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Abstract:   

Multilevel sequences find more and more applications in modern modulation schemes [4QPSK, 

8QPSK,16QAM..]  for the 3G ,4G system air interface [1,2].Furthermore, in modern cryptography they are also 

widerly used. It is also interesting to point out that the length L of these sequences are composite numbers( 

L=NS),that means the sequence can be easily implemented by interleaving S subsequences, each of length 

S.Therefore, the methods to develop multilevel sequence with interleaved structure draw a lot of attentions [3, 

4]. In this contribution, a method for design and analysis of ternary m-sequences with interleaved structure is 

presented, based on the d-transform, Which turns out to be a very effective and versal tool for this purpose. 

Simulations have been made to verify the theory. 

We first introduce d-transform and its properties and then work out the procedure to design an interleaving 

sequence in d-transform.  

Keywords: d-transform,q-ary sequences, interleaved sequence. 

 

1. Introduction 

For 3G,4G telecommunication the benefit of emplyoing the multilevel sequences in high order modulation 

scheme is obvious:It increase the system throughput[1,2].However,In such applications like network security and 

cryptography, multilevel (q-ary)  sequences with good static properties ,high-linear complexity and of long 

periods L are required[5,6,7].Understanding,presenting and generating these sequences require extensive 

mathematical knowledges like:Galois field arithmetic,time and frequency domain signal transformations..and so 

on, which are very abstact and therefore not easily to master.Hence ,we see the need to apply some simpler and 

more intutive approach,namely d-Transform.  In this paper, for the sake of simplicity ,we first represent the new 

method for designing the ternary m-sequences with interleaved structure by means of d-transform.D-

transformation is choosen because it is nothing but time multiplexing of bits,which is already quite familiar with 

telecommunication engineers  in digital transmission.It is therefore easily transformed into hardware 

implementation. Based on that procedure the the designing of another q-ary sequeces can be followed esealy.(To 

complete this complicated problem,we will extend this procedure for desinging the most useful sequences:the 

nonlinear and cascarded interleaved sequences in the next contributions).The paper is organized as follows. 

In the session II, we introduce the concept of d-Transform and its application to interleaved sequences. Next, in 

the session III, the case of ternary interleaved sequence is investigated in details. It is show in 3.1 how to 

represent ternary interleaved sequence in d-Domain. In 3.2 the procedure for construction of these sequences is 

explained.  

Furthermore, for better  understanding and wider view,a comparison with the well known Trace function is 

given.  

To complete this paper, some statistic properties of the constructed sequence are investigated in session 4. 

 

2. D-Transform and Interleaved sequences 

In the literature, the Trace function representation  based on α, a primitive element of the finite field  

GF(qn) ,q being a primitive integer, has been widely used to investigate the interleaving structure [4,5,7]. In this 

contribution we will show that, the D-transform representation(simple mathematical tool to convert the 

sequences into polynomials) is not only effective but some time advantageous. As an evidence, we take the case 

when the length of the sequence L # q
n
-1, with q being a primitive integer where the trace function is not defined 
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and therefore cannot be applied [8,9]. However, the polynomial representation is still applicable 

[10,11].Futhermore,this approach( d-transform) is quite convenient to present the time multiplexed structure like 

interleaved sequences. In fact,  the  interleaved sequences (both linear and nonlinear) with good statistic 

properties have been investigated and published as early as 1985 by IIT DELHI fellows [12].Q.GONG et al[5] 

have given a systematic treatment of interleaved structure in 1995!In 2005 a more generalized method to analyze 

the interleaving structure of nonlinear binary sequence in d-domain is presented[13] In 2013 a rigorous 

mathematical analysis of interleaved sequences over finite field is given by Jing He[14] . 

 The d-transform of a sequence{bn} over GF(q) is denoted by D[bn] or F and defined by: 

 D[bn]= F = ∑
=

m

i

i

idb
0

, bi ∈{GF(q)}  (l) 

Example l: Lets {bn}={2 2 0 2 1 1 0 1}, d-transform of {b,} is D[bn] = 2 + 2d + 2d
3
 + d

4
 + d

5
 + d

7
. The inverse 

transform of D is D
-1

 = {bn}. 

