A Novel Algorithm for Capacitor Placement to improve Voltage
stability of Radial and Meshed Power Systems

G Rajendar (Corresponding author)
E-mail: rajendar_gogu@yahoo.com
Basavaraja Banakara
E-mail: banakara36@gmail.com, banakara36@gitam.edu

Abstract
The objective of this paper is to present a novel method for determining the optimum location and amount of reactive
power to be injected to improve the voltage stability of entire power system or set of buses that are prone to voltage
instability. A new sensitivity matrix named L-Index sensitivity matrix is been proposed and the same is considered
for identifying the buses, at which the reactive power is to be injected. The proposed procedure has been tested for
practical examples of radial networks and IEEE-14 bus system. Test results demonstrate the effectiveness of the
developed algorithm.

Keywords: L-index matrix, voltage stability, Jacobian matrix, sensitivity

1. Introduction
Voltage stability is concerned with the ability of the power system to maintain acceptable voltages at all the buses in
the system under the normal conditions and after being subjected to a disturbance. Once associated primarily with
weak systems and long lines, voltage problems are now also a source of concern in highly developed networks as a
result of heavier loadings. The review paper by Ajjarapu and Lee [8] presents an exhaustive list of work done in the
area of voltage stability till 1998. The phenomena which contributes to the voltage stability have been described, the
various countermeasures to avert it have been enumerated and the various computer analysis methods used or
proposed so far have been presented in a coherent way in [16].

2. Motivation
In 1997, a voltage instability problem in a distribution network, which spread to a corresponding
transmission system, had caused a major blackout in the S/SE Brazilian system [44]. Therefore over the years,
voltage stability of distribution systems has received great attention with a need for both analysis and enhancement
of the operating conditions. The Voltage Stability problem of radial distribution system from its single line
equivalent has been investigated and the voltage stability index (VSI) for identifying the node that is most sensitive
to voltage collapse has been developed in [20], [21] and [25]. The determination of the location, size, number and
type of capacitors to be placed are of great significance, as it reduces power and energy losses, increases the
available capacity of the feeders and improves the feeder voltage profile. Numerous methods for solving this
problem in view of minimizing losses have been suggested in the literature [[30]- [34]]. Algorithms for enhancing
voltage stability of transmission systems by optimal capacitor placement have been discussed [[35]- [36]]. A
relationship between voltage stability and loss minimization has been developed and the concept of maximizing
voltage stability through loss minimization has been outlined [[37]- [38]]. Algorithms for enhancing voltage stability
of distribution systems by network reconfiguration that alters the topological structure of the distribution feeders by
rearranging the status of switches have been suggested [[39]- [41]]. However, there is no work till date to improve
the stability of the system as a whole or to improve the stability of particular buses which are in our interest. In the
literature several indices are been proposed to indicate the voltage stability of power systems. The L-Index method is
proposed in [3] which attempts to provide a measure of the stability of the load buses in a system by ranking them
according to a parameter (L-Index). The eigenvalues and eigenvectors of the power flow jacobian have been used in
[22] to characterize the stability margin in a system. In this paper we are using L-Index [3] and Jacobin matrix [7] to
derive the L-Index sensitivity matrix denoted as (L_q), which is used to calculate the optimal location of the
capacitors. In this paper the affect of placing a capacitor at a bus on the remaining buses for radial and meshed systems is found out. L-Index Sensitivities(L_q) matrix which gives the information of the change in value of L-Index [3] with change in reactive power injection at any bus in the system has been proposed. A new method is developed to improve the stability of the system using L-Index sensitivities approach(L_q) which is applicable to improve the stability of radial and meshed systems. We have used linear programming optimization technique to get location and amount of reactive power to be injected.

