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ABSTRACT

A perturbation technique was used to obtain an approximate closed-form solution for the mass balance equations

when the dusty gas model (DGM) is used to calculate total molar fluxes of components of ternary gaseous

systems. This technique employed the straight-forward expansion method to the second-order approximation.

Steady-state, isobaric, isothermal and no reaction conditions were assumed. The obtained solution is a set of

equations expressed to calculate mole fractions as functions of dimensionless length, boundary conditions,

properties of the gases and parameters of transport mechanisms (i.e., Knudsen diffusivity and effective binary

diffusivity). Three different systems represent field and experimental conditions were used to test the

applicability of perturbation solution. Findings indicate that the obtained solution provides an effective tool to

calculate mole fractions and total molar fluxes of components of ternary gaseous systems.

KEYWORDS: Dusty Gas Model, Perturbation, Gas Transport Mechanisms, Diffusive Transport,
Porous Media, VOC, Groundwater Contamination.

INTRODUCTION

Many significant environmental problems require
quantification of diffusive transport mechanisms in the
gaseous phase. Examples of such problems include: the
use of natural unsaturated zones as landfills and disposal
sites for hazardous wastes, groundwater contamination
by wvolatile organic compounds (VOCs), subsurface
remediation and the health effects of Radon and its
decay products.

Three models have been commonly used to model
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diffusive transport in natural porous media. These
include: Fick’s first law of diffusion, the Stefan-Maxwell
equations and the Dusty Gas Model (DGM). Many
studies investigated the applicability of Fick’s first law of
diffusion to model vapor diffusion and highlighted the
importance of flux mechanisms other than molecular
diffusion flux to adequately model the diffusive transport
in a porous medium. Thorestenson and Pollock (1989a, b)
used the Stefan-Maxwell equations and the DGM to
assess the limitations of Fick’s fist law through a
theoretical investigation of the relative importance of
different transport mechanisms in binary and multi-
component gaseous systems. Baehr and Bruell (1990)
analyzed results of hydrocarbon vapor transports column
experiments and calculated the tortuosity factors
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necessary to fit these experimental data when using
Fick’s law and the Stefan-Maxwell equations. Abriola et
al. (1990) numerically investigated the importance of
different gas transport mechanisms in non-steady-state
binary systems. Voudrias and Li (1992) experimentally
investigated the importance of Knudesn diffusion in an
unsaturated soil sample containing benzene vapor. Abu-
El-Sha’r and Abriola (1997) experimentally evaluated the
relative importance of different gaseous transport
mechanisms in natural porous media systems.

Findings of the above studies indicated that a
multicomponent treatment incorporating different gas
transport mechanisms should be undertaken to obtain
better modeling of gas transport in natural porous
media. This is of special importance when modeling
systems  where Knusden diffusion contributes
significantly to the total diffusion (e.g., clay). In such
systems, Fick’s diffusion and the Stefan-Maxwell
equations may be inadequate to model diffusive gaseous
transport. Therefore, analysis of natural environmental
problems requires consideration of ternary systems
(systems consisting of a gaseous contaminate and air
which is usually modeled as a mixture of oxygen and
nitrogen).

The use of the DGM to solve for concentrations and
molar fluxes of species of gaseous systems when the
number of components of three or more exists is limited
by the availability of a closed-form solution to the DGM.
To our knowledge, there is no analytical solution in the
literature to the mass balance equations when the DGM is
used to calculate concentrations or total molar fluxes of
gaseous species in a porous medium. Numerical solutions
however are limited and have their own limitations. The
objectives of this paper are: (1) to obtain an approximate
closed-form solution to the DGM equations when
incorporated in mass balance equations for ternary
systems using perturbation methods. The following
conditions are also assumed: steady-state, isothermal, no
chemical or biological reactions occur in the system and
surface diffusion is neglected, (2) to apply the obtained
approximate closed-form solution to different natural
porous media systems.
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BACKGROUND

Gas Transport Mechanisms through Porous Media

Gas transport through a porous medium occurs via
four different mechanisms: (1) surface flow or diffusion;
(2) viscous flow; (3) Knudsen flow; (4) ordinary
diffusion (i.e., molecular and non-equimolar fluxes). A
brief discussion of these mechanisms is given below and
a detailed discussion can be found in Cunningham and
Williams (1980), Mason and Malinauskas (1983) and
Abu-El-Sha’r (1993).

Surface flux occurs when gas molecules are adsorbed
on specific sites at the surface of the particles of the
porous media. Due to the continuous movement
(vibrations) of the adsorbed molecules, each molecule
transfers by hopping to other adsorption sites a number of
times before it returns to the gaseous phase. Surface
diffusion is usually modeled by employing Fick’s Law of
diffusion where the concentration gradients refer to the
surface concentration gradients and all the complexities
of the porous medium geometry, surface structure and
adsorption equilibrium are lumped into the surface
diffusion coefficient. The Fickian model is useful only at
low surface coverage (Mason and Malinuskas, 1983). In
this paper, the number of molecules adsorbed to the soil
surface adsorption sites is assumed equal to the number
of molecules leaving the adsorption sites (steady-state
conditions). Thus, net surface flux will not effect the total
gaseous flux and is neglected.

Viscous flux occurs when a pressure gradient is
applied on the system. The damping effects due to the
high rate of interaction (i.e., collisions) among gas
molecules compared to the interaction between gas
molecules and the boundaries of the system cause a
constant viscous flux. On the other hand, when there is
more interaction between gas molecules and system
boundaries than the interaction among gas molecules,
Knudsen flux dominates. In a multicomponent gaseous
system, there is a concentration gradient for each
component and thus a net Knudsen flux of each
component as well. The net Knudsen flux of gas i can be
calculated as (Cunningham and Williams, 1980):
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K~k dc
Ny =-D" —— M
dz
where N¥ is the Knudsen molar flux of component i,
Ci is molar concentration of component | and DiK is the

Knudsen diffusivity, given as:

. RT 1/2
D" =Q, IR )

1
where Qp is the obstruction factor for Knudsen
diffusivity, T is the temperature, R is the ideal gas
constant and M, is the molecular weight of gasi. For a

porous media with a single pore size, DiK
(Geankoplis, 1972):

3
DS =9.7x10r /ML
‘ 3)

where I is the average pore radius.

is given by

Ordinary diffusion of gases in a porous medium is a
combination of two different flux mechanisms: diffusive
(molecular) flux and viscous (nonequimolar) flux. The
total molar diffusive flux of component I is given by
(Cunningham and Williams, 1980):

T _ D v
N =N+ XN @

where N, is the total diffusive flux of component i,
is the
mole fraction of component i and N, is the molar

N is molar diffusive flux of component i, X;

viscous flux of component and can be given as:

N =— Kop

RT

H )
where Kk is the intrinsic permeability, ¢ is the

dynamic viscosity and VP is the pressure gradient.

Gas Transport Models

As mentioned previously, Fick’s first law of diffusion,
Stefan-Maxwell equations and the Dusty Gas Model
(DGM) have been used to study gas transport through
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porous media. Fick’s law has been reported in the
literature of hydrology and soil physics to model
molecular diffusion. It originated based on solute studies
as an empirical equation and then extended for prediction
of gaseous diffusion through porous media (Kirham and
Powers, 1972; Abu-El-Sha’r, 1993).

Fick’s law for one-dimensional and steady-state
conditions is written in molar form as (Jaynes and
Rogwski, 1983):

dX,
Wk =pegy o

where (NiD )F is Fick’s first law diffusive molar flux

of component I, D, is the binary diffusivity of

: !
components | and ] and C is the total molar
concentration. Dij can be calculated as (Perry and Green,
1997):

1/2
10—3T1.75 (MI+MJ)
MM,

v ) v )] v

here T is the temperature (Kelvin), P is the pressure
(Kpa), and ZV is the sum of atomic diffusion volumes.