Thus, the d-transform of the sequence will have the form of a polynomial in d over GF(q) and has been 

conveniently used in signal and system analysis in data transmission and processing [10.11]. 

Some properties of polynomial over GF(q) (where q is a prime number) are now summarized. 

The exponent of the polynomial Q(d) is the minimum value of l such that Q(d) divided 1-d
l
, i.e., (1-d

l
)/Q(d) is a 

polynomial of finite degree. An irreducible polynomial of degree m is primitive or of maximum exponent if its 

exponent is q
m

- 1. Given a polynomial Q(d) of order m, its reciprocal polynomial is d
m

Q(1/d) and it is known 

that reciprocal polynomials of irreducible polynomials are themselves irreducible and that reciprocal 

polynomials of primitive polynomials are themselves primitive. 

The d-transform of a periodic sequence is of the form R(1)/( 1-d
l
), where l is the period of the sequence and R(d) 

is a polynomial of degree less than l in d over GF(q). In general, it can be show that, the d-transform of a 

periodic time series is of the form p(d)/Q(d) where both p(d) and Q(d) are polynomials over Galois Field. If p(d) 

and Q(d) are relative prime, the period of the time series represented by p(d)/Q(d) is the exponent of Q(d). 

The d-transform of the generator sequence {bn} of a linear feedback shift register (LFSR) is then given by: 

 b(d) = S(d)/g(d)     (2) 

where g(d) of degree n is the generating polynomial of a LFSR and S(d) of degree ≤ n–1 specifies the initial 

condition corresponding to a particular shifted version of {bn}. When g(d) is primitive, the LFSR sequence is an 

m-sequence and there are p
n
-l polynomials S(d) corresponding to p

n
-1 values of the initial states of that LFSR. 

The d-transform pairs are given in [10,11]. The construction procedure based on d-transform for creating the non 

linear binary interleaved sequences is given in [12,13,].This contribution extends the result of [13]| for the case 

of ternary sequences. Here we show how to apply procedures for ternary cases and will discuss the two 

procedures: 

 - Procedure l: Expanding the subsequence.  

 - Procedure 2: Decomposition of m-sequences through decimation. 

These procedures are applicable for ternary sequences, provided that the corresponding ternary d-transform is 

used.[10,11]. 

3. The procedures to construct the q-ary interleaved sequences [12,13] 

- 1
st
 step: find out the Interleaving order 

S

PI  . 

- 2
nd

 step: Generating the interleaved sequences. 

3.1 First step: 
S

PI  determination. This can be carried out by two algorithms: Expanding and  

Decomposition. 

3.1.1 Expanding 

Let {bn} be an m-sequence generate by g(d) of degree n, length L(composite integer) with: 

 L = 3
n 
- l = 3

l*m 
- l = S.(3

m 
- l) = S.N, n = l.m, S = (3

n 
- 1)/(3

m
-1) 

Let b(d) be d-transform of {bn} given by (2) 
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we always can express b(d) as: 

 b(d) = ∑
−

=

1

0

)(
S

i

S

ii dFd    (3) 

with Fi(d) is a subsequence generated by g1(d) of degree m, length N and be represented by d-transform: 

 Fi(d) = 
)(

)(

dg

dS

l

i
, i = 0, 1, …, S-1  (4) 

With Si(d) specifies the initial state of the subsequence and gl(d) be the generating polynomial of that 

subsequence respectively. 

This follows immediately from the properties of d-transform since {bn} can be constructed by interleaving S 

phases of {Fn}. The particular phases of {Fn} in that interleaving can be determined through 3-steps. 

1
st
 step: expanding the subsequence Fi(d) by S times (inserting S-1 zeros between two consecutive bits of Fi(d) ), 

in d-transform, it is equivalent to replace d with d
S
. 

