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Abstract 

The growing complexity of the software systems being developed and the use of different methodologies 

indicate the need for more computer support for automating software development process and evolution 

activity. Currently, Computer-Aided Software Engineering (CASE), which is a set of software systems aimed to 

support set of software process activities, does this automation. While CASE tools prove its importance to 

develop high quality software, unfortunately CASE tools doesn’t cover all software development activities. This 

is because some activities need intellectual human skills, which are not currently available as computer software. 

To solve this shortcoming, Artificial Intelligence (AI) approaches are the ones that can be used to develop 

software tools imitating these intellectual skills.  

This paper presents the definition of Intelligent Computer Aided Software Engineering (I-CASE). The definition 

encompasses two steps. The first step is a clear decomposition of each basic software development activity to 

sub activities, and classify each one of them whether it is an intellectual or procedural job. The second step is the 

addressing of each intellectual (un-automated) one to proper AI-based approach. These tools may be integrated 

into a package as an Integrated Development Environment (IDE) or could be used individually. The discussion 

and the next implementation step are reported. 
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1. Introduction 

The aim of Software Engineering (SE) is to manage the development of software product via structured and 

systematic approach known as software development process. The software development process is a repeatable 

and predictable formation that comes in several different models or methodologies and used for improving the 

productivity and quality of producing software. Each model of software development process has its own 

organizing and coordinated set of activities that should be performed by engineers, managers and technical 

writers to produce the aimed software. We can name assorted common software development processes that are 

in use today, like a waterfall, prototyping, iterative and incremental development, spiral development, rapid 

application development, Agile, extreme programming (XP), Lean, and Scrum. No matter how they are 

coordinated in their software development model, the principle or basic activities that should be performed for 

software manufacturing are shared among these models, which are Requirement engineering, Software 

Architectural Design, Implementation, Software Testing, Software Documentation, Training and Support, and 

Maintenance (Sommerville, 2010) (Pressman, 2010). 

Currently, SE is attaining effective techniques like unified modelling language (UML), programming languages 

like Java & C#, and standardization. Furthermore, Software development is typically achieved with a support 

from Computer-Aided Software Engineering tools, CASE tools for abbreviation. CASE is a set of software 

systems, which aimed to automate (fully or partially) some of software development process activities, 

especially on a large scale or complex projects. An example of the set of software development process activities 

included in CASE are Data dictionary to manage design entities, Graphical editors to develop system model, 

Graphical User Interface (GUI) builder to build a user interface, Debuggers to locate the program’s fault, and 

automated translators (compilers and interpreters) to generate new versions of a program. These tools are 

available, as separately or as a package like Rational Rose, Figure1 shows the typical CASE toolset architecture 

(Sommerville, 2010) (Pressman, 2010). 
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Figure1: CASE Toolset Architecture  

Traditionally, to help project managing, CASE tools are classified using three criteria, namely: functional-type, 

process activity, and integration environment, which all illustrated in Figure2-a, Figure2-b, and Figure2-c 

respectively (Sommerville, 2010).  

  
(a) CASE Tools Classification based on 

using Functional Type Criteria 

(b) CASE Tools Classification based on 

Process-Activity Criteria 

(c) CASE Tools Classification based on 

Integration Environment Criteria 

Figure2: Classifications of CASE tools  

Easy to note that the use of CASE software tools has led to considerable advancement in the software industry; 

in that it helps getting product of high quality, minimum faults, and with time and cost competent manner. Yet, 

not all of the activities of software development process are supported by CASE software technology. This is 

because some software process activities in the software engineering need creative thought to be achieved, which 

not easy to be automated by software (Harman, 2012). 

To solve this problem, we suggest in this paper, the using Artificial Intelligence (AI) approaches to develop 

software tools that imitate human intellectual skills like creativity, Natural Language Processing (NLP), and 

inference. I-CASE, which stands for Intelligent Computer Aided Software Engineering, is the name we give to 

this suggested technology.  