3. Literature Review

3.1 L Index

This method is proposed in [3] to find the buses which are most prone to voltage instability. In this method the Y_{bus} matrix of the system is split into rows and columns of generators and load buses.

$$
\begin{bmatrix}
I_G \\
I_L
\end{bmatrix} = \begin{bmatrix}
Y_{GG} & Y_{GL} \\
Y_{LG} & Y_{LL}
\end{bmatrix}
\begin{bmatrix}
V_G \\
V_L
\end{bmatrix}
$$

(1)

$$
\begin{bmatrix}
V_L \\
I_G
\end{bmatrix} = \begin{bmatrix}
Z_{LL} & F_{LG} \\
K_{GL} & Y_{GG}
\end{bmatrix}
\begin{bmatrix}
I_L \\
V_G
\end{bmatrix}
$$

(2)

$$
F_{LG} = -[Y_{LL}]^{-1}[Y_{LG}]
$$

(3)

$$
L_j = \left[-\sum_{i=g}^{i=g} \frac{V_i}{V_j} \right]
$$

(4)

where the subscript

“G” :- refers to the generator buses in the system

“L” :- refers to the load buses in the system

A L-index value away from 1 and close to 0 indicates a large voltage stability margin. The maximum of L-indices(L_{max}) of the buses to which it corresponds is the most critical bus. Also the summation of the squares of the L indices of the individual buses($\sum L^2$) is used as a relative indicator of the overall voltage stability of the system at different operating conditions [4].

3.2 Participation Factor

The participation factor has been proposed in [22]. It is developed as follows. Consider the load flow jacobian

$$
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} = \begin{bmatrix}
H & N \\
M & L
\end{bmatrix}
\begin{bmatrix}
\Delta \theta \\
\Delta V
\end{bmatrix}
$$

(5)

Although both P and Q changes affect system conditions, it is possible to study the effects of reactive power injections on the voltage stability by setting ΔP (P constant) and deriving the Q-V sensitivities at different loads. Thus the 5 can be written as
\[\Delta Q = \left[L - MH^{-1}N \right] V = J_R \Delta V \]

(6)

\[J_R = \xi \Lambda \eta \]

(7)

where

\(\Lambda \) :- left eigen matrix of \(J_R \)

\(\eta \) :- right eigen matrix of \(J_R \)

\(\xi \) :- eigenvalues of \(J_R \)

The participation factors for the bus \(k \) and the critical mode \(i \) are defined as \(\xi_k \eta_i \)

4. Derivation of L-Index sensitivities

L-Index as introduced in section 3.1 would predict voltage stability.

To derive L-Index sensitivities Let \{1,2,3,........g\} be no of generator nodes

\{g+1,g+2,g+3,.........n\} be no of load nodes

From Equ. 8 we get

\[L_j = \left| 1 - \sum_{i=1}^{i=g} F_{ji} \frac{V_i}{V_j} \right| \]

(8)

where the subscript

“G” :- refers to the generator buses in the system

“L” :- refers to the load buses in the system

Squaring the equation Equ. 8 we get

\[L_j^2 = \left| \left(1 - \sum_{i=1}^{i=g} F_{ji} \frac{V_i}{V_j} \right) \right|^2 \]

\[= \left(1 - \sum_{i=1}^{i=g} F_{ji} \frac{V_i}{V_j} \right) \]

(9)

Let \(K_j = L_j^2 \)

\[K_j = \left(1 - \sum_{i=1}^{i=g} F_{ji} \frac{V_i}{V_j} \right)^2 \]

(10)

differentiating Equ. 10 we get
Taking the as already discussed in section we get

\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} = \begin{bmatrix}
H & N \\
M & L
\end{bmatrix} \begin{bmatrix}
\Delta \theta \\
\Delta V
\end{bmatrix}
\] (12)

As the inclusion of an extra capacitor would change only the reactive power, we would make \(\Delta P \) in Equ.12 equal zero. From this we get

\[
\Delta Q = \begin{bmatrix} L - MH^{-1}N \end{bmatrix} V = J_R \Delta V
\] (13)

\[
\Delta V = (J_R)^{-1} \Delta Q
\] (14)

where \([J_R]\) is the reduced jacobian.

where \(\Delta Q \) is a vector of change in reactive power injections

\[
\Delta Q = [\Delta Q_{g+1} \Delta Q_{g+2} \Delta Q_{g+3} \ldots ..]'
\]

where \(\Delta V \) is a vector of change in voltages

\[
\Delta V = [\Delta V_{g+1} \Delta V_{g+2} \Delta V_{g+3} \ldots ..]'
\]

