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Abstract 

In practice there exist many methods to solve unconstrained, constrained and mixed quadratic and geometric 

programming problems. In this paper an attempt is made to develop unconstraint Q – G programming problem 

by combining quadratic programming problem and geometric programming problem. This model is solved using 

the technique of geometric programming problem. A hypothetical example is considered to illustrate the model.      
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1. Introduction 

In practice various techniques are available to solve unconstrained quadratic problem. The objective of quadratic 

programming is to maximize or to minimize the quadratic objective function. Let decision variables 
x

 and the 

coefficients of objective function, 
nC R∈

and D  be symmetric matrix of real numbers of order n n×  then the 

unconstrained    quadratic programming problem is define as follows: 

' '1
( )

2
Minimize f x C x x D x= ⋅ + ⋅ ⋅

 

Here 
'x D x⋅ ⋅

 is in quadratic form and 
( )

ij n n
D d ×=

 is a symmetric matrix.  

Geometric programming is a technique for solving a special case of nonlinear problems. Duffin, Peterson and 

Zener [2] published a book “Geometric Programming: Theory and Applications” that started the field of 

Geometric Programming as a branch of nonlinear optimization with many useful theoretical and computational 

properties of Geometric Programming, to a large extent the scope of linear programming applications and is 

naturally applied to several important nonlinear systems in science and engineering. Several important 

developments of Geometric Programming are in the area of mechanical and civil engineering, chemical 

engineering, probability and statistics, finance and economics, control theory, circuit design, information 

technology, coding and signal processing, wireless networking, etc. took place in the late 1960s to early 1970s. 

There are several books on nonlinear optimization that have a section on Geometric Programming, e.g., M. 

Avriel, [5], C. S. Beightler  [1], G. Hadley [4], Taha [6], etc. However, many researchers felt that most of the 

theoretical, algorithmic and application aspects of Geometric Programming had been exhausted by the early 

1980’s, the period of 1980–98 was relatively quiet. After the revolution in the electronic field, over the last few 

years, Geometric Programming started to receive renewed attention from the operations research community.   

In 1964, R. Duffin and C. Zener [3], have defined unconstrained Geometric Programming in the following 

manner: 

1

1

( )

,

1,2,3,......,ik

N

k

k

n
a

k k i

i

Z f x U

Where

U C x for k N

=

=

= =

= =

∑

∏
     [1] 

Here it is assumed that the coefficient 
0kc >

 and N is finite. The exponents ika
 are unrestricted in sign i.e. it 

may be positive or negative. 

A model is considered  in which the concept of quadratic programming problem and geometric programming  is 

combined, is defined as Q – G model. 

 

2.Assumuptions 

In the present study following assumptions are made to derive a solution to the quadratic-geometric 
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programming. 

1. The coefficients are unrestricted in sign i.e. 
0 0 ; 1,2,.....i ic or c i n≥ ≤ =

  

2. N is finite i.e. number of terms is finite.  

3. The number of terms 1N n= +  where n  is number of variables. 

4. 
( )

ij n n
D d ×=

 is a symmetric matrix. 

 

3. Mathematical Model and  Procedure: 

Let  

1

x

 
 
   and 

nC R∈
 and D is any real n n× matrix then unconstraint Q - G programming problem is 

defined as under: 

( )
'

'

1 1 1

1 1 1 1

2

1

2

n n n
iji

i i ji i j

Minimise Z f x C D
x x x

dc

x x x= = =

     
= = + ⋅ ⋅     

     

= +∑ ∑∑
    [2] 

The above problem can be converted in to geometric programming problem as under: 

( )
1

1

,

1,2,3,......,ik

N

k

k

n
a

k k i

i

Z f x U

Where

U c x for k N

=

=

= =

= =

∑

∏
 

This problem will be considered as the primal problem. Here Z  is in the polynomial form and it is assumed that 

all variables ix
 are strictly positive or negative. The requirement 

0ix ≠
 plays an essential role in the derivation 

of the results. 

For minimum value of the objective function, the first order partial derivative of Z  must be zero, now 

differentiate  Z  with respect to 
; 1,2,....kx k n=

 

 

1

1'

1

( ) 0, , 1,2,3,.....,ik ik

N
k

kr k

nN
a a

k ik i i

k i r

Uz

x x

c a x x for r i n

=

−

= ≠

∂∂
=

∂ ∂

= ⋅ ⋅ = =

∑

∑ ∏
    [3] 

Since, each 
0ix ≠

 

1

1
0 , 1, 2,3,....., , 1, 2,....,

N

ik k

kr r

z
a U for k N i n

x x =

∂
= = = =

∂
∑

    [4] 

Let  
*z  be the minimum value of  Z  It is necessary that 

* 0,z ≠
 since each 

* 0rx ≠
 and Z  is a polynomial 

defined as 

 

*

*

k
k

U
y

z
=

          [5] 

Which shows that  
0ky ≠

 and 

 

* *

1 1

1
N N

k k

k k

y y z
= =

 
= = 

 
∑ ∑Q

       [6] 

Thus the value of ky
 represents the relative combination of the 

thk  
term kU

 to the optimum value of the 
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objective function 
*.z  

Now the necessary conditions can be written as  

 

*

1

0 ( 0, 0, 1,2,.... )
N

rk k r

k

a y z x r n
=

⋅ = > ≠ =∑
     [7] 

and 

 1

1, ( 0, 1,2,3,.... )
N

k k

k

y y k N
=

= ≠ =∑
     [8] 

These conditions [7] and [8] are known as orthogonality and normality conditions. By using matrix inversion 

method, these conditions will give a unique solution for ky
, if (n+1) = N and all the equations are independent. 

If N > (n+1) then the problem becomes more complex because the values of ky
 are not unique. However, it is 

possible to determine ky
 uniquely for the purpose of minimizing .Z  

Now, suppose that 

*

ky
 are the unique values determined from the equations given in the results [7] and [8]. 

These values are used to determined the values of 
*z  and 

*

rx
 for 

1, 2,3,....r n=
 as under, 

Consider, 

 

( )
*

1
* * *

1

1

N

k

k

N
y

k

k

z z y=

=

 ∑
= = 

 
∑Q

        [9] 
*

* 1

*
1

r

ir

y
n

a

r in
i

r r

C x

z
y

=

=

 
⋅ 

 =
 
 
 

∏
∏

        [10] 
* *

*

*
1 1 1

k k

ik

y y
N N n

ak
i

k k ik

C
z x

y= = =

    
 =    
     

∏ ∏ ∏
       [11] 

*
*

1*

*
1 1

N
k

ik k

k

y
N n a y

k
i

n ik

C
z x

y
=

⋅

= =

 ∑ 
 =  
    

∏ ∏
        [12] 

*

* *

*
11

0

ky
N N

k
ik k

kk k

C
z a y

y ==

   
= ⋅ =   

  
∑∏ Q

      [13] 

Thus, the value of 
*z  is determined from result [13] as soon as all 

*

ky
 are determined. 

Now, for known values of 

*

ky
 and 

*z the value of 

*

kU
 can be determined from 

* * *

k kU y z= ⋅
 

Since 

( )* *

1

1, 2,3,....,
ikan

k k i

i

U C x for k N
=

= =∏
 simultaneously solution of these equations should give 

* 1,2,3,... .ix for i n=
 

The procedure described hare shows that the solution to the original polynomial Z  can be transformed in to the 

solution of a set of linear equations in 
.ky
 Observed that all 

*

ky
 are determined from the necessary conditions 

for a minimum. However, it can be shown that, these conditions are also sufficient. 
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5. Conclusion 

Hypothetical Problem: 

Consider the following problem of Q - G Programming with three decision variables and four terms; 

2

1 2 1 2

2 3 5
M i n i m i s e Z

x x x x
= + −

 
The above problem can be written as 

13 2311 21 12 22

1 0 0 2 1 1

1 2 1 2 1 2

1 2 3

1 1 2 2 1 2 3 1 2

2 3 5

a aa a a a

Minimise Z x x x x x x

U

c x x c x x c x x

− − − −= ⋅ ⋅ + ⋅ − ⋅

=

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

+U +U

 
Then by comparison, following matrices are obtained. 

( ) ( )1 2 3 2 3 5c c c = −
    and       

11 12 13

21 22 23

1 0 1

0 2 1

a a a

a a a

  − − 
=   

− −    

Here 
1, 2i =

 and 
1, 2,3k =

 so the case in which N = (n+1) is to be considered.  Using orthogonality and 

normality conditions  
3

1

0
ik k

k

a y
=

⋅ =∑
      and   

3

1

1,
k

k

y
=

=∑
 

Following equations are obtained 

11 1 12 2 13 3

21 1 22 2 23 3

1 2 3 4

0

0

1

a y a y a y

a y a y a y

and y y y y

⋅ + ⋅ + ⋅ =

⋅ + ⋅ + ⋅ =

+ + + =
     

The above equations can be represented as 

 

1

2

3

1 0 1 0

0 2 1 0

1 1 1 1

y

y

y

− −     
    

− − =    
    
      

Now, by using matrix inversion method the values of dual variables can be determined as under, 

1

2

3

1 1 2 0

1 0 1 0

2 1 2 1

y

y

y

     
     

= ⋅     
     − − −      

1

2

3

2

1

2

y

y

y

   
   

∴ =   
   −    

This is a unique solution given as 

 
* * *

1 2 32, 1, 2y y y= = = −
 

Now,  
*

3
*

*
1

2 1 2
2 3 5

2 1 2

0 .4 8

ky

k

k k

c
z

y=

−

 
=  

 

−     
= ⋅ ⋅     

−     

=

∏
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From the equation 

* * *

k ku y z= ⋅
 it can be deduced that, 

1 2 30.96, 0.48, 0.96u u u= = = −
 

Which will give the optimum solution to the primal problem as under: 
* * *

1 22.0833, 2.5 0.48.x x and z= = =
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