 Fi(d
S
) = 

)(

)(
S

l

S

i

dg

dS
   (5) 

2
nd

 step: Express d-transform of bn in term of interleaving of Fi(d). 

or (inserting S different phases of Fi(d) to create b(d)) 

 b(d) = ∑∑
−

=

−

=

=

1

0

1

0 )(

)(
)(

S

i
S

l

S

ii
S

i

S

ii
dg

dS
ddFd   (6) 

Then, put the numerator of (6) as: 

 G(d) =∑
−

=

1

0

)(
S

i

S

i

i
dSd    (7) 

Substituting (6) into (2) we obtain: 

 G(d) = 
)(

)()( 1

dg

dgdS S
⋅

   (8) 

3
rd

  step: - put d
S
 = D 

- Finding out the phase shifts )(
)(

)(
DF

Dg

DS
i

l

i
=  

And regrouping b(d) as: 

 b(d) = ∑
−

=

1

0

)(
S

i

i

i
DFd    (9) 

Comparing d
i
 F(D) with d-transform table for example: table l, we can easily find out the interleaving order 

S

PI  

This procedure is best illustrated by the following example. 

Example 2: Let g(d) = 1 + d
3
 + 2d

4
. n = 4, m = 2, L = 80, N = 8, S = 80/8 = 10 

 g1(d) = 1 + d + 2d
2
. 

 F1(d
S
) = 

)(

)(

)(

)(
10

10

dg

dS

dg

dS

l

i

S

l

S

i
=   (10) 

 G(d) = 
)(

)()( 10

1

dg

dgdS ⋅
   (11) 

 If no particular phase of b(d) is interested, we can put: S(d) = 1 for simplicity without loss of generality. 

Then: 

 G(d) = 
43

201010

1

21

21

)(

)(

dd

dd

dg

dg

++

++
=   (12) 
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 G(d) = d
16

 + d
15

 + d
14

 + d
13

 +2d
12

 + d
10

 + 2d
9
 + d

8
 + d

7
 + d

6
 + d

4
 + 2d

3
 + 1  

b(d)             =  
2010

346789101213141516

10

1 21

1 + 2d + d + d + d + d + d + d + d + d + d + d + d

)(

)(

dddg

dG

++

= (14) 

put d
10

 = D and rearrange b(d) as follow: 

b(d) = 
2

98765432

21

(2)d + d (1) + (1)d + D)d(1 + (D)d + D)d(1 + D)d(2 + (2D)dD)(1

DD ++

+++++
        (15) 

Comparing (it) with table 1, we can see that (15) is d-transform{bn}:an interleaving of 10 component sequences 

{an}generated by g1(d)=1 + d + 2d
2. 

The interleaving order (shift sequence[7,15]) is : 

             IP = {5, “∞”, 2, 0, 5, 6, 5, 7, 7, 3}                                                                                  (16) 

where ∞ represents the all zero sequence position 

g1(d) Subsequences Binary form Phase index Si(d) S(D) 

1 + d + 2d
2
 T

0
W 2 2 0 2 1 1 0 1 0 2 + d 2 + D 

 T
1
W 2 0 2 1 1 0 1 2 1 2 + 2 d 2 + 2D 

 T
2
W 0 2 1 1 0 1 2 2 2 2d 2D 

 T
3
W 2 1 1 0 1 2 2 0 3 2 2 

 T
4
W 1 1 0 1 2 2 0 2 4 1 + 2d 1 + 2D 

 T
5
W 1 0 1 2 2 0 2 1 5 1 + d 1 + D 

 T
6
W 0 1 2 2 0 2 1 1 6 d D 

 T
7
W 1 2 2 0 2 1 1 0 7 1 1 

1 + 2d + 2d
2
 T

0
Z 2 1 0 1 1 2 0 2 0 2 + 2d 2 + 2D 

 T
1
Z 1 0 1 1 2 0 2 2 1 1 + 2d 1 + 2D 

 T
2
Z 0 1 1 2 0 2 2 1 2 d D 

 T
3
Z 1 1 2 0 2 2 1 0 3 1 1 

 T
4
Z 1 2 0 2 2 1 0 1 4 1 + d 1 + D 

 T
5
Z 2 0 2 2 1 0 1 1 5 2 + d 2 + D 

 T
6
Z 0 2 2 1 0 1 1 2 6 2d 2D 

 T
7
Z 2 2 1 0 1 1 2 0 7 2 2 

Table 1: d-transform of component m-sequences 

3.1.2 Decomposition of ternary interleaved m-sequence {bn} :This decomposition based on the decimation of 

{bn} by S to find out the way in which the subsequences are time multiplexed(interleaved) 

The decomposition can be carried out by two methods: 

The d-transform method, the trace function method . 

3.1.2.1 The d-transform method 

Let consider the ternary m-sequence {bn} of length L: q
n
-l with q: a primitive integer like {0,1,2,5,7,...} and n = 

m.k. Then L = N.S : q
m.k

-1. 

It has been show [12.13] that in this case, {bn} can be constructed by interleaving (N-l) component subsequences 

each of length N: q
m

-l and one Null sequence. The subsequences can be obtained by decimation of {bn} by S. 

When the decimation starts at the first bit, we will obtain the subsequence: 

 },...,,{
)23(0 SS maaa

−
                                                                                                      (17) 
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Similarly, we'll obtain the subsequence },...,,{
1)23(11 +−+ SS maaa when the decimation start at the (t+1)

th
 bit. 

Thus, on the time-domain, these subsequences (arrange in column) can be considered as S time-multiplexed 

sequences: }}...{}{{
1)23(1 −−+ SnnSnS maaa  into S time slots (fig 1): 

      

1)13(1)23()23(

121

110

...

............

...

...

−−+−−

−+

−

=

SSS

SSS

S

mmm aaa

aaa

aaa

M
                                                  

         = }}...{}{{
1)23(1 −−+ SnnSnS maaa                                                 (18) 

T time slots 

    }{}{}{}{
1)23(21 −−++ SnnSnSnS maaaa  

Fig l: Time multiplexed sequences. 

The order into which the subsequences are multiplexed is in fact the Interleaving order 
S

PI . 

Now we can just look up at table 1 and find out the corresponding Si(d
S
) for the subsequences (in column) and 

then obtain 
S

PI . 

Example 3 

 2: Let n = 4, m = 2 and let α be a primitive element of GF(3
4
) with primitive polynomial. 

b(d) = 1 + d
3
 + 2d

4
 over GF(3). Let {bn} denote the m-sequence generated by b(d) 

{bn} = {1 0 0 0 1 0 0 2 1 0 1 1 1 2 0 0 2 2 0 1 0 2 2 1 1 0 1 0 1 2 1 2 2 1 2 0 1 2 2 2  

             2 0 0 0 2 0 0 1 2 0 2 2 2 1 0 0 1 1 0 2 0 1 1 2 2 0 2 0 2 1 2 1 1 2 1 0 2 1 1 1} 

Decimation of bn by S = 10, we obtain: 

 {an} = {bn*10} and rearrange is as (18) 

1112012112

1202022110

2011001222

0210020002

2221021221

2101011220

1022002111

0120010001

=M  

- Compare the column of M with Table 1, we have the interleaving order or (shift sequence) as below: 

S

PI = {4, 6, 6, 2, 5, “∞”, 2, 0, 5, 6} 

where ∞ represents the all zero sequence position 

Note that 
S

PI  is fully identical to the result calculated by trace funtion below. 

3.1.2.2 The Trace function method 

In [15,] the relation between power offield element α and d-transform is again very clear explanned. 
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Since both representation (via power of α and d-transform) are quite equivalent ,the interleaving order (in which 

the component sequences are placed) can be determined by two methods. 

a. Power of α (Trace function) representation 

In this case, the interleaving order is determined as follows: 

Which m,n are positive integer, α is a primitive element of the finite field GF(3
n
) and  

 S = L/N = (3
n
-1)/(3

m
-1) 

)(xTr
n

m
is the trace function and with n divisible by m, maps GF(3

n
) into subfield GF(3

m
) [9] according to the 

relation: 

∑
−

=

=

1

0

3)(
m

n

k

n

m

mk

xxTr  

The interleaving order PI  is: PI  = 
0

PI , 
1

PI , … , 
1−S

PI  

with: 





−==∞

−==
=

1,...,1,00)(

23,...,1,0)(

SjTr

iTri
I

jn

m

mSijn

mj

P
α

αα
 

Example 4: 

Let trace function from GF(3
4
) onto GF(3

2
) with primitive polynomial 10012: f(x) = x4 + x + 2 with: n = 4,L = 

3
4
-1 = 80; m = 2, N = 3

2
-1 = 8, S = L/N = 10 

Calculating the trace function of x from GF(3
4
) into GF(3

2
) we obtained: 

9
1/

0

32

)( αααα +== ∑
−

=

mn

k

n

m

k

Tr  

α
Si

 table: 

i = 0 � α
0
 = 1 

i = 1 � α
10

 = 1 + 2α + α
2
 + α

3
 

i = 2 � α
20

 = α + 2α
2
 + 2α

3
 

i = 3 � α
30

 = 1 + α + 2α
2
 + 2α

3
 

i = 4 � α
40

 = 2 

i = 5 � α
50

 = 2 + α + 2α
2
 + 2α

3
 

i = 6 � α
60

 = 2α + α
2
 + α

3
 

i = 7 � α
70

 = 2 + 2α + α
2
 + α

3
 

- With j run from 0 to S-1 we get: 

j = 0 � Tr(α
0
) = Tr(1) = 1 + 1 = 2 = α

40
 � 

0

PI = 4 

j = 1 � Tr(α
1
) = α + α

9
 = 2α + α

2
 + α

3
 = α

60
 � 

1

PI = 6 

j = 2 � Tr(α
2
) = α

2
 + α

18
 = 2α + α

2
 + α

3
 = α

60
 � 

2

PI = 6 

j = 3 � Tr(α
3
) = α

3
 + α

27
 = α + 2α

2
 + 2α

3
 = α

20
 � 

3

PI = 2 

j = 4 � Tr(α
4
) = α

4
 + α

36
= 2 + α + 2α

2
 + 2α

3
 = α

50
 � 

4

PI = 5 

j = 5 � Tr(α
5
) = α

5
 + α

45
 = 0 � 

5

PI = ∞ 

j = 6 � Tr(α
6
) = α

6
 + α

54
 =  α + 2α

2
 + 2α

3
 = α

20
 � 

6

PI = 2 

j = 7 � Tr(α
7
) = α

7
 + α

63
 = 1=α

0
� 

7

PI = 0 

j= 8 � Tr(α
8 
)  =  α

8 
+ α

72 
 =  2 + α + 2α

2
 + 2α

3
 = α

50
 � 

4

PI = 5   
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j= 9 � Tr(α
9 
)  =  α

9
 +α

81
= 2α + α

2
 + α

3
 = α

60
 � 

1

PI = 6 

- The interleaving order is: 

IP = {4, 6, 6, 2, 5, ∞, 2, 0, 5, 6}   

4. The properties of ternary interleaved sequence:Although The statistic properties of interleaved 

sequence derived from p-ary m –sequences have been thoroughly discucessed, we will show some resutls 

for demonstration. 

4.1 Correlation function: 

Cross-correlation function (CCF): For generality we discuss the CCF Ra,b(τ). First, If a = b, we have 

autocorrelation function (ACF): Ra(τ)  

Let a,b ∈ A be two ternary sequences of the sequence set A. Both a,b are periodic sequences of length L = 3
n
-1. 

The CCF between a,b: Ra,b(τ) is defined as: 

∑
−

=

−
+

=

1

0

, )(
L

i

ab

ba
iiR τ

ωτ , 0 ≤ τ < L   (22) 

With 







=

3

2
exp

π
ω j   and (i + τ) is the addition mod L. 

Similar, the ACF of the sequence a is 

∑
−

=

−
+

=

1

0

)(
L

i

aa

a
iiR τ

ωτ , 0 ≤ τ < L   (23) 

For the ternary sequences, we have the following remark 

Remark 1 : Let {ai} be a PN Sequence over GF(3
n
) with period L = 3

n
-1 and Nc, the ACF is given by: 

)13mod(0

)13mod(0

1

13
)(

−≠

−=





−

−
=

n

nn

aR
τ

τ
τ   (24) 

if and only if the number Nc of times that the symbol c∈GF(3) occurs in one period of the difference sequence 

{ai-ai+τ} of sequence {ai} and its time-shift sequence { ai+τ }, is: 