Equ. 14 is very important as it gives us the relationship between the amount of reactive power injected at any particular or set of buses and the change in voltage at all buses. Let

\[
J_R^{-1} = \begin{bmatrix}
 a_{g+1,g+1} & a_{g+1,g+2} & \cdots & a_{g+1,n} \\
 a_{g+2,g+1} & a_{g+2,g+2} & \cdots & a_{g+2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n,g+1} & a_{n,g+2} & \cdots & a_{n,n}
\end{bmatrix}
\] (15)

From the Equ. 15, the voltage at a bus is given as

\[
\Delta V_j = \sum_{i=g+1}^{n} a_{ji} \Delta Q_i
\] (16)

manipulating Equ. 11 to get the change in voltage in terms of change in K

\[
\Delta V_j = -\frac{\Delta K_j}{2 \left(\sum_{i=1}^{g} F_{ii} V_i^2 + \sum_{i=1}^{g} F_{ij} V_i V_j \right)}
\] (17)

Substituting Equ. 21 in Equ. 20 we have
\[\Delta K_j = -2 \left(1 - \sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \left(\sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \sum a_{ji} \Delta Q_i \]
\[\Delta K_j = 2L_j \Delta L_j \]

As \(\Delta K_j = 2L_j \Delta L_j \)

\[\Delta L_j = -\frac{1}{L_j} \left(1 - \sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \left(\sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \sum a_{ji} \Delta Q_i \]

\[\Delta L_j = -\frac{1}{L_j} \left(1 - \sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \left(\sum_{i=1}^{r^g} F_{ji} \frac{V_i}{V_j} \right) \sum a_{ji} \Delta Q_i \]

\[\Delta L_j = L_q \]

This is called L-Index sensitivity matrix matrix.

5 New Algorithm for Capacitor Placement

1. Calculate L-Index of all the load buses as given in section 3.1.
2. Calculate the sensitivity matrix as given in section 4.
3. Choose a limit for the L-Index, let it be \(L_{\text{limit}} \).
4. Find the buses which is having L-Index more than \(L_{\text{limit}} \), let the buses be \([B_2, B_5, B_7 \] \).
5. Find \(\Delta L_{\text{red}}, \Delta L_{\text{red}} \) is taken for the buses which are exceeding \(L_{\text{limit}} \). \(\Delta L_{\text{red}} = [\Delta L_2 \Delta L_5 \Delta L_7] \).
6. Find the reduced sensitivity matrix(\(L_{eq} \)), reduced sensitivity matrix would relate \(\Delta L_{eq} \) and \(\Delta Q_{\text{red}} \) where \(\Delta Q_{\text{red}} = [Q_2 Q_5 Q_7] \).
7. \(\Delta L_{\text{red}} = \Delta L_{eq} \Delta Q_{\text{red}} \)
8. Take \(\sum \Delta Q_{\text{red}} \) as the objective function
9. Now perform optimization minimizing objective function satisfying the constraints \(\Delta L_{\text{min}} \leq \Delta L \leq \Delta L_{\text{max}} \)
 where
 \[\Delta L_{\text{min}} = L_{\text{actual}} - L_{\text{limit}} \]
 \[\Delta L_{\text{max}} = [1] - L_{\text{actual}} \cdot \]
10. From the above algorithm we would get the value of capacitors to be placed.

6 Experimental Results

In order to illustrate the effectiveness of the algorithm we would implement the proposed method on 15 bus system with its loads increased four times of the base case given in Appendix A Table 7.

