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1. Introduction  

Bhaskar and Lakshmikantham in [15] introduced the concept of coupled fixed point of a mapping  

and investigated the existence and uniquencess of a coupled fixed point theorem in partially ordered complete 

metric space. Lakshmikantham and Ciric [16] defined  mixed g-monotone property and coincidence point in 

partially ordered metric space. V. Berinde and M. Borcut[18] introduced the concept of triple fixed point and 

proved some related theorems. Following this trand