This paper briefly reviews the previous AI works for SE. Using this reviewing, we are going to show what AI 

approaches can be used to develop I-CASE tools. The paper concludes the suggested I-CASE tools as a solution 

for the criticisms of CASE tools and an overview of the solution’s elements.  

1. AI in SE  

AI and related topics, viz: Knowledge Engineering and Knowledge Based Systems (KE & KBS), Knowledge 

Management (KM), Expert Systems (ES), Fuzzy Logics (FL), Artificial Neural Networks (ANN), and others 

share with SE same goals. The first shared goal is the solving of a complex problem via utilizing similar 

sequence, namely: problem definitions, discovering problem features, searching for already defined solution of 

analogous problem, and conclude result. The second shared goal is that both AI and SE handle the modelling of 

real world objects like process models, business processes, or expert knowledge (Meziane & Vadera, 2012). 

SE remains a very skilful knowledge and experiences human activity, which is known as the problem solving 

skill. Therefore, AI and related topics will continue playing a main role in automating activities of software 

development. The existing AI’s works have already confirmed that there are substantially benefiting for the SE, 

shown by the amazing range of achievements in surpass humans in some software engineering activities 
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(Rodriguez, et al., 2011). AI is used to get insight into the properties of SE problems as well as the solutions’ 

domain spaces rather than abstract solutions to individual SE problems. Exciting and interesting examples can be 

seen in certain situations which are the well understood of miss estimation risk of requirements and ending time 

of the software project under developing, problems related to program comprehension, and finally, the 

developing of quality, faults, effort and performance predictive models  (Harman, et al., 2009). More elaborated 

review about AI’s work for SE are found in (Meziane & Vadera, 2012) and (Harman, 2012). Examples of AI’s 

techniques used in the SE area: 

• AI’s searching techniques using heuristic and optimisation in the Search Based Software Engineering (SBSE) 

field of SE (Harman, 2007).  

• AI’s reasoning techniques in the presence of uncertainty using Fuzzy and probabilistic techniques to cater for 

ill-defined, fuzzy, incomplete and noisy information in SE development process  (Krogmann, et al., 2010) 

(Danilchenko & Fox, 2012).  

• AI’s classification, learning and prediction techniques to model software reliability, analysis of users, and 

predict software costs as part of project planning (Antoniol, et al., 2009).  

• Rule-based systems, Experience-based systems, and Case-based systems have been utilised to support agile 

methods like RAIS designing system (Ramachandran, 2008) and ECG-RF system for composing code (Imam, 

et al., 2014) 

• Service-oriented and product line using AI techniques (Ammar, et al., 2012) 

Through the following paragraphs, we are going to make review of current AI techniques applied to each basic 

activity of the SE development process as reported by a number of researchers. The review is accompanied by 

analysing each activity to its sub activities and suggesting a suitable AI approach that may be used to automate 

it.  

1.1 Requirements Related Tools 

Requirements engineering is the most important stage among software development process stages, as a small 

error at this stage may cause huge deflection in a software designs and implementations, which in turn will result 

different software from that defined by the stakeholder. Software requirements come from a diversity of sources 

like to relate stakeholders, standards, laws… etc., in natural language form. These requirements are re-produced 

in classes, specific, and clear set of requirement form. With these properties, requirements will support the 

generating of correct, consistent and fault-tolerant software models. As it is known, natural language has a 

number of challenges to be faced. Thus, the automation of this activity should be able to solve the incomplete, 

ambiguous, and contradictory requirements. These challenges need semantic handling of natural language 

communication skill. The automation of this preliminary stage will elongate a standing challenge of automated 

software development activities. As shown in Figure 3, effectual requirements analysis includes four tasks 

(Sommerville, 2010) (Umber, et al., 2011) ((P&R), n.d.): 

 
Figure 3: Tasks of Requirements Engineering 

 

• Requirements elicitation: gathering the requirements of a system for customers, users, administrators and 

other stakeholders.  