Table 1: L-Index values for the above system
From the above we get

\[\Delta V_j = \sum_{i \in g \neq j} a_{ji} \Delta Q_i \]

(20)

From Equ. 11

\[\Delta V_j = \frac{\Delta K_j}{2 \left(1 - \sum_{i=1}^{\Delta g} F_{ji} \frac{V_i}{V_j} \right)^{\frac{\Delta g}{\sum_{i=1}^{\Delta g} V_i^2}}} \]

(21)

Substituting Equ. 21 in Equ. 20 we have

\[\Delta K_j = 2 \left(1 - \sum_{i=1}^{\Delta g} F_{ji} \frac{V_i}{V_j} \right) \left(\sum_{i=1}^{\Delta g} F_{ji} \frac{V_i}{V_j} \right)^{\frac{\Delta g}{\sum_{i=1}^{\Delta g} a_{ji} \Delta Q_i}} \]

(22)

Table 1: L Index values for the above system

<table>
<thead>
<tr>
<th>Bus no</th>
<th>L-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.24756</td>
</tr>
<tr>
<td>3</td>
<td>0.43962</td>
</tr>
<tr>
<td>4</td>
<td>0.53262</td>
</tr>
<tr>
<td>5</td>
<td>0.54971</td>
</tr>
<tr>
<td>6</td>
<td>0.40118</td>
</tr>
<tr>
<td>7</td>
<td>0.41826</td>
</tr>
<tr>
<td>8</td>
<td>0.27086</td>
</tr>
<tr>
<td>9</td>
<td>0.28973</td>
</tr>
<tr>
<td>10</td>
<td>0.55208</td>
</tr>
<tr>
<td>11</td>
<td>0.63254</td>
</tr>
<tr>
<td>12</td>
<td>0.66014</td>
</tr>
<tr>
<td>13</td>
<td>0.57359</td>
</tr>
<tr>
<td>14</td>
<td>0.57676</td>
</tr>
<tr>
<td>15</td>
<td>0.43143</td>
</tr>
</tbody>
</table>

Let us take limit for L-Index \(L_{\text{limit}} \) as 0.5
Buses exceeding L_{limit} are $[B_4 \ B_5 \ B_{10} \ B_{11} \ B_{12} \ B_{13} \ B_{14}]$.

$\Delta L_{red} = [\Delta L_4 \ \Delta L_5 \ \Delta L_{10} \ \Delta L_{11} \ \Delta L_{12} \ \Delta L_{13} \ \Delta L_{14}]$.

Table 2: Reduced Sensitivity matrix of 15 bus experiment system

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.18241</td>
<td>0.18657</td>
<td>0.16042</td>
<td>0.17813</td>
<td>0.18433</td>
<td>0.1925</td>
<td>0.1933</td>
</tr>
<tr>
<td>5</td>
<td>0.18861</td>
<td>0.22497</td>
<td>0.16587</td>
<td>0.18418</td>
<td>0.19059</td>
<td>0.19903</td>
<td>0.19986</td>
</tr>
<tr>
<td>10</td>
<td>0.16299</td>
<td>0.16671</td>
<td>0.20907</td>
<td>0.23326</td>
<td>0.24174</td>
<td>0.172</td>
<td>0.17272</td>
</tr>
<tr>
<td>11</td>
<td>0.19035</td>
<td>0.19469</td>
<td>0.24416</td>
<td>0.33598</td>
<td>0.34864</td>
<td>0.20087</td>
<td>0.20171</td>
</tr>
<tr>
<td>12</td>
<td>0.20023</td>
<td>0.20479</td>
<td>0.25683</td>
<td>0.35342</td>
<td>0.41922</td>
<td>0.2113</td>
<td>0.21218</td>
</tr>
<tr>
<td>13</td>
<td>0.19758</td>
<td>0.20208</td>
<td>0.17377</td>
<td>0.19295</td>
<td>0.19966</td>
<td>0.25867</td>
<td>0.20937</td>
</tr>
<tr>
<td>14</td>
<td>0.1988</td>
<td>0.20333</td>
<td>0.17484</td>
<td>0.19414</td>
<td>0.2009</td>
<td>0.2098</td>
<td>0.23782</td>
</tr>
</tbody>
</table>

$\Delta L_{max} = [0.53262 \ 0.54971 \ 0.55208 \ 0.63254 \ 0.66014 \ 0.57359 \ 0.57676]$

$\Delta L_{min} = [0.032616 \ 0.049709 \ 0.052083 \ 0.13254 \ 0.16014 \ 0.073588 \ 0.076765]$