2

1

0

3

3

13

1

1

1

=

=

=







 −

=

−

−

−

c

c

c

ifN
n

n

n

c
     (25) 

Example 5: Let b(d) = 1 + d
3
 + 2d

4
 ,  

{bn} = {1 0 0 0 1 0 0 2 1 0 1 1 1 2 0 0 2 2 0 1 0 2 2 1 1 0 1 0 1 2 1 2 2 1 2 0 1 2 2 2   

             2 0 0 0 2 0 0 1 2 0 2 2 2 1 0 0 1 1 0 2 0 1 1 2 2 0 2 0 2 1 2 1 1 2 1 0 2 1 1 1} 

ACF of the sequence b is 

∑
−

=

−
+

=

1

0

)(
L

i

bb

b
iiR τ

ωτ , 0 ≤ τ < L  

Rb(τ) = {80, -1, -1, -1, -1, -1, -1, -1,-1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -l, -1, -1, -1, -1, -1, -1, -1, -1, -

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1) 

with a(d) = 1 +d + 2d
2 
+ 2d

3
 + 2d

4
, 

 {an} = {1 0 0 0 1 2 2 1 1 1 0 0 2 2 0 1 0 0 1 0 1 0 2 2 1 0 2 1 2 1 1 0 1 1 1 1 2 1 0 1 

              2 1 0 1 2 1 1 2 2 2 0 0 1 1 0 2 0 0 2 0 2 0 1 1 2 1 1 2 1 2 2 0 2 2 2 2 1 2 0 1} 

The CCF between a,b: 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.5, No.8, 2015 

 

100 

∑
−

=

−
+

=

1

0

, )(
L

i

ab

ba
iiR τ

ωτ , 0 ≤ τ < L  

Ra,b(τ) ={-1, 8, -10, 8, 26, -19, -1, -19, 8, -10, -1, -1, -1, -19, -10, -1, 8, -1, -1, -10, -10, -10, -l,-1, 17,-1,8, 8,-1, 8,-

10,-19, 8,-1,-10,-1.-10,-1, 8, 8, 8,-1, 8, -1,17,8,-1, 8,-1,-10,-1,8, -10, 8, 8, -10, -1, 8, -1, -10, -1, -1, -1, -10,17,8, -

10, -1, -10, 8, 8, 8, -1, 8, 8, 8, -1, -10, -10, 8} 

 

 

Fig 2: The CCF diagram of example 5 

4.2  Distribution : the uniform  allocation of  q-ary digits in the sequence is another  important property of q-ary 

m-sequence and  has been discussed very clearly in [6,12,13,14...].Overall speaking, the distribution of q-ary 

msequences are very good. 

5. Conclusion and  future work 

In this paper, the procedure to construct the ternary interleaved sequences having ideal ACF and good 

distribution is presented. This procedure is based on d-transform which is applicable for all periodical sequences 

with the period L being an integer. This is clearly the big advantage as compared to the trace function method, 

which is valid only for L = q
n
 - 1. The basic concept of this procedure is rather simple:we derive the interleaving 

order (shift sequence) of the component sequences {an} to create the composite sequence {bn} based on the time 

multiplexed concept which is known to every engineer! 

The result are fully identical with other well known methods.In order to get a clear picture of ternary interleaved 

m-sequence ,some statistic properties of the constructed sequence are investigated. It is shown that the statistic 

properties of ternary interleaved sequences are very good in term of correlation function and distribution. 

Howerver,these merits are far from enough for the sequences to be used in such application like 

:cryptography,which requires among other the non-linearity!Therefore, many non-linear interleaved 

sequences,generated by different  kinds of shift registers are proposed recently [3,5,6,12,16,17,18,19,20...]. 

In our future reseach,we will focus on the following directions: 

- algorithms to generate non-linear sequences..( to make shift registers sequences non linear! ) 

- analysis of the characteristics of the newly generated sequences 

- methods to attack these sequences... 

- hardware implementation of the above mentioned sequences.. 

We hope to present the results in the new contributions.The authors express their deep sense of gratiude to the 

unknown reviewers for their encouraging comments and instructions. 
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