• Requirements analysis: checking the gathered requirements against completeness, clearness, reliable and 

vagueness. Also resolving perceptible conflicts 

• Software Requirements specification (SRS): classifying the analysed requirements into functional 

requirements, non-functional requirement, and domain requirements. The specifications possibly include a 

number of use cases. 

• Requirements Validation: ensures the agreement between the input context information and the output 
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requirements artefacts of the total requirements engineering process. 

Currently, the software tools used in requirements engineering are of supported type rather than fully automated 

type. Full automation of requirements engineering tasks is achieved via AI’s approaches such as logic based 

approach, Artificial Neural Network (ANN), Natural Language Processing (NLP) and ontologies’ knowledge 

based systems. These approaches are able (with certain challenges from one natural language to another) to 

handle the problems accompanied with the natural language input to requirements engineering in its four tasks, 

like ambiguity, contradiction, and modelling problem domains. The Commercial-Off-The-Shelf (COTS) NLP 

software tools facilitates developing NLP-based software for any purpose like extracting different types of 

software requirements from NL context  (Umber, et al., 2011) (Ormandjieva, et al., 2007) (Brown, 2005) 

(Meziane & Vadera, 2012). 

1.2 Design And Code Generation Related Tools 

Design activity gives an abstract representation of a software system. Software architectural design should make 

sure that the software system under development would meet the requirements specified by the clients and have 

the flexibility to accommodate any future requirements. Software architectural design is an intellectual activity 

that needs a human skill of creativity to handle it. This activity is concerned with converting the software design 

to program code. Converting a design to code could be the clearest activity, among other software engineering 

activities, where code generator programs are the software type that automates this activity. Currently, deductive 

and inductive AI's elementary approaches are used as suitable techniques to tackle this intellectual task; i.e. 

Design of a solution (Brown, 2005) (Danilchenko & Fox, 2012). 

Code generation is a method used for fast developing of software by using Automatic Code Generation (ACG) 

software tools, which save time, save effort, improve software quality, improve software accuracy, and free 

software developers from dreary routine jobs. Different types of code generator are exist like code wizard, the 

forward-engineering tool set integrated with modelling tools (convert a description of solution into code), the 

reverse-engineering tools and compilers. There are two types of code generator. The first type is called a passive 

code generator, in which the code produced from it needs to be adjusted or modified by developers. The second 

type is called an active code generator, which are incorporated in the developing process and rerun to regenerate 

the new code while developing the software (Kitzelmann, 2010) (Imam, et al., 2014). While the current ACG 

software are of notable achievements, it is also notable that the most of these software tools, particularly the 

forward-engineering tool set integrated with modelling tools, still need considerable input information from 

humans that is the design of the system. This weakness is considered normal since design is an exceptionally 

creative (none routine) task that is a very hard aspect to be automated by software. Hence, current ACG software 

tools freelance the software developers to work on non-routine tasks rather than fully replacing the design and 

implementation stage (Danilchenko & Fox, 2012).  

The fact that designing a solution is extremely intellectual duty, which is hard to be directly automated makes the 

efforts of developing designing software tools looks like myth. Deductive programming (DP) implements 

deductive reasoning to develop software that uses both UML diagrams and program synthesis to generate 

algorithmic portions used later by ACG. Inductive programming (IP) implements inductive reasoning to develop 

software that assists the designing of algorithm that will be used later by ACG for assembling of executable 

programs, which includes loops or recursion. Also, there is a semi-automatic induction of programs that uses 

exemplary behaviour to learn recursive policies and end-user programming in intelligent agents (Kitzelmann, 

2010) (Danilchenko & Fox, 2012). Example of this strategy is the utilizing of automated algorithms with 

machine learning to do repair assignment (Ammar, et al., 2012). Another example is the using of rule-based 

system to develop code generator software that gets used a pre-written chunk of programs to compose a new 

code for a new program (Imam, et al., 2014).  