Imposing the condition $\Delta L_{min} \leq \Delta L \leq \Delta L_{max}$ and running optimization program we get values of capacitors as given in Table 5. From the sensitivity matrix it can be seen that each row is having a maximum element in that row. As each row is having a maximum element in it we can say that in order to have maximum influence on the bus corresponding to that row we have to keep capacitor at the bus corresponding to the column of maximum element. This would reduce the value of capacitor to be placed. To illustrate this let’s assume that bus no 11 in the system whose sensitivity matrix is given above is more prone to voltage instability. Checking the row corresponding to 11th bus in the sensitivity matrix it can be seen that 12th bus column element is having maximum value. Then keep the capacitor at 12th bus to have maximum influence on 11th bus. If we keep capacitor at 12th bus as $\Delta L_{11} = L_q(11,12)\Delta Q(12)$ so if $L_q(11,12)$ is maximum then $\Delta Q(12)$ will be minimum to get the same ΔL_{11}. Minimum value of $\Delta Q(12)$ would correspond to minimum value of capacitor. so this would reduce the capacitor value if we put the capacitor at 12th bus then on any other buses in the system.
Table 3: Sensitivity matrix of 15 bus experiment system

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.03392</td>
<td>0.04792</td>
<td>0.05472</td>
<td>0.05597</td>
<td>0.04346</td>
<td>0.04454</td>
<td>0.03524</td>
<td>0.03631</td>
<td>0.05621</td>
<td>0.06242</td>
<td>0.06459</td>
<td>0.05774</td>
<td>0.05798</td>
</tr>
<tr>
<td>3</td>
<td>0.05527</td>
<td>0.11262</td>
<td>0.12859</td>
<td>0.13152</td>
<td>0.07080</td>
<td>0.07257</td>
<td>0.05741</td>
<td>0.05915</td>
<td>0.1321</td>
<td>0.14668</td>
<td>0.15178</td>
<td>0.1357</td>
<td>0.13626</td>
</tr>
<tr>
<td>4</td>
<td>0.06712</td>
<td>0.13678</td>
<td>0.18241</td>
<td>0.18657</td>
<td>0.08598</td>
<td>0.08813</td>
<td>0.06972</td>
<td>0.07184</td>
<td>0.16042</td>
<td>0.17813</td>
<td>0.18433</td>
<td>0.1925</td>
<td>0.1933</td>
</tr>
<tr>
<td>5</td>
<td>0.06940</td>
<td>0.14142</td>
<td>0.18861</td>
<td>0.22497</td>
<td>0.08890</td>
<td>0.09113</td>
<td>0.07209</td>
<td>0.07428</td>
<td>0.16587</td>
<td>0.18418</td>
<td>0.19059</td>
<td>0.19903</td>
<td>0.19986</td>
</tr>
<tr>
<td>6</td>
<td>0.04899</td>
<td>0.06921</td>
<td>0.07902</td>
<td>0.08082</td>
<td>0.10904</td>
<td>0.11204</td>
<td>0.05088</td>
<td>0.05243</td>
<td>0.08117</td>
<td>0.09013</td>
<td>0.09327</td>
<td>0.08339</td>
<td>0.08374</td>
</tr>
<tr>
<td>7</td>
<td>0.05081</td>
<td>0.07178</td>
<td>0.08196</td>
<td>0.08382</td>
<td>0.1131</td>
<td>0.13642</td>
<td>0.05278</td>
<td>0.05438</td>
<td>0.08419</td>
<td>0.09348</td>
<td>0.09674</td>
<td>0.08649</td>
<td>0.08685</td>
</tr>
<tr>
<td>8</td>
<td>0.03589</td>
<td>0.05070</td>
<td>0.05789</td>
<td>0.05920</td>
<td>0.04597</td>
<td>0.04712</td>
<td>0.05705</td>
<td>0.05895</td>
<td>0.05946</td>
<td>0.06603</td>
<td>0.06833</td>
<td>0.06109</td>
<td>0.06134</td>
</tr>
<tr>
<td>9</td>
<td>0.03752</td>
<td>0.05300</td>
<td>0.06052</td>
<td>0.0619</td>
<td>0.04806</td>
<td>0.04926</td>
<td>0.05964</td>
<td>0.08617</td>
<td>0.06217</td>
<td>0.06903</td>
<td>0.07143</td>
<td>0.06386</td>
<td>0.06413</td>
</tr>
<tr>
<td>1</td>
<td>0.07006</td>
<td>0.14275</td>
<td>0.16299</td>
<td>0.16671</td>
<td>0.08974</td>
<td>0.09199</td>
<td>0.07276</td>
<td>0.07498</td>
<td>0.20907</td>
<td>0.23326</td>
<td>0.24174</td>
<td>0.172</td>
<td>0.17272</td>
</tr>
<tr>
<td>1</td>
<td>0.08181</td>
<td>0.16671</td>
<td>0.19035</td>
<td>0.19469</td>
<td>0.10481</td>
<td>0.10743</td>
<td>0.08498</td>
<td>0.08757</td>
<td>0.24416</td>
<td>0.33598</td>
<td>0.34864</td>
<td>0.20087</td>
<td>0.20171</td>
</tr>
<tr>
<td>1</td>
<td>0.08606</td>
<td>0.17537</td>
<td>0.20023</td>
<td>0.20479</td>
<td>0.11025</td>
<td>0.11301</td>
<td>0.08939</td>
<td>0.09211</td>
<td>0.25683</td>
<td>0.35342</td>
<td>0.41922</td>
<td>0.2113</td>
<td>0.21218</td>
</tr>
<tr>
<td>1</td>
<td>0.07270</td>
<td>0.14815</td>
<td>0.19758</td>
<td>0.20208</td>
<td>0.09313</td>
<td>0.09547</td>
<td>0.07552</td>
<td>0.07782</td>
<td>0.17377</td>
<td>0.19295</td>
<td>0.19966</td>
<td>0.25867</td>
<td>0.20937</td>
</tr>
<tr>
<td>1</td>
<td>0.07315</td>
<td>0.14907</td>
<td>0.1988</td>
<td>0.20333</td>
<td>0.09371</td>
<td>0.09606</td>
<td>0.07598</td>
<td>0.07830</td>
<td>0.17484</td>
<td>0.19414</td>
<td>0.2009</td>
<td>0.2098</td>
<td>0.23782</td>
</tr>
<tr>
<td>1</td>
<td>0.05226</td>
<td>0.07382</td>
<td>0.08429</td>
<td>0.08621</td>
<td>0.11632</td>
<td>0.11951</td>
<td>0.05428</td>
<td>0.05593</td>
<td>0.08659</td>
<td>0.09615</td>
<td>0.09949</td>
<td>0.08895</td>
<td>0.08932</td>
</tr>
</tbody>
</table>