D, =
P

For gaseous transport through porous media, Dy is

replaced by the effective diffusive coefficient Di?, which
is given by:

Di? = Qm Dij (8)

where Qm is an obstruction factor, which is a function
of porosity and tortuosity of the porous medium. One
suggested correlation for Qm is given by (Cunningham

and Williams, 1980):

Qm :TP/3

where T, is the porosity of the porous media.

(€))

Stefan-Maxwell equations are usually used in
chemical engineering to study multicomponent gas
diffusion. The general form of Stefan-Maxwell equations
can be given as:



Perturbation Solution...

Wa'il Y. Abu-El-Sha'r, Riyadh Al-Raoush and Khaled Asfar

i XiNJ.D—XjNiD 1 vp
. = [ (10)
D; RT

i=1, j=i
where n is the number of gaseous component in the

system. Note that Equation (10) represents n-1
independent equations, since

Z"; X, =1.0 (11)

The form of Stefan-Maxwell equations given in
Equation (10) can be written in a form similar to Fick’s
law, where diffusion coefficients are function of the
composition of gaseous components and properties of the
porous media. It is to be noted that both Fick’s law of
diffusion and Stefan-Maxwell equations do not
incorporate Knudsen diffusion, therefore, both models
may be inadequate to model systems where Knudsen
diffusion is significant.

Although the DGM can be used to model
multicomponent gaseous transport through porous
media, it has been rarely used in natural systems

L X,NP-X,N° NP1

2

j=1, ji D; DiK RT

where n' is the gas and particle density, «; is the
generalized thermal diffusivity and the remaining
parameters are previously defined. The summation term
on the left hand side of Equation (12) is the momentum
lost through molecule-molecule collisions with
component other than i (but not the particle), the
second term is the momentum lost by component i
through molecule-particle collisions, the first term on
the right hand side is the component pressure gradient
of component i and the second term is the thermal
gradient which may be neglected for isothermal
systems.

Analysis of Gaseous Systems

The analysis of a particular gaseous system requires
solution of mass balance equations for system
components based on given boundary and initial
conditions. The mass balance equations on a molar basis,
assuming uniform void fraction in time, can be written in
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applications (Alzyadi, 1975; Thorstenson and Pollock,
1989a, b; Abriola et al., 1992; Voudrias and Li, 1992).
In addition, few measurements have been made to
estimate the different transport parameters and
coefficients incorporated in the model (Allawi and
Gunn, 1987; Abu-El-Sha’r and Abriola, 1997). The
DGM incorporates the different transport mechanisms
(i.e., molecular diffusion, non-equimolar flux, Knudsen
diffusion, surface diffusion and viscous flux) in a
rigorous way based on the kinetic theory treatment. The
DGM treats the porous medium as a collection of
suspended large dust particles. The dust particles (i.e.,
solid matrix) are considered as one component of the
gaseous mixture, uniformly distributed, and much larger
and heavier than the gas molecules (Jackson, 1977,
Cunningham and Williams, 1980;
Malinauslcas, 1983).

The constitutive equations of the DGM in molar form

Mason and

are given by:

+n' Y X, X, VInT (12)
=1

a general form as:
oc,
VN +¢6—+R, =0 13
i 8'[ Vi ( )

where N[ is the total molar flux of component i
which can be calculated using either Fick’s law, Stefan-
Maxwell equations, or DGM; ¢ is the void fraction of
the porous medium; ¢; is the number of moles per unit
void volume; R is the reaction rate of species i per unit
volume of porous media.

In this paper, the following conditions were assumed:
isothermal, steady-state, isobaric, no chemical or
biological reactions occur in the system and surface
diffusion is insignificant. Therefore, Equation (13) is
reduced to:

VN =0 (14)

For ternary gas system, the total molar fluxes for the
different gas components may be explicitly written using
the DGM equation as (Feng and Stewart, 1973):
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a0 & = B Y ) - D)

where [NZ] and [C] are Nn-element column vectors
consisting of elements Nj; and cj; respectively; r is the
radius of pore; u is the gas dynamic viscosity; [Ds( r )] is
an nxn diagonal matrix of surface diffusivities, Di;(I);
[F(r)] is the nxn matrix formed as:

Fﬁ(r):—;—;,(w i (16-2)
1 X,
F,(r)= —Df © + h;giD—ih (16-b)

For steady-state, isobaric conditions, Equation 15 may
be written as:

[Nz]=—[F(r)]{$} (17)

Perturbation

Perturbation theory is a collection of methods for
systematic analysis of the global behavior of solutions to
the differential equations. The general procedure of
perturbation theory is to identify a parameter (small or
large), usually denoted bye, then the solution is
represented by the first few terms of an asymptotic
expansion, usually not more than two terms. The
expansion may be carried out in terms of € which
appears naturally in the equations, or may be artificially
and temporarily introduced into a difficult problem

][R X XX
Dl DlZ Dl3 DlZ

X 1 X X
I o, or'p, "o,
- 21 2 21 23
X X

N, o o
31 32

having no small parameter. Then €=1 is set, if necessary,
to recover the original problem. This artificial conversion
to a perturbation problem may be the only way to solve
the problem. However, it is preferable to introduce € in
such away that the zero-order solution (i.e., the leading
terms in the perturbation series) is obtainable as a closed-
form analytic expression. Such expansion is called
parameter perturbation. Alternatively, the expansion may
be carried out in terms of a coordinate (either small or
large). These are called coordinate perturbation. The idea
of perturbation theory is to decompose a tough problem
into an infinite number of relatively easy ones. Hence,
perturbation theory is most useful when the first few
terms reveal the important features of the solution and the
remaining ones give small corrections (Bender and
Orszag, 1999; Nayfeh, 2000).

Details of Solution of the DGM

Molar fluxes of species along a given direction (i.e., the
z direction) in a multicomponent gaseous system are
given by Equation (15). For steady-state diffusive mass
transport, it is commonly assumed that viscous flow and
surface diffusion are insignificant (Farmer et al., 1980;
Karimi et al., 1987; Baeher and Bruell, 1990; Voudrious
and Li, 1992). Therefore, the first and third terms of the
right hand side of Equation (15) may be neglected.
Using Equations (15) and (16) and the relations: P;=X; P
and C; =P, /RT, the molar fluxes of a three-component
gaseous system can be given as (i.e., Equation 17):

-1

Xy P 1
Dy RT ¢
_ Xy i
Dy RT 2 (18)
LXK X Py ,
D3K D3l D32 RT

Dots in the above equation represent the derivative
with respect to z. For formulation convenience, let:
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A:iK;B:iK;E:iK;H :i;G:i; Q:i
Dl Dz D3 D12 Dl3 D23

where gaseous components 1, 2 and 3 are chosen so
that M; < M, < M; (M; is the molecular weight of
component 1i).

V.N] =0

2 2 2 2 2

The total molar flux equation for each component is
obtained by substitution of Equation (18) in the mass
balance Equations (i.e., Equation (14)) and utilizing
Equation (11). The total molar fluxes for component one,
two, and three are given by the Equations (19), (20) and
(21) below, respectively.

2

ay Xoto, X, Xotay X2 Xota, X Xotag X, Xy Xo+ag X2 Xo+a, X2 Xa+

oy X, ).(2 ).(3+a9 X22 ).(2 ).(3+a10X3 ).(2 ).(3+a11X2X3 ).(2 ).(3+0t12)(32 ).(2 ).(3-1—

.2 .2 2

2

2

(22 X3+a14X2 )(3+0!15X22 X3+a16X3 X3+a17X2X3 Xz+0[18X§ )(3+0!19 Xo+ (19)

A Xy X2ty X2 Xata,y X3 Xata, Xy Xotay, X, X,

;3+a25X22X3 522+

a26X§ Xz+a27X2X§ X2+a28X§ Xz+a29 )(3+a!30)(2 )(3,+61!31X22 X3+a32X§’ X3+

Olgs Xy Xat g, X, Xy Xatags X2 Xy Xa+ag X2 Xatag X, X5 Xat+agXs Xs =0

V.N; =0

. 2 . 2 . 2 2

) 2

2 2
Ogg Xo+ X, Xotay Xy Xota,y Xy Xo+ay X, Xy Xetay Xy Xetoy, X2 Xs+

Qe Xy X2 Xatar, X2 X2 XatagXs Xo XataX, X, Xe Xatag X2 X2 Xa+

2

. 2 2

Qg Xy Xat oty X2 Xa+agg X, X Xat+ag, Xotag X, Xo+ag X2 Xatog, X3 Xo+ (20)

g X3 X 24 Qlgg X, X X 24 gy X2 Xy X o+ gy X2 X o+ 0ty Xy X2 X2+ gy X3 X2+

Olgy X5 X3+ Qg X5 Xat g X3 Xat org; Xy, Xy Xat g X X5 Xa+ g X, X2 Xa =0
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V.N; =0

2 2 2

Qg Xy X2+ 0t Xy Xy X+ ay X2 Xt oty X2 Xata, X, X2 Xat+agXs Xo Xa+

2 2

Ozs X3 X2 Xat+a; X, Xy Xa Xat g X5 Xo Xatayg Xa+ gy X, Xatog X5 Xa+

2 2 2

gy Xy X3+ gy Xy Xy X3+ gy X2 X+ g Xy Xt 0lgg X, X5 X 24 gy X2 X5 X2+ @h

a88x§ X2+0689X2X§ X2+a90X§ Xo2t+ag Xz+agX, )(3.+0593X22 X3+a’94X23 Xo+

s X3 X3+ Qlgs X, X X3+ 0lgy X2 X5 Xat+agg X5 Xa+0tgo X, X2 Xty X3 X3 =0

where . is a coefficient function of D/and Dy,
values ofa, are given in the Appendix. Note from
Equation (11), for an n-component gaseous system, that
there are n-1 independent total molar flux equations.
Therefore, one equation out of Equations (19), (20) and
(21) is redundant. Equations (20) and (21) were chosen
to solve for the concentrations of the components. As
mentioned earlier, the fundamental idea behind
perturbation is to turn a difficult problem to a simple
one; this can be achieved by identifying terms in
Equations (20) and (21) that contribute insignificantly to
the equations. The less significant terms are then

koo / (k)

X :i (Z+y, ) (k +kyy)

? Ky 2 ki s

removed from the equations to reduce the non-linearity
of the equations. The relative importance of the terms in
Equations (20) and (21) was examined by calculating
the coefficients of the equations (i.e., o, ) for different
ternary gaseous representing typical subsurface
contaminates and having widely different molecular
weights. Details of the procedure adapted in this study
to obtain first-order approximate solutions of the molar
fractions are presented in Appendix A. Results are
shown below:
The first-order approximate solution of X, as:

-1 +%(m,z2 +mZ%+mzZ*) 22)

The first-order approximate solution of X, can be found using the same procedure used to solve for X,. X,

is given as:

1/(kys+1)
ng((um(kmnj K,
Vs

95

(04
+-8(mZ% +m, 2% +mZ*) (23)

For ternary gaseous system, Equation (11) is used to solve for X :

3 X, =10
i=1

where:

24
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Ki = a9 /0los (25)
Kio = aisq /0los (26)
Kig = ass /ogs 27)
Koz = ol79 /0tos (28)
kag = olgy /atos (29)
k76
m, :{ > (30)
2Kks,
-k k k,k
m, ={ 76 "1 Ri1fye } G1)

3k, 3c,kg,
m9 _(k821k76 | I(1k76k81 + k12k76 _ I(76k821 + I(lkllk76j

= + 32
3 3okl bek, 12k 12ck) (32)
I(97
m =
16 ( 2 k842 ] (33)
—kg,k K,k
m,, = 833 97 Mog 937 (34)
3k84 3C6 k84

_ KesKer . KpsKgrKes  KZKer L Kes Koz Ko (35)

My = 2 T FE 21,4 s T 2,4

3Kg, 3cekg, 6cekg,  12kg  24cikg,
kas = asg /aigo (36)
Ksa = aso /0130 (37)
kys = 061 /030 (38)
kys = 062 /030 (39)
ky7 = a3 /ogg (40)
kso = 0oz /0ig0 (41)
keo = g6 /00 (42)
ke = olg /00 (43)
ke> = olg9 /0130 (44)
kg3 = atigo /0go (45)
k. = KasKosKy + KyoKasKiKag + k§8k45k1 _ KyoKie klk§8 _ Kaz k238k1 (46)

S G O S O Y
K, + ki,
Kgy =| ———= (47)
C,
Cs

k82 = C_( kl + k11 ) (48)

2
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Ky, = (ky +1) (49)
CG
c,
Kgs =—(ky3 +1) (50)
Ce
k — klO k59 k23 _ klO kGO k23k28 + k238 k63k23 _ k23k61k228 + klO k62 k228k23 5
T el ki kG Y

9 = (-azczd+abc2d-2a2cds+2abcds-a2dsz+abdszg (52)

ass = (-a’c’h — a’c’d-2abes+2a’cds- a’bs®+a® ds?) (53)

ass = (a°c®d -abcd-2a’bck -2a’cdk+2a’bes+4a’cds —2abcds-2a?bks —2adks+2a’bs®+3a’ds?-abds?) (54)

ass = (a’c’d — a’c’k+2a’hc — 2abc’s +4a’cds - 2ac’ds — 2a°cks+2a’hs” —2abcs’+ 3a’ds’+ 2acds’- a’ks?) (55)

ase = (2a’cdk - ac’dk- a’ck? -4a’cds+2abcds+2ac’ds —bc’ds+2a’bks —3abcks+ 4a’dks - 3acdks — a’k’s -

2a’bs’+2abcs?- 6ads? +2abds®+ 4acds® beds? +2a’ks? - abks?) (56)

ae; = (-2a°cds +2ac’ds-2a’cks -2ac’ks - a’cks*+2abcs® —bc?s® -3ads” + 4acds’ - c’ds?+2a’ks’ - 2acks?) (57)

ae = (-2a’dks +3acdks - c’dks + a’k’s - ack’s+3a’ds” — abds’ -4acds’ + beds” + c’ds” - 2a’ks” +abks® + 2acks” — bcks?)
(58)

0g3 = (a°ds’ - 2acds? + c?ds? - a’ks® + 2acks? - c’ks?) (59)

a9 = (-a%b?s + ab®cs -2a’bds +2abds - a?d’s + acd’s) (60)

aso = (abedk +-acd’k - a?bk? -2a’bds - 2ab?ds — 2abceds +h?cds +2a’d’s -2abd’s - 2acd®s + bcd’s +ab%ks +abdks)
(61)

ag1 = (- a?b’c -2a’bed -a’cd? - a’b%s -2a’hds - azdzsg (62)

09> = (2a’bed -2ab%cd +2a’cd? -2abced? - a?b%k -2a’bdk —a’d*k +ab’s+ 4a’bds —2ab’ds +3ad’s - 2abd’s)  (63)
aos = (2a’bed +2a’cd® -2a’hck - 2a’cdk + a’b?s —ab®cs +4a’bds —2abceds + 3ad’s - acd’s — 2a’bks - 2a’dks) (64)
ag6 = (-2a°cd? +2aabed® +2a%hdk + 2a’cdk —3abedk +2a’d%k - acd’k— a’bk? -a’dk? - a’bds +2ab’ds +2abcds — b%cds
-6a’d’s +4abd’s +2acd’s — bed?s + 2a’bks —ab’ks + 4a’dks —3abdks) (65)
aos = (-a’cd? +2a’cdk -a’ck? -2abds +2abcds -3ad’s +2acd?s +2a’bks — 2abcks + 4a’dks -2acdks - a’k?s) (66)
g9 = (-a%d’k +acd’k + a’dk® +acd’k +3ad’s -2abd’s —2acd’s + bcd®s - 4a’dks +3abdks+2acdks — bedks +a%k?s -

abk’s) (67)
o100 = (a°d’s -acd’s -2a°dks +2acdks +a’k’s + ack’s) (68)
1
a =
D 1k
b - 1
D 2 k
1
‘D
3k (69)
d =
D 12
1
S =
D 13
K = 1
D 23
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Here, a<b<c (i.e. M;<M,<M3)

where, Mi is the molecular volume weight of i. Note
that Z in Equations (22) and (23) is a dimensionless
parameter: Z =1/L, where | is a distance along the
diffusion path at which the concentrations to be
calculated (measured from the boundary) and L is the
total length of diffusion path.

Although the solution requires the evaluation of the
terms given in equations (22 — 69), it is a relatively
simple approach when compared to the reported
numerical solutions (Remick and Geankoplis, 1970). If a
spread sheet is prepared to evaluate these terms, the
solution can be obtained in a fast and effective manner
for different boundary conditions.

Solution Verification

To verify the perturbation solution of the DGM,
concentration profiles of components of a ternary gaseous
system were calculated using Equations (22) and (23) and
compared to concentrations obtained by an independent
numerical solution of a set of equations that describe the
transition region between Knudsen and molecular
diffusion. While the numerical solution obtained by
Remick and Geankoplis (1970) did not utilize the DGM
equations, it provides a base for verification because it

Al X 2 x3
TR
A23 D2 D3

incorporates the same transport mechanisms assumed in
this paper to solve for the DGM. The ternary gaseous
system used consisted of components that have widely
different molecular weights and exhibit no surface
diffusion. Physical properties of the components of the
system and boundary concentrations are given in Table
(1). Note that D;; and D/ are chosen to be approximately
of the same order of magnitude to provide equal
contribution from Knudsen and molecular mechanisms.
Figure (1) shows the concentrations of X ,, X, and X
plotted vs.Z (z =1/L) at P=100 atm obtained by
perturbation and numerical solutions. There is a good
agreement between the two solutions. However, in the
case of the numerical solution, concentration lines of X
and X, are curved in opposite direction. Remick and
Geankoplis (1970) reported that this behavior was
observed at high pressures, concentration lines tend to be
more linear as pressure decreases.

Application Examples

Equations (22), (23) and (11) can be used to calculate
mole fractions of ternary gaseous systems components. In
addition, the total molar fluxes can be calculated
explicitly for each component by incorporating the mole
fractions using the following equations (Jackson, 1977):

A A
D, 4; Dsi4,

—A,4,.A4
NT) _ 1292343 70)
( PPN X Ay + Xy Ay + X g4y Xy Xy X
DS D, Dy
A [ X X A A
(NT) = —ALALA A, Dl D3 D1 Ay, D, A, (71)
PO AL+ XA+ XA, X, X X,
K K
Dl DZ D3
(NT) — - A12A23A31 AZl Dl D2 Dl A23 D2 A31 (’72)
$IBCM T X Ay + X, Ay + XA X, X, X
1 23+ 2 31+ 312 1 2 3
D D, Dy
A=J1VXi (73)
RT
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1., !
4 Dy DDfY X,/Df
i=1

To test the validity of Equations (22-24), the
Equations are applied to scenarios including both
experimental and field applications as follows:

(1) The first example represents a field application
where the scenario and the data are borrowed from
Thorstenson and Pollock (1989a). This example
represents a typical
problem in which a contaminant is generated at a

subsurface contamination
continuous rate at a specific depth below the ground
surface. One-dimensional transport is assumed (i.e.,
transport in the vertical direction). The system is
treated as a ternary system where Methane (CHy), the
major contaminant in this example, is considered as
one component and the major constituents of air (i.e.,
N, two  distinct
components. and boundary

and O;) are considered as

System properties
conditions are given in Table (2); note that Knudsen
diffusion is neglected in this example. Of particular
interest in such scenario is to calculate concentrations
(i.e., mole fraction) as a function of depth for the
different components in the system. Figure (2) shows
mole fractions of the components of the system as
obtained from the perturbation solution.

(2) The second example used is an experimental
diffusion system used by Karimi et al., (1987) to
investigate vapor phase diffusion of C¢Hg in soil. The
experiment was designed to accommodate diffusion
cell contained soil sample extracted from cover of a
landfill used for disposal of industrial wastes. A
source of C¢Hg was placed beneath the cell to mimic
the landfill by allowing diffusion through the soil
sample. At the top of the soil sample, an N, source
was placed to sweep away CgHg. Properties and
boundary conditions of the system are shown in
Table (3). The objective of this example is to
calculate the concentration of C4Hg at different points
of the landfill of the
components of the system as calculated by Equations

cover. Mole fractions
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(74)

(60), (61) and (11) are shown in Figure (3).

(3) The third example used is an experimental system
used by Abu-El-Sha’r (1993) to evaluate the relative
importance of different transport mechanisms in
gaseous systems. The system considered herein is an
open system where CH, was injected at one side of a
soil sample placed in a diffusion cell and air (i.e., N,
and O,) was injected at the other side. System
properties and boundary conditions are given in
Table (4). The objective of this example is to
calculate molar fluxes of CH, at different points for
different types of porous media. Three types of soil
were used; sea sand, Ottawa sand and Kaoliniate.
Figure (4) shows total molar fluxes for CHy in the
different soil samples as calculated by perturbation
solution.

SUMMARY AND CONCLUSION

A perturbation method was used to solve the mass
balance equations for ternary gas systems when the
dusty gas model (DGM) is incorporated to calculate
mole fractions and molar fluxes of the components of
the system. Steady-state conditions, isobaric, isothermal
and non reactive system were assumed. The straight-
the
approximation was implemented in the solution. The

forward expansion method to second-order
perturbation parameter which was introduced into the
equations, presented no physical meaning to the system.
The solution was expressed as a closed-form solution
incorporates a dimensionless length  boundary
conditions, and parameters of transport mechanisms. The
solution was verified by a numerical solution and there
was a good agreement between the two solutions. The
different

experimental and field conditions to predict mass

perturbation solution was applied to

fractions and molar fluxes of components of ternary
gaseous systems.
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APPENDICES

Appendix A
Details of the Perturbation Solution of the DGM

Molar fluxes of species along a given direction (i.e., the z direction) in a multicomponent gaseous system are given
by Equation (15). For steady-state diffusive mass transport, it is commonly assumed that viscous flow and surface
diffusion are insignificant (Farmer et al., 1980; Karimi et al., 1987; Baeher and Bruell, 1990; Voudrious and Li, 1992).
Therefore, the first and third terms of the right hand side of Equation (15) may be neglected. Using Equations (15), (16)

and the relations: Pi=X; P andC, = P,/RT , the molar fluxes of a three-component gaseous system can be given as (i.e.,
Equation 17):

r q-1
N, 1K+x2+x3 X, X, Top e T
D, D, Dy Dy Dy RT 1
X X .
N, _ X L X, X _ X P X, (A-1)
= D21 Dz D21 D23 D23 RT
X X X X P
N, _ 3 _ 3 1K + 1. 2 T 3
D31 D32 D3 D31 D32

Dots in the above equation represent the derivative with respect to z. For formulation convenience, let:

A = ) ’ ’
Df:( DZK Ds}f D12 D13 D23

where gaseous components 1, 2 and 3 are chosen so that M; < M, < M; (M; is the molecular weight of component i ).
The total molar flux equation for each component is obtained by substitution of Equation (A-1) in the mass balance

Equations and utilizing Z X, =1.0. The total molar fluxes for component one, two and three are given by the Equations
i=1

(A-3), (A-4) and (A-5), respectively.

V.N] =0
. 2 . 2 . 2 .2 .2 .2 . .
(22} Xz+0{2x2 Xz+0[3x22 Xz+a4X3 X2+a5X2X3 Xz+a6x32 Xz+a7 X2 X3+

g Xy X2 Xatag X7 X2 Xata,X, Xo Xatay X, X X Xs+ap, X2 Xa Xa+
2 .2 2 o

. 2 2 .2
A Xata, X, Xatag X2 Xatag Xy Xatay, XXy XotagX2 Xata,, Xo+ (A-3)

Ay Xy Xotany X2 Xota,y X3 XaotayXy Xotay, X, Xg XatagXZiX, Xo+
A X2 Xty Xy X2 X2t apg X3 Xotayy XatogX, Xatay X2 Xata, X3 X+

Ay Xy Xat @y, X, Xy XatagX2X, Xatag X2 Xatay X, X2 XatagXd Xa=0
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V.N; =0
.2 .2 ‘2 .2 ‘2 2 . .
2 2
Ogg Xo+a X, Xo+ay X5 Xo+a,y Xy Xo+a g X, Xy Xo+ oy Xy Xotoys X2 Xs+

Qg Xy X2 Xata, X2 X2 XatagXy XoXataX,Xs Xo Xstag X2 Xz Xat
.2 .2 2 . . .
g Xy Xatag X2 Xat+ag Xy Xy Xa+ag Xotogs Xy Xotargg X2 Xot+ag, X2 X ot

Orag Xy X 2+ g X, X5 X 24 gy X2X 3 X 24 gy X2 X ot argy Xy X2 X2+ gy X3 X ot

O Xy Xat g X2 Xatag X3 Xatag X, X; Xa+tagXiX, Xa+agX,XZ2Xs=0

V.N; =0
.2 02 .2 . . . . . .
Qo Xy KXoty Xy Xy Xot X2 Xotags X2 Xat+a, X, X2 Xa+aXZXe Xa+
o . o« e o e o2 .2 o2
Qs Xy X2 Xatay Xy Xy X2 Xa+agXZ Xo Xat+agg Xat+ g X, Xat+agX: Xa+
.2 .2 .2 .o .o .o
Olgy Xy Xat gy X, Xy Xat g X2 Xa+args Xy Xatag X, X Xatag XX, X+t

, , . . . L o
Ogg Xy Xa+ gy X, X3 Xz+a90X§ Xot+oag Xs+agp X, Xs+agX, X3+a94X§ X2+

Olgs Xy X3t agg X, Xy Xatag; X7 X5 Xat g X ] Xatagg X, X5 Xt X5 X3=0

where @, is a coefficient function of D/ and Dy,

for an n-component gaseous system, that there are n-1 independent total molar flux equations. Therefore, one equation
out of Equations (A-3), (A-4) and (A-5) is redundant. Equations (A-4) and (A-5) were chosen to solve for the
concentrations of the components. As mentioned earlier, the fundamental idea behind perturbation is to turn a difficult
problem to a simple one; this can be achieved by identifying terms in Equations (A-4) and (A-5) that contribute
insignificantly to the equations. The less significant terms are then removed from the equations to reduce the non-
linearity of the equations. The relative importance of the terms in Equations (A-4) and (A-5) were examined by
calculating the coefficients of the equations (i.e.,, ) for different ternary gaseous representing typical subsurface
contaminates and having widely different molecular weights. Upon neglecting the insignificant terms, Equations (A-4)

and (A-5) are reduced to Equations (A-6) and (A-7), respectively.

V.N; =0
2 o 2 . . . . .
Ogg Xo+a,y Xy Xotay Xo Xa+a,X, Xo Xa+a,,X; Xa Xa+ayX, X, X2 Xa+

2 2 (1] (1] (1)

Oy )(32 X2 Xs+agX, Xs+ a5 X, Xy Xat+ag Xot+agX, Xot+aggX; Xa+

Uy Xy Xy X2t @gg X2X g X ot @y X2 Xt oty Xy X2 X+ oy X X ot gy X, X3+

Uy X, Xy Xat g X, X2 X3 =0
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values of ¢, are given in the Appendix. Note from Equation (11),

(A-6)



Perturbation Solution... Wa'il Y. Abu-El-Sha'r, Riyadh Al-Raoush and Khaled Asfar

V.N; =0
o . . . o . o2 o2 o2 o2
Qg X2 XatasXy X XatagX2XoXata, XstagX, Xat+agXy XatagX,X, Xa+ (A7)
.2 .o oo . oo oo oo
Qg X2 Xat+agg X2 Xotag Xa+agX, Xatag Xy Xatag X, X Xat+agXZ Xa+

Qg Xy X2 X3+ @ X3 X3=0

The variables in Equations (A-6) and (A-7) are X, ,X, and Z ( X, and X, are dimensionless and z has a length unit).
To obtain dimensionless forms of Equations (A-6) and (A-7), the following variables are introduced:

z:%; Xo=X,: Xs=X, (A-8)

The star in Equation (A-8) represents a dimensionless variable.

aX, 2&(1—2, Therefore:
dz qz7
* 2 2 *
d;(zzi dx*z;andd )izziz d *Xzz (A-9)
z L 47 dz L 47

Similarly, X3 and X5 can be expressed as:

* 2 2*
dX; 1 dXs 0% 1 d’Xs (A-10)
dz L : dz> L2 + 2

dz dz

Dimensionless forms of Equations (A-6) and (A-7) are obtained by the following steps: (1) substituting Equations
(A-9) and (A-10) into Equations (A-6) and (A-7); (2) multiplying both sides of Equations (A-6) and (A-7) by L% and
(3) dividing Equations (A-6) and (A-7) by a4, a relatively large coefficient chosen arbitrary to define a small
dimensionless perturbation parameter € as:

Y0 (A-11)

Note that the perturbation parameter in this case has no physical meaning; it is artificially introduced into the equation
to reduce non-linearity. The dimensionless forms of Equations (A-6) and (A-7) are given by Equations (A-12) and (A-13),

respectively:

.2 .2 . . . . . . . .
Ky X24+Kgy € Xy Xa+Kgs € X2 Xa+Kkgg € X, X2 X3+Ky, € X3 X2 X3+Kkgg e X, X3 X2 X3+
2. . .2 .2 .o . .o
Kyg € X3 X2Xs3+Kyp € X, Xa+ky € X, X3 Xa+kyg Xo+ Ky X, Xo+Kyy € Xy X2t (A-12)
.o 2.. 2-. 3.- .o
Ky € X, X3 X2+Kys € X3 Xa+Kkyg € Xy, XsX2+K; € X3sX24+kyg € X, X3t
2

Ko € X, X5 X st kg € X, X3 X5 =0
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. . . . 2 . . .2 .2 .2
k51€X2 X3+k52 EX3X2 X3+|(53€X3 X2 X3+k23X3+€X2X3+k54 €X3X3+

2 2 2 2

Ko € X, X, Xat ke € X3 XstKey € X3 Xo+Kpg X34 keg € X, Xt Xy Xat (A-13)
2 2 3

Keo € X, X3523+k61€X3523+k62 eX2X3523+k63€X3523=0

where k; are dimensionless coefficents given in the Appendix. Note that X2, X3 and Z are dimensionless and the
star is removed from the notation for convenience. The second-order approximation of X2 and X3 are given by
Equations (A-14) and (A-15), respectively:

X2(Z;€)=Xn+e€ Xa+0(e”) (A-14)

X3(Z;€)=Xn+eXa+0(?) (A-15)
where Xio and X1 are the zero-order and first-order approximations of X, respectively.
Substitution of Equations (A-14) and (A-15) into equations (A-12) and (A-13) and expansion of all terms give the
following equations:

.2 o« e o2 o . o« e o .
|(1 X0+ 2k1 € X1 X0+ k34 € Xso X0+ |(35 e X20 X30+ k36 € X20 X0 X0+ k37 S )(30 X0 X30+
¢« . 2 . . o2 o2 .
|(38 € X20X30 X20 X30+ k39 € X30 X20 X30+ k40 € X20 Xao+ k41 e X20X30 Xao+ klo X20+

Ko € Xa1t Ky, X,0 X20+ Ky, € Xog Xt Ky; € X,y Xao+Kys € Xgg X20+Kyy € XX g0 X 20+ (A-16)
2 2 3

Kis € X0 X20+Kyg € X0 X20 Xa0+K,; € Xao Xao+K,g € Xy Xaot+Kyg € Xy0X50 X30+
Z (1)
Ksy € Xp0 X30 X30+O(€7) =0

2 2 2 2

Ks; € X20 X30+Kg, € X0 X20 X30+Kgg € X30 X20 X30+Kyg X30+€ X2o X30+Kgy € X30 X0+
2 2,2 2

2 ekKyy X30 Xa1+Kgg € X20 X0 X30+Kss € Xa0 Xao+Kg; € Xzo X20+Kyg Xao+K,g € Xzt
2 (A-17)

Kso € X20 X30+ X 30 X30+€ X30 Xa1+€ Xa1 Xao+Kgy € X20 X30 X30+Kg; € X30 X0+
2 3

Ks, € X 20 X 30 X30+Kg5 € X 30 X30+O(€”) =0

Equating terms of like powers of € in Equations (A-16) and (A-17) to zero gives two sets of equations: (1) when the
power of e equals zero, Equations (A-18) and (A-19) are obtianed; and (2) when the power of € equals one, Equations
(A-20) and (A-21) are obtianed.

2

k1X2o+k10X20+k11X20 X20 =0 (A-lg)
o2 o o
Kyg X30+Kyg X 30+ X320 X30 =0 (A-19)
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2 2

2K, X21 X 20+ Kgy X30 X20+ Kz X20 Xao+Kgg X20 X20 X30+ Ky, X30 X20 Xao+Kgg X20 X 30+

. . 2 . . . 2 oo (L] oo
Kag X 20 X30 X20 X304+ Kzq X30 X20 X30+K,; X20 X30 Xao+Kyg Xao+ Kyg Xar+Kyy X20 X1+ (A20)
(1] (L] L 1] 2 (L] (L] 2 3 oo
Ky X1 X204+ K, Xao X20+ Ky, X20 X30 X20+Kys X30 X20+K,s X20 X20 Xz0+K,; X0 Xao+
oo oo 2 (L]
Kys X 20 X30+K,g X20 X30 X30+Kgy X 20 X30 X30 =0
o e o e 2 . . .2 o2 o e
Kg; X20 X30+Kg, X 30 X20 X304+ Kgg X30 X 20 X304+ X20 X30+Kg, X30 X304+ 2K,53 X30 Xar+
.2 2,2 2 . o o o o
Kes X 20 X30 X304 Kgg X 30 X304 Kg; X30 X 20+ Kyg X314 Kgg X20 X304+ X30 X314+ X31 X3+ (A-21)
(1] 2 (1] 2 L1 3 L1
Kso X 20 X30 X 30+ Kg; X 30 X304 Kgp X 20 X30 X304+ Kg3 X30 X30 =0
The general solution of Equation (A-18) can be obtained as follows:
v dX
Let W= Xz = —2 (A-22)
dz
By the chain rule:
ZX X
d_zzozd_w: dw d 2 _ dw (A-23)
dz dz dX, dz dX,,
. . dx 20 2 20 . . .
substitution of and —— in Equation (A-18) gives:
dz dz
dw
W(knxzo + klO): —k,w (A-24)
20
Integration of the above equation gives W as:
_kl
W=y (KXo +Kyg )[ o ] (A-25)
where , is an arbitrary integration constant.
Substituting Xa for w gives the following equation:
dX
Tm:‘//l(knxzo +Kyo ) (A-26)
From Eqaution (42), X, is obtianed as:
kg /(ky+kyy )
k
Xzozi{(z—‘er )(kl+kll)] _ 10 (A—27)
Kyy Vi Kyy

where i/, is an arbitrary integration constant. In similar manner, using the same procedure used to obtian the general
solution of Equation (A-18) (i.e., Equations A-22- A-27), the general solution of Equation (A-19) can be obtained as:

(kg +1)™
Xz = (—(Z “”‘;/)("23 ”] ki (A28)
3
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where y,and y, are arbitrary integration constants determined from boundary conditions. Substitution of Equations
(A-27), (A-28) and their deravitaves in Equation (A-20) gives the following equation:

2k k11

X21+ 1[k81z ksz] X21
W

1 ‘//1
Kes [k83z +Kq, ](k23+1)’1 [k81Z +Kg ]—(k11+2k1)/(k1+k11) + K [k81Z + Ky, ]—(k11+2k1)/( ktba)
Kes [KerZ + Kgp | *[KaaZ + Ky | 2" *™ 4 kgy [Kea Z + g, | " [k Z + kg, |22 +
Keg [KanZ + K | *[KgsZ + Ky [ 7722 4 kg [Kay Z + K | "9 [y Z + kg, [0 1
Koo [k Z + Ky | [KgsZ + Kgq 270 ™) 1k Ko Z + kg, [ 242020 4
Koy [KayZ + Ky |0 [Kgy Z 4 gy 22759 kg [Kga Z + Ky |22
Ko [KarZ + Ky |49 kg Z 4 gy [ 7722209 ko [y Z 4 Ky |2 [ Z o+ gy 107 4
Koo Ky Z + Ky |72 + Kop [k Z + K | 2 [KeaZ + Ky /%™ 4 Kog [KgrZ + Ky | 2 [KgsZ + Ky [P/ +
Kpo [KasZ + Kgq | 2= 0 1k Ty Z + Ky |74 [y Z 4 kg 124 (KD

[k81z +Kg ] Xy =

(A-29)

where k; are dimensionless coefficents given in the Appendix. In the homogenous part of Equation (A-29), define the
following functions:

2k
Z)=—-——"21 A-30
P(z) wi(KgZ +Kg,) ( )
q(2)=— 2Kakn (A-31)
i (KeZ +Kg; )

Since p(Z)and g(Z)are analytic and Z=0 is an ordinary point of Equation (A-29), the particular solution of Equation
(A-29) is given by the following form:

X21(Z):iﬁjzj

(A-32)
Substitution of Equation (A-32) in Equation (A-29) gives:
Z( 2 k“Jﬂ,Z‘ 2(2"1 SZJJ/? 7 1+Z( : 81Jlﬂ 7 +Z(k81)1(1 15,2+
i=0 4 i1\ Y1 1 (A-33)

Z(k )i(i- 1)ﬂ,ZJ2+Z(2kglk32)J(J 1)8,2'* = NHS

j=2 j=2

Note that NHS represents the non-homogenous side of Equation (A-29) (i.e., the right-hand side). Substitution of

7 =] in the first, fourth and sixth summations, 7= j—2 in the second summations, and 7 = j—1 in the third and fifth
summations of Equation (A-33) gives the following equation:

Z(k n(n=1)p Z”+Z(k )(77+2)(77+1)ﬂ,,+22"+Z(2k81ksz)(77+1)(77)ﬂ,,+1z"

n=2 n=1

Zw:[2k1k81 ]Uﬂ;,zn +z(( 1Ks2 )j( +1)8,.,2" _,_Z[ 2K kll }B Z" = NHS
7

n=1 1 n=0 1 n=0 l

(A-34)
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Separating the terms corresponding to 77 =0, 77 =1, and combining the rest under one summation, gives:

(2K3 )8, + (Z'f;k”jﬂl [ 2 k“}b’o

[(GK )Bs + (4k81k82 + ke Jﬁz "{Zklkm % kll Jﬂl}
v, 1 ‘//1

(A-35)

((k )(77+2)(77+1):Bq+2+((2k81k82)(77+1)(77)+ 2 82(77+1)jﬁ,,+1+

n=

o (35 (3 o

Equating the coefficients of like powers of Z on both sides of Equation (A-35) gives Equations (A-36 —A-38):
2k, k 2k k
(2kg, )f, + ( _— jﬂl ( “ Jﬂo = ks (A-36)

1 l

1

(6ks )5 +(4kalkaz + 4':;'(82 ]ﬂz +(2'f/jk“ - 2';" ]ﬂl =0 (A-37)
1 1 1

(kgz )(77+2)(’7+1)ﬂ77+2+[(2k81k82 )(77"‘1)(77)"‘( ik 82]( +1)Jﬁr]+l+

V.

[(k Y 1)n+[ ;k‘*l]n{"zlyk;k“ﬂﬁﬁol n>2

where 3, j =1,..7 is an arbitrary constant. Solving Equations (A-36 —A-38) for f3,, B, and 3, in terms of [, and /3,
gives:

(A-38)

k k,k -k
4 :( 76 ] ( u Jﬂ ( , Jﬁ (A-39)
’ 2k822 41 kszz ’ 1Kg, '
-2k, k, .k 2k k 2k, k 2k? -, kKo, +k,k
IB3:[ 312;1381_3 13k131]ﬁ0+(3 81|(21+3 21k2+ ‘//131 gzlkz 111]ﬂ1+
V1 Kez V1 Kez V1Keo V1 Ke2 V1 Kez

(A-40)

— k76 k81 _ klk76
3Ks2 3y1kg,
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_ k821k76 " k;KeKss n k; Kz Ks1 " klz Kzs k7ek§1 _ K;KyeKs1 i ky Ki1ksg + 2k1k11k821 +
Pz ok ok, Toptkt 12kh  Buk, 120K 3y ks
82 W/ 1Keo V1Keo W1 Keo 82 V1Ke2 V1 Ke2 V1 Ke2

2k12k11k81 I klzkllk8l i k13k11 _ k, kukszl _ k12k11k8l i I(12k121 jﬂo +[_ stzlkl _ 2k12k81 4

37 ks, 3piky  Buiky  Byiky  Byrks,  Byikg 3p.kg,  Bwiks (A-41)
kiks: _Kkikygky ks k? ks krkyg Ky Ky Kk, krkyy j B,

3‘//12k§2 3‘//12k832 3‘//12kz§2 3‘//13k§2 6‘//12k:2 6‘//13k§2 6‘//12k832 3V/12k832 6V/13k832
The general solution of Equation (A-29) can be expressed as:

Xy = A (1+mZ% ++mZ3 +mZ* +. )+ S (Z+m,Z° +mZ> +mZ* +.. )+
(MZ? ++mZ%+mZ* +...)

where m;, are coefficients function of properties of system components (i.e., gases) given in the Appendix, £, and £,
are arbitrary constants. Only the particular solution of Equation (A-29) is of interest, therefore, from Equation (A-42), X,
can be given as:
Xy =mZ%+meZ®+myz* (A-43)

(A-42)

Substitution of Equations (A-27) and (A-43) in Equation (A-14) gives the first-order approximate solution of X, as:
Ky /(Ky+kyy )
X _L((zﬂm )(k1+kn)j
, =
Ky Vi

The first-order approximate solution of X, can be found using the same procedure used to solve for X,. X, is
given as:

Ko L %0 (1 72 4 m,z% e mz*) (A-44)

11 Qs

1/(Kpy+1)
x3=((z+‘”4 )(k””)J Ky + 2B (M 2% 4y, Z° 4 Z*) (A-45)
Vs 95
For ternary gaseous system, Equation (A-46) is used to solve for X, :
n
D> X, =10 (A-46)
=

Note that Z in Equations (A-44) and (A-45) is a dimensionless parameter: Z =1/L, where | is a distance alnog the
diffusion path at which the concentrations to be calculated (measured from the boundary), and L is the total length of
diffusion path.

o= (-A’E*H+ABE’H-2A’EHG+2ABEHG-A’HG?*+ABHG?).

asi= (-A’BE*-A’E*H-2A’BEG-2A’EHG-A’BG*-A’HG?).

ass= (A’E?’H-ABE’H-2A’BEQ-2A’EHQ+2A’BEG+4A’EHG-2ABEHG-2A’BQG-

2A’HQG+2A’BG*+3A’HG*-ABHG?).

ass= (A’E*H-A’E?Q+2A’BE-2ABE*G+4A’EHG-2AE’HG-2A’EQG+2ABG*-
2ABEG*+3A’HG*-2AEHG-A’QG?).

asy= (2A’EHQ-AE?HQ-A’EQ*-4A’EHG+2ABEHG+2AE’HG-BE?HG+2A’BQG+2A’EQG-
3ABEQG+4A’HQG-3AEHQG-A’Q°G-2A’BG*+2ABEG?*-A’HG*+2ABHG*+4AEHG?*-BEHG*+2A’QG>*-ABQG?).

a51= (-2A’EHG+2AE?HG+2A’EQG-2AE?QG-A’BG*+2ABEG?-BE*G?-3A’HG*+4AEHG?-
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E’HG?+2A’QG2-2AEQG?).
o= (-2A’HQG+3AEHQG-E?HQG+A’Q*G-AEQ*G+3A’HG*-ABHG?
AAEHG*+BEHG*+E*HG?-2A’QG*+ABQG*+2AEQG?*-BEQG?).

o= (A"HG*-2AEHG*+E?HG*-A’QG*+2AEQG*-E*QG?).

9= (-A’B*G+AB’EG-2A’BHG+2ABEHG-A’H’G+AEH?G).

ag= (ABEHQ+AEH?Q-A’BQ*-A’HQ*+2A’BHG-2AB?HG-2ABEHG+B?EHG+2A’H’G-
2ABH’G-2AEH?G+BEH’G+AB?’QG+ABHQG).

a0y = (-A?B’E-2A’BEH-A’EH%-A’B*G-2A’BHG-A’H?G).

= (2A’BEH-2AB*EH+2A’EH?-2ABEH?-A?B*Q-2A’BHQ-A’H’Q+A’B*G+4A’BHG-
2AB?HG+3A’H?*G-2ABH’G).

5= (2A’BEH+2A’EH?-2A’BEQ-2A’EHQ+A’B*G-AB’EG+4A’BHG-2ABEHG+3A’H?G-
AEH’G-2A’BQG-2A’HQG).

o= (2A’EH?*+2ABEH?*+2A’BHQ+2A’EHQ-3ABEHQ+2A’H?Q-AEH?*Q-A’BQ*-A’HQ*

A’BHG+2AB*HG+2ABEHG-B’EHG-6A’H’G+4ABH?*G+2AEH’G-BEH?G+2A’BQG-AB*QG+4A’HQG-3ABHQG).

og= (-A’EH*+2A’EHQ-A’EQ?-2A’BHG+2ABEHG-3A’H*G+2AEH’G+2A’BQG-

2ABEQG+4A’HQG-2AEHQG-A’Q%G).

Qo= (-A’H?*Q+AEH*Q+A’HQ*+AEH?Q+3A’H*G-2ABH’G-2AEH*G+BEH?*G-
AA’HQG+3ABHQG+2AEHQG-BEHQG+A*Q°G-ABQ?G).

i00= (A’H*G-AEH’G-2A’HQG+2AEHQG+A’Q’G+AEQ’G).

ki = o0/ o5

Kio= ass | as

Kii = ass | as

Koz = a9 | atos

kos = o1 [ ctos

Kz = ass | aso

Kea = aso I atso

Kis= a1 | axo

Kis= e | ago

Ke7= aes | aso

Kso= aop | atgo

Keo = a6 | atso

Ke1 = aog I atso

Ke2= a9 | atgo

Kes = ai00 | a0

k. — (_ KysKask, n KioKyikiKas n k228k45k1 _ KioKyoKi k228 _ k47k238kl ]
76 —
7 Ky i K s 7

k, +k
kgIZL 1 IIJ
v, .
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ksz = ﬁ(kl + k11)

vV,
k83 — (k23 +1)
Vs
74
k84 = _4(k23 + 1)
vV, )
k _(k10k59k23 B KoK KoK + k63k238k23 . kzzskzakm , k10k62k228k23j
97 — !
kw3 kw3 78 78 kw3

()
2K,

_k76k81 _ k1 k76 ]

m, =
' 3Ky, 3y ks, '

m. = KKz + Ky KoeKsy + KKz _ KseKei + Ky Ky iKsg
’ 3Ky, 3wk kg 12kg  12p7Kg

k
my = 972
2k84
m. — _k83k97 . k23k97
L3k 3wk
84 Wikea )

:(k823k97 +k23k97k83 + k223k97 k97k823 + k97k23 ]

* 3Kg4 3pike  Gwiky 12k 24w lkg,
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Table 1: Properties and boundary conditions of the system used to

verify the perturbation Solution.

Component M, D" D, Boundary Concentrations
. 2 2
i g/mole cm®/sec cm®/sec 720 =L
A=He 4.003 0.837207 Dag=1.126 Xao=0.5 Xa=0.0
B=Ne 20.183 0.372868 Dac=0.729 Xgo= 0.0 Xg.=0.5
C=Ar 39.944 2.65033 Dgc=0.322 Xco=0.5 Xc=0.5

Table 2: Properties and boundary conditions of the system given in Example 1.

Component M, D, D; f Boundary Concentrations

i g/mole cm?/sec cm?/sec z=0 z=L (10m)
A=CH, 16.043 Dag=0.2137 Dag=0.02137 Xao=1.0 Xa=0.0
B=N, 28.013 Dac=0.2263 Dac=0.02263 Xgo=10.0 Xg=0.78
C=0, 31.999 Dgc=0.2083 Dgc = 0.02083 Xco=0.0 Xc =0.22

1 D; is calculated as Df =0.1D, .

Table 3: Properties and boundary conditions of the system given in Example 2.

Component M, DX ' D, } D: 8 Boundary Concentrations
i g/mole cm?/sec cm?fsec cm?fsec z=0 z=L
(L=2.54 cm)
A=N, 28.013 0.0125 Dag=0.284 0.0426 Xao=0.702 Xa=1.0
B=0, 31.999 0.0117 Dac=0.107 0.0161 Xgo=0.198 Xg=0.0
C =C¢Hs 78.114 0.0075 Dgc=0.100 0.0150 Xco=0.10 Xc=0.0

1D/ is calculated using Eq. 3 (r =4X10" c¢m for clayey soil (Abriola et al., 1990), T=20°C).
1 Data from Abu-El-Sha’r, 1993.
§D; is calculated using Eqn. (8) and (9), assuming T, =0.45.
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Table 4: Properties and boundary conditions of the system given in Example 3.
. . Q M. Dr T D, Dt
Soil Porosit P a i [ i i
! rosity | Q, (cm) gas g/mole | cm?sec | cm?sec | cm?/sec
_ Dag=
A=CH,4 16.043 424.7 02137 0.0470
Sea 046 | 022 | 00109 | B=N, | 28.013 | 3214 Dac> 0.0497
Sand ' ' ' § ' ' 0.2263 '
_ Dgc=
C=0, 31.999 300.74 0.2083 0.0458
_ DAB_
A=CH, 16.043 1180.7 02137 0.0363
Ottawa B Dac=
sand 0.36 0.17 0.0303 B=N, 28.013 893.5 02263 0.0384
_ DBC_
C=0, 31.999 836.01 0.2083 0.0354
_ Dpe=
A=CH, 16.043 31.17 02137 0.0876
. . - DAC_
Kaolinite 0.85 0.41 0.0008 B=N, 28.013 23.59 02263 0.0927
_ DBC_
C=0, 31.999 22.07 0.2083 0.0850
+ D) is calculated using Eqn. (2) (T=20 °C).
I D; is calculated using Eqn. (8).
Perturbation solution
----- Numerical solution
0.5¢
\s\\\ X ,,ﬁ
04 r Qs . ¢ o,’, -
X \\\\ d
Xi03] A R ~ -
3 :’ XB
= \\hs
02 [ / s s\\ 4
041} ” R ]
O | | | |
0 0.2 0.4 0.6 0.8 1
Z=(1/L)

Figure 1: Comparison between perturbation and numerical solutions for a
ternary gaseous system.
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0.8

0.6

0.4

0.2

ocx
0

z(m)

Figure 2: Mole fractions of the components of the system given in Example 1 as calculated
by perturbation solution.

1.5
z (cm)
Figure 3: Mole fractions of the components of the system given in Example 2 as calculated
by perturbation solution.
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Notation

D(r)
Dis(r)

0.14 o
[ —6— Kaolinite |
0.12 —B- Seasand
=~ Ottawa sand
‘_"8 0.1F B
‘e
R
[ 008 [ n
= - g a8 £1
E/
0.06 4
S —
V/Vi
0.04 L L L L L L L
1 1.5 2 2.5 3 35 4 4.5 5

z (cm)
Figure 4: Total molar fluxes of CH, in different porous media systems given in Example 3
as calculated by perturbation solution.

coefficient (L* t1)

coefficient (L* t1)

total molar concentration (mole L)

molar concentration of component i (mole L)

free binary diffusivity of gases i and j(L*t")

effective binary diffusion coefficient of gases i and j(L*t")
Knudsen diffusivity (Knudsen diffusion coefficient) of gas i (L*t")
Knudsen diffusivity of gas i in a pore of radius r (L*t")

effective surface diffusivity of component i in a pore of radius r (L*t")
coefficient (L* t1)

coefficient (L* t1)

coefficient (L* t")

index

index

intrinsic permeability (L?)

coefficient
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L length (L)

M, molecular weight of component i (M mole™)

m, coefficient

n number of gas components

n' molar density of gas and particles (mole L)

NP total molar diffusive flux of component i (mole L™ t")
N Knudsen molar flux of component i (mole L?t")

NT total molar flux of component i (mole L*t")

NY molar viscous flux (mole L t*)

[N S ] column vector with elements N_,..., N_,

P pressure (M L™ t7)

Q coefficient (L t")

Q. obstruction factor (diffusivity)

Qr obstruction factor for Knudsen diffusivity (the effective Knudsen radius) (L)
R ideal gas constant (M L* t* T mole™)

Rii reaction rate of component i per unit volume of porous media (M t' L)
r pore radius (L)

r average pore radius (L)

T temperature (T)

t time (t)

Te total porosity of the porous media

X, mole fraction of component i

X dimensionless mole fraction

z dimensionless length, I/L

z

dimensionless length
z length (L)
DGM dusty gas model

VOCs  vyolatile organic compounds

NHS nonhomogenous side

a, coefficient

a; generalized thermal diffusivity
B, coefficient

n index
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€ perturbation parameter

£ void fraction

7, dynamic viscosity (M L™ t)

78 integration constant

Vv sum of atomic diffusion volumes

) infinity

v gradient operator
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