Converting requirements to architectural design is an easier said than done problem. Actually, this area desires a 

lot of research to address the growing complexity of system’s requirements either functional or non-functional.  

1.3 Verifying & Validation (Testing) Related Tools 

In this activity, the resulted software is to be tested by parts and as a whole. This is to make sure the consistency 

of the software parts and the soundness of the software results. Currently there are certain programs that work as 

tester for other software. The software under development needs to be confirmed whether it meets its 

specifications and judge the correctness of its outputs. This confirmation is achieved by software testing, which 

encompass of Validation and Verification tasks (V&V). Verification is the evaluating of work elements, which 

are plans, requirement specs, design specs, code, and test cases by using reviews, walkthroughs, and inspection 

methods. Validation is the evaluating of the resulted software either during or at the end of the development 



Journal of Information Engineering and Applications                                                                                                                       www.iiste.org 

ISSN 2224-5782 (print) ISSN 2225-0506 (online) 

Vol.5, No.1, 2015 

 

51 

process by using methods to discover errors, faults, and failures (Sommerville, 2010) (Gebhardt & Kaske, 2011). 

Some of the testing methods used either in verification and validation, achieved manually, where the software 

tester arranges test cases for different levels and sections of the code, carries out the tests, and reports the results 

to his supervisor. There are automated software test tools that support the achieving other verification and 

validation methods. Obviously, manual testing has limitations like the consuming of time and resource, and the 

confirmation of the rightness of the used test cases. Certainly, these limitations of the manual testing can be 

overcome using automated test tools (Gebhardt & Kaske, 2011). 

Notably, the generation of test cases is arduous and the techniques used to do that are encumbered by the 

properties of the software to be tested. Examples of the challenges are: 

1. Ignore or fail to make active interactions with the operating system, network access and databases results 

weak interacting with the environment of the software under testing. 

2. In AI heuristic dependent testing software, sufficient supervision upon the search is not applied in some 

cases  

3. Scalability of the testing software of constraint-programming approach. 

Steps forward achieving the aim of entirely automated design of test case can be shown in the recent works like 

Search-Based Software Testing (SBT), which uses AI’ heuristic search, and Constraint-Based Testing (CBT) 

techniques, which uses Constraint Programming technology  (Ammar, et al., 2012). 

1.4 Software Documentation Related Tools 

Documentation of software can be defined as a written text aims to file the inner design of the software for any 

future maintenance and improvement, and to explain how to use the software. Software documentation could 

represent different things to different role people. Documentation is a significant activity of software engineering 

that makes the reviewing a more smooth job to accomplish its anticipated goals. Stakeholders of the software 

identify the properties and functions of the software via documentation’s five types, which are (Pressman, 2010) 

((P&R), n.d.): 

1. Requirements documentation type: the groundwork of the software development process that identifies the 

functions, characteristics, or qualities of a software system. 

2. Architectural design documentation type: pilot view of software that includes the units and their 

relationships as well as the system’s relations to its environment. 

3. Technical documentation type: documentation of algorithms and code. 

4. End user documentation type: manuals used by the end-user including system’s administrators, maintenance 

and other related staff. 

5. Marketing documentation type: instructions for marketing and market’s product. 

Documentation is a composition (intellectual) skill activity. Yet, we can see examples of software automated 

documenters (known also as document assemblers and documentation generator) like Sandcastle, Doxygen, 

EiffelStudio, javadoc, AutoDocs, ROBODoc, and others. These documenters perform a number of limited 

editing jobs like extracting headers using three steps: scanning, analysing, and generating that by including the 

documentation in the source code. Nevertheless, human touch is necessary and can’t be avoided (Pressman, 

2010). This shows that the efforts went for creating automated software documentation didn’t reach the final 

goal, which is fully automated documentation software. 