In order to show the consistency of the L-Index sensitivities method we have calculated ΔL for the 15 bus system given in Fig.1 keeping the capacitor of 120kVAR at bus 12 from L-Index sensitivities method. ΔL is calculated as
L-Index(with capacitor)-L-Index(without capacitor) from the conventional method as given in Section ??.
Values of ΔL from both methods is tabulated in Table 4.

Table 4: Comparision of ΔL from both methods

<table>
<thead>
<tr>
<th>Bus no</th>
<th>ΔL from L-Index sensitivities</th>
<th>ΔL from conventional method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.001561375</td>
<td>0.00153235</td>
</tr>
<tr>
<td>3</td>
<td>0.002982529</td>
<td>0.002926712</td>
</tr>
<tr>
<td>4</td>
<td>0.003036517</td>
<td>0.002977799</td>
</tr>
<tr>
<td>5</td>
<td>0.003045882</td>
<td>0.002986667</td>
</tr>
<tr>
<td>6</td>
<td>0.001625685</td>
<td>0.00159306</td>
</tr>
<tr>
<td>7</td>
<td>0.001632134</td>
<td>0.001599146</td>
</tr>
<tr>
<td>8</td>
<td>0.001577317</td>
<td>0.001547467</td>
</tr>
<tr>
<td>9</td>
<td>0.001582524</td>
<td>0.001552402</td>
</tr>
<tr>
<td>10</td>
<td>0.004477482</td>
<td>0.004394593</td>
</tr>
<tr>
<td>11</td>
<td>0.006484893</td>
<td>0.006368077</td>
</tr>
<tr>
<td>12</td>
<td>0.008109174</td>
<td>0.007966572</td>
</tr>
<tr>
<td>13</td>
<td>0.003058382</td>
<td>0.002998492</td>
</tr>
<tr>
<td>14</td>
<td>0.003059996</td>
<td>0.003000017</td>
</tr>
<tr>
<td>14</td>
<td>0.001636937</td>
<td>0.001603675</td>
</tr>
</tbody>
</table>

