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Abstract 

Today, the prediction system and survival rate became an important request. A previous paper constructed a 

scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, 

grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the 

improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more 

accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. 

By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the 

risk percentage instead of only 16. Additionally, the accuracy will be calculated with risk mortality at 5 and 10 

years depending on the number of unknown factors. The new system presented in a graphical user interface to 

facilitate the friendliness at the user side. 
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1. Introduction 

In developed and developing regions of the world, Breast cancer still the most diagnosed tumour and have the 

main cause of cancer death in women (Globocan 2012). Much information about the attitude of breast cancer 

(demographic, clinical, pathological and molecular) could be provided by a large number of prognostic factors 

which empower the relation between the findings and treatments. Among them, lymph node (N), tumour size (T) 

and grade are the most critical factors (Soerjomataram et al. 2008; Fisher et al. 2001; Williams et al. 2006). 

Survivability is the ability to stay alive, the statistics that deals with the modelling of time to event data are called 

survival analysis; in such case, an event is a death. Tumour characteristics can give a hint in calculating survival 

time. The survival rate refers to the percentage of patients who live at least 5 years after being diagnosed with 

cancer (Nivetha & Samundeeswari 2016). 

Nowadays, clinical decision-making plays a vital role in finding the risk and survival duration for patients 

suffering from malignant disease (Chen et al. 2009), by selecting accurate prognostic factors, an artificial 

intelligence could be used to calculate the risk and then inform the patient. 

Zhenchong X. et al. (2018) built a nomogram model to predict one to three years survival probability of the 

patients with metastatic breast cancer (MBC) depending on the results of the multivariable analysis with the Cox 

hazard model, the survival probability supposed to be gain from the summation of factor’s scores. Esther et al. 

(2017) constructed a system to calculate scoring points, were each prognosis factor has weight, the final score 

will predict breast cancer mortality at 5 to 10 years. Azadeh et al. (2017) used machine learning in improving the 

survival prediction based on gene expression, by collecting articles from 2000 to 2016 on survival, cancer and 

machine learning. Nivetha & Samundeeswari (2016) made a comparison between support vector machine SVM 

and fuzzy rule-based in the predicting survival of breast cancer patients; they found that fuzzy is better than 

SVM in the classification. 

Esther et al. (2017) produced a scoring system for predicting breast cancer mortality at 5 to 10 years, by 

collecting data from patients diagnosed with breast cancer in the Elda Health Department between 2003 to 2006, 

the sample size was 287 women, of whom 55 died of breast cancer in the Spanish region, the main parameter 

was time-to-death, a point scoring system was used to build a model for calculating and predicting the survival 

rate by using the Framingham Heart Study methodology. This system selects the prognostic factors that effect on 

the mortality and risk calculation, then, giving them a score weight. The sum of these scores or points produces 

the risk of death (Sullivan et al. 2004). By this, the model covert the real information collected from patients to a 

predictive scoring system. 

Esther et al. (2017) found that age, history of breast cancer, grade, stage, and multicentricity are the main factors 

that increase the risk mortality through his and previous studies (Soerjomataram et al. 2008; Jimenez et al. 2003; 
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Galea et al. 1992; Bloom & Richardson 1957; Frederick et al. 2010; Louwman et al. 2005; Vera-Badillo et al. 

2014). Fig. 1 shows the model of a scoring system to predict breast cancer mortality. 

 

 
Figure 1: Scoring system to predict breast cancer mortality (Esther et al. 2017) 

 

From Fig. 1, we can notice that the age score was divided into two groups; above or equal 50 and less than 50 

years, giving them one and zero points respectively, which are very crisp value, for example, if patient was 49 

years old, then the point for age group will be zero, while it was very close to 50, by other words the patients 

with age near 50 should be affected by the values of these two groups. Additionally, the system works only and 

only if the five predictive factors were known and when anyone was missing then the system will give us false 

risk percentage. 

This paper tries to improve this scoring system by the embedded fuzzy controller in the process of finding risk 

calculation to reduce the limitation mention before and to make the model more sophisticated. 

Many techniques were used recently in prediction models, especially in the cancer field, to improve clinical 

decision making and to convert laboratory finding into information that helps in informing the patient and in 

caregiving by the medical staff.  

The fuzzy controller can give an accurate classification through a set of rules in-form of IF-THEN instead of 

using crisp sets as in classical rules. Fuzzy sets have degrees of membership functions, which have values 

between one and zero. A degree of zero means that an object is not a member of that set, while one, means that it 

is, the most important part which distinguishes fuzzy sets are the values that lay in-between one and zero, that 

will have a partial degree of membership (Bai et al. 2006). 
 

2. Materials and Methods 

This paper improves the point system mentioned in (Esther et al. 2017) through three steps, the first step deals 

with the age group. As mention before, (Esther et al. 2017) divided the age into two groups as shown in Fig. 1, 

while in this system, each crisp value will be mapped into multiple fuzzy variables, and this process is called 

fuzzification. Fig. 2A shows the how to find the value for age factor according to (Esther et al. 2017) point 

system, while Fig. 2B describes the transformation of crisp age into fuzzy sets.  
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(A) 

 

 
(B) 

Figure 2: Convert crisp age value (A) into age fuzzy set (B). 

 

By this, the output point could be any value between zero and one instead of crisp values, the age between 40 

and 50 will belong to two fuzzy sets due to overlapping. Fig. 3A, 3B and 3C show how to calculate the fuzzy 

membership values when the fuzzy sets are trapezoidal, R and L-function respectively, which are used in this 

paper. 
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Figure 3: How to calculate fuzzy membership value when the fuzzy set is (A) trapezoidal, (B) R-function, 

(C) L-function (eMathTeacher 2018) 

 

Where a, d, b, and c are the lower limit, upper limit, lower support limit, and upper support limit respectively. To 

determine the output, rules should be chosen in a proper way to verify the results, the rules, in this case, are 

shown in Table 1. 

Table 1: Rules for age point 

No. Rules 

R1 IF Age is less than or equal 40 THEN point is zero 

R2 IF Age is greater than or equal 50 THEN point is one 

R3 IF Age is equal to 45 THEN point is 0.5 

 

From above, the output of age point will be a value between and including zero or one, while in (Esther et al. 

2017); the point is zero or one. The resultant fraction point will be solved later before getting the mortality risk 

percentage. 

 

3. Results and Discussion 

As mentioned before, this paper enhanced the prediction in three steps; the second one is entering new point for 

the unknown factors (Age, personal history of breast cancer, grade, stage, and multicentricity). These 

modifications take place for any missing information which without it, the whole scoring system will be crashed. 

Fig. 4 defines these modifications. 
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Figure 4: Adding unknown choices to the scoring system 

 

The unknown point was selected to be in the middle of upper and lower limit, for example, the limits for the 

grade are 0 and 3, so the unknown point will be 1.5. 

After sum all the points, the result will be number between zero and 15, with the possibility of a fraction.  Esther 

et al. (2017) used the scoring system in Fig. 1 to calculate risk percentage at 5 to 10 years.  But now, after adding 

unknown choices and change the way to find age point, modifications on the risk finding should take place, 

which represents the third step in improvement. Again, fuzzy sets will benefit from the existing system in 

defining the rules. The rules were very similar to what was exists in Fig. 1, but the result will be different, 

because of fraction point. Table 2 shows rules 5, 6 and7 for finding the percentage of risk mortality. 

 

Table 2: Some of the rules for risk (%) 

No. Rules 

R5 IF point sum= 4 THEN 5 years risk=4.16 and 10 years risk=7.34 

R6 IF point sum= 5 THEN 5 years risk=7.48 and 10 years risk=13.02 

R7 IF point sum= 6 THEN 5 years risk=13.26 and 10 years risk=22.53 

 

The input of the fuzzy interface system (FIS) has 15 membership functions with a range from zero to 15 that 

represent the main point sum, while the output of FIS consists of 15 membership functions with a range from 

zero to 100, that represent the values of risk (%) mentioned in Fig. 1. 

The accuracy of this system could be measured depends on the number of unknown factors, the relation between 

them is inverse; when the unknown factor increases, then the accuracy decrease. The equation to find the 

accuracy is as shown in Equation 1. 

 

                                   (1) 

 

 

Where N represents the number of the unknown factors. To make the system more friendliness, a graphical user 

interface (GUI) was used as shown in Fig. 5, also the unknown choice was added to the prognostic factors. As a 

result, the final outputs are point sum, risk (%) at 5 to 10 years and the accuracy (%) of the system. 
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Figure 5: Graphical user interface for our system 

 

 

 

 

 

 

Fig. 6 illustrates the flow chart used in (Esther et al. 2017), while Fig. 7 shows the revised version proposed in 

this paper, and by these figures, we can highlight the differences between them, certainly, they both try to predict 

the mortality at 5 and 10 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Flow chart of the system used in (Esther et al. 2017) 
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Figure 7: Flow chart of the proposed system 

 

 

4. Conclusions 

An enhancement of the point system for predicting mortality due to breast cancer at 5 to 10 years has been built. 

The modified system farther divides the risk levels to increase the subdivisions, this leads to more variety in risk 

values; where the original system has only 15 values for risk mortality, while in the new system presented in this 

paper, there is an infinite number of values due to using of the fuzzy controller. An unknown choice was added to 

the prognostic factors to make the point system more accurate in case of missing information. 

5. Future Work 

As mentioned previously, this pointing system works on Spain population, we encourage researchers to find their 

prognostic factors related to their follow-up patients information because it differs from region to region. Of 

course, by increasing the number of factors, we will get more accurate results in predicting mortality at 5 and 10 

years. 
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