The above five types of documentation can be automated via the using of different approaches, AI is definitely 

among them. The documenters, available nowadays, support the different five types of documentation listed 

above. A worth to see comparison is available in (Anon., n.d.). 

1.5 Other Activities 

• Training and Support: this activity is a part of the deployment stage. It is important to make users 

accommodate with the software prior to using it. Usually, users will have many questions about the 

functions and the way of using the software. Learning strategies and knowledge transfer are human 

cognition skills (Wallace, 2012) (Antoniol, et al., 2009). Computer Aided Instructions (CAI) or Electronic 

Learning (e-learning) software form a class of software that can be used to automate teaching and training 

activity. Examples of such applications are MOODL and Blackboard.  

• Maintenance: this is an after delivery stage activity. The maintaining is an important activity to keep the 

software coping with lately discovered requirements, changes, or problem. Maintenance is a partial 
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development for selected portion of the software, and it may take longer time than the initial development of 

the software. Reused component is the strategy used for maintenance old software (and even developing 

new software). Man hand stills required to gather the reused components either for maintenance or for 

developing (Weimer, et al., 2009) (W.B. & Harman, 2010).  

• Project planning: a broad assortment of software tools are developed to help in the planning, control and 

management of projects, and communications between team members. Effective project management tools 

encompass software for information transmission between all team members and between different software 

tools. Example of project management tools are planning, scheduling, and risk management (Antoniol, et 

al., 2009) (Wallace, 2012). 

2. The Definition Of I-CASE Tools 

Based on the above review, we conclude the current reported SE activities that use AI approaches and techniques 

in Table 1.  

 

 

Table1: SE Activities use AI Approaches and Techniques 

SE Activity AI approach 

Project planning & 

Scheduling  

• Knowledge Based System (KBS) 

• Case Based Reasoning (CBR) 

• Genetic Algorithm (GA) 

• AI’s classification, learning and prediction techniques 

Requirement engineering  

 

• Knowledge Based System (KBS) 

• Computational Intelligence 

• Probabilistic reasoning 

• AI’s classification, learning and prediction techniques 

Testing 

• Knowledge Based System (KBS) 

• Genetic Algorithm (GA) 

• AI planning methods 

Coding 

• Expert system (ES) 

• Case Based Reasoning (CBR) 

• Rule induction 

Risk Management 
• Artificial Neural Network (ANN) 

• Probabilistic reasoning 

Evolving & Maintenance  
• Artificial Neural Network (ANN) 

• Genetic Algorithm (GA) 

Search Based Software 

Engineering (SBSE) 
• AI’s heuristic and optimisation searching techniques  

 

As shown in Table1, the main three approaches of AI that are logic based approach, connectionist approach, and 

GA where notably used, as well as the heuristic search and optimization applications of AI. Based on that, and 

up to our knowledge, other AI key applications like recognition, NLP and creativity are not used until now; 

where there are many SE activities need such automation tools. 

The AI-based tools, used for developing new software, are used here to define an extended version of the current 

CASE tools, and will be called Intelligent Computer Aided Software Engineering (I-CASE). I-CASE tool set 

aims to fully automate the software development process activities rather than supporting the development 

process as CASE tools do. The software development process activities aimed to be automated by I-CASE tools 

include the activities that require human skills like recognition, analysis, creativity, prediction. Examples of 

these tools are applications that can understand natural language (recognition and analysing), can create design 

of information system, can predict changes and can make auto-fixing errors (evolving system). AI algorithms, 

methods and techniques are very suitable to develop significant and successful software applications, which 

affect those intellectual activities of software engineering.  

Classifying of I-CASE tools is based on considering software development activities as main classes. This means 

that we shall have four sets of I-CASE tools: Requirements related tools, Design and Code-generating related 
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tools, Software Testing (V&V) related tools, and Documentation related tools. Other activities may form a group 

that encompasses training, maintenance and project planning activities. As it is obvious, this classification makes 

no need for extra classifications as defined now. Also, each software development model (like water fall) 

specifies its software tools that imitate the steps of that model. This classification will facilitate the planning of 

the development of software project and can be used as a framework for developing an I-CASE integrated 

development environment. Figure 4 shows the classification of the suggested I-CASE toolset. 

 
Figure 4: The Suggested I-CASE Toolset Architecture  

Decomposition of each major activity to sub tasks facilitates computerisation and thus achieves the full 

automation of this major activity. In the previous paragraphs, we reported the sub-activities of each of the 

aforementioned five major sets, which some are already computerised and others are not yet. As the 

decomposition facilitates the computerisation of an activity, it is important to maintain integrity among the 

computerised sub activates to achieve the full computation of each of the major activities, which in turn should 

have integrity to achieve the ultimate goal that is I-CASE tool set. 

Having such AI-based applications; i.e. I-CASE software tools, will surely add more to the legacy of AI works in 

SE. Also, the utilizing of I-CASE in different SE areas will give more flexibility tools to the software developers.  

3. Expected Challenges and Recommended Solutions 

AI techniques that have been used in SE development showed a number of problems and challenges. Recalling 

that both of AI and SE, are dynamic research fields that continually keep changing and improvements, makes us 

sure that there are more to come. Based on this fact, it is worthy to abbreviate here some recommendations as 

reported by different researchers. These challenges and recommendations would be of great help to face 

challenges lie ahead developing I-CASE tools:  

• Embedding AI techniques into existing SE environment: Development and deployment of innovative AI-

friendly software require both SE processes and software products to be integrated with AI environment, 

which encompasses the intelligent development tools along with the decision support systems (DSS). This 

environment can be used to sustain the methods defined for automation the largely human-intensive software 

development processes like analysis, building, and testing of software product (Filieri, et al., 2012). 

• Define Approaches Instead of Solving Cases: it is notable that the recent using of AI in SE produces solution 

for individual problem rather than class of problems. To make these AI-based solutions more active, they 

should be moved up to be a solution approach for a problem’s class rather than a solution for individual 

problem (Poulding & Clark, 2010) (Staunton & Clark, 2011).  

• Creating Adaptive Software: AI evolving approaches and techniques like learning, prediction and optimisation 

can be used in certain activities of software development process like testing and evolution. Principally, 

evolving process can be used also to address the common challenges found in SE like self-adapting systems 

and autonomic computing. To do so, a number of techniques could be used like optimisation and genetic 

programming (Arcuri & Yao, 2008) (Weimer, et al., 2009) (W.B. & Harman, 2010). 

• Utilization of Multi-core Computation to handle the computationally high-cost AI techniques: Fortunately, the 

parallelism nature of some AI techniques, like evolutionary algorithms, has been employed to solve large-scale 

problems like regression testing, software re-modularisation, and concept location. This means that methods 
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for converting existing sequential programming forms into parallel forms should be defined to fit the multi-

core computing principles  (Asadi, et al., 2010) (Yoo, et al., 2011) (Linderman, et al., 2008).  

4. Conclusion 

As the software products become large-scale, their maintenance becomes complex, and the growth in the 

software industry is increased, the demanding for fully automating of software development activities becomes 

necessary. Poor defined application domains, noisy, changing and conflicting objectives of the developed 

software are some of the problems’ properties of the software development process. These properties would 

force the software developers to change the development and deployment methods and to get the support of 

intelligent software development tools for speeding up the development process and decreasing the cost of the 

development. AI techniques prove to be the best answer to these types of problem, since they based on imitating 

human intellectual skills.  

In this paper, we surveyed and analysed research works, and define I-CASE tools that based on AI techniques. 

The ultimate goal of I-CASE is to speed up and facilitate the efforts of the software development. The survey, 

analysing, and definition of I-CASE tools presented in this research cover the development activities 

of requirements engineering, design, coding, testing, documentation, and other processes; highlighting the 

problems facing the automation of these activities and the required AI techniques.  
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