From the Table 4 it can be seen that the values of ΔL as obtained from the both methods are very much close to each other so we can conclude that L-Index sensitivities method derived in section 4 is correct.
Table 5: Optimum values of capacitor to be placed in 15 bus radial system

<table>
<thead>
<tr>
<th>Bus no</th>
<th>Value of Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.38191</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.00016339</td>
</tr>
</tbody>
</table>

Table 6: Optimum values of capacitor to be placed in IEEE 14 bus system

<table>
<thead>
<tr>
<th>Bus no</th>
<th>Value of Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.22485</td>
</tr>
<tr>
<td>7</td>
<td>0.20017</td>
</tr>
<tr>
<td>9</td>
<td>0.15241</td>
</tr>
<tr>
<td>10</td>
<td>0.24133</td>
</tr>
<tr>
<td>11</td>
<td>0.16807</td>
</tr>
<tr>
<td>12</td>
<td>0.096743</td>
</tr>
<tr>
<td>13</td>
<td>0.12373</td>
</tr>
<tr>
<td>14</td>
<td>0.15785</td>
</tr>
</tbody>
</table>

7 Remarks and Future Scope
In this chapter a new and efficient approach has been developed for the placement capacitor to make the system voltage stable. A new L-Index real power sensitivities matrix is proposed to see the influence of real power on voltage stability of system.
8 Conclusions

This paper is essentially concerned with the analyzing and improvement of voltage stability of radial power systems. Most of the indices which have been proposed for assessing voltage stability are studied. Shortcomings in Line Flow Index are identified. Patterns of voltage stability indices are been observed and their dependence on the electrical distance has been studied. A better comparison has been made by exploiting several unique features of radial power systems. Effect of loads, distance of the load bus from the slack bus and structure of the network on the voltage stability is investigated.

A new algorithm is found to optimally place the capacitors to improve the voltage stability to the required level. The effect of reactive power injections at a bus on the entire power system in consideration is studied. A new sensitivity matrix \(L_p \) which would relate the change in real power effect on the voltage stability is proposed. Buses at which the capacitors have to be placed to improve the voltage stability are identified.

The algorithms which have been proposed for radial power systems can be suitably modified and can be applied to meshed systems. The effect of real power on the L-Index has to be studied in more detail. We can a develop an index which can predict the maximum column element in a given row of L-Index sensitivity matrix \(L_q \) with out looking at the matrix.

References

Definition & Classification of Power System Stability (May 2004), IEEE Transactions on Power Systems

Gubina F. & Strmcnik B(May 1995)B Voltage Collapse Proximity Index Determination Using Voltage Phasors Approach,IEEE transactions on power systems,

Prabha Kundur, John Paserba, Venkat Ajjarapu, Gran Andersson, Anjan Bose, Claudio Canizares, Nikos Hatziargyriou, David Hill, Alex Stankovic, Carson Taylor, Therry Van Cutsem and Vijay Vittal.

Sami Repo(September 2001) Online voltage Stability Assessment of Power System - An Approach of Black-Box Modelling, Publications 344, Tampere University of Technology,

G. Rajendar from KITS, Warangal, India. He is working as Associate Professor in the Department of Electrical. His areas of interests are Voltage stability, and Applications of Power Electronics to Power Systems. Presently he is Research Scholar at JNTU, Hyderabad India in Electrical and Electronics Department.

Dr. Basavaraja Banakara, ME, MBA (HR), PhD (NITW). He is working as Vice Principal & HOD, GITAM UNIVERSITY, Hyderabad. His areas of interests are Power Electronics Applications in Power Systems, Power System Stability Control.
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request from readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich’s Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar