Method 

As demonstrated earlier, the developed method and 
the Schultze method yielded different contact pressure 
distributions. The predicted extent of the plastic region 
was also different according to the two mentioned 
methods. Thus, it is of prime significance to gauge up the 
predicted contact pressure distributions and the extent of 
plastic yielding using the two methods by means of a 
credible method so that a correct conclusion can be 
drawn, on which method prediction is more accurate. 

Weighing up the results obtained by the two methods 
must be conducted against results obtained from an exact 

method. In fact, there is no rigorous method to obtain the 
exact contact pressure distribution. Therefore, a credible 
alternative must be found to pursue the sought task of 
passing judgment on the two methods. The finite element 
method has proved over the past decades its supremacy 
and accurate prediction for all engineering problems. As 
demonstrated earlier, the finite element method coupled 
with the elastoviscoplastic model predicted the Prandtl 
exact solution within an error of only 1%. 

Therefore, the developed method and the Schultze 
method will be compared with results obtained from an 
elastoviscoplastic solution using the finite element mesh 
presented in Fig. 11. The contact pressure distribution of 
a rigid foundation on sandy soil whose properties is given 
in Table 2 was considered. The contact pressure 
distribution using the developed method, the Schultze 
method and the elastoviscoplastic finite element solution 
for load levels, 33.3%, 53% and 82% are given in Fig. 13, 
Fig.14 and Fig. 15, respectively. The results are a clear 
indication on the closeness of the results obtained from 
the developed method to that of the elastoviscoplastic 
finite element solution for all load levels. Moreover, the 
extent of the plastic region predicted by the developed 
method is very close to that predicted by the 
elastoviscoplastic finite element solution (Fig. 13 through 
Fig.15). The extent of the plastic region predicted by both 
methods is given in Table 5. 

 
SUMMARY AND CONCLUSIONS 

 
A new developed method for calculating the contact 

pressure distribution under rigid foundations was 
introduced. The method is based on an elastoplastic 
approach. First, the extent of plastic yielding zone under 
specific load level is determined and the contact pressure 
under the foundation is the combination of the contact 
pressure in the elastic and plastic zones. Complete 
derivation of the new developed method was given with 
necessary details.  

Several examples concerning type of soils; namely φ– 
soil and c – φ – soil were given. Comparisons of the 
contact pressure distribution obtained from the developed 
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method with that obtained from Schultze method were 
also presented in this work. The comparison, also, 
included the extent of the plastic yield zone determined 
by the developed method and by the Schultze method. 

Evaluation of the accurateness of the developed 
method and the Schultze method was carried out using an 
elastoviscoplastic solution. The finite element solution 
employed advanced and precise soil modeling. The soil 
domain was approximated with a well developed finite 
element mesh comprised of 8 – noded isoparametric 
elements. Comparisons of the contact pressure 
distribution as well as the extent of plastic yield zone 
were made. The following conclusions are drawn from 
the present work: 
1. The contact pressure distribution obtained by the 

developed method is non-linear in the elastic region 
as well as in the plastic region. 

2. The contact pressure distribution obtained by the 
developed method is very close to the distribution 
obtained from a well developed elastoviscoplastic 
finite element solution. 

3. The developed method predicts the extent of the 
plastic yield zone with high precision as compared 
to the elastoviscoplastic finite element solution. 

4. Schultze method overpredicts the extent of plastic 
zone, on average, by 20%. 

5. The developed method may be used by practicing 
engineers to determine the contact pressure 
distribution under rigid foundations with high degree 
of expected accuracy. 

 
Nomenclature 
a = B/2, 
B = foundation width, 
c = soil cohesion, 
Df = Foundation’s level, 
E = Modulus of elasticity, 
F  = the plastic yield function, 
 
Nc, Nq and Nγ = bearing capacity parameters, 
 
P = applied load on the foundation, 
q = overburden pressure at foundation level Df, 
qult = ultimate bearing capacity, 
Q = plastic potential function, 
γ1, γ2 = unit weight above and below foundation level 
respectively, 
γ = fluidity parameter, 
υ = Poison's ratio of the soil. 
ξ1 = location of the point separating the elastic and plastic 
regions, 

)(xzσ  = the vertical stress at the soil-foundation 
interface at point x away from the center of the 
foundation, 

ji,σ  = the stresses at a point in the soil domain, 
[ ]ε& = total strain rates, 
[ ]D  = elasticity matrix, 
[ ]σ  = stresses at a particular point in the soil, and 
[ ]σ& = strees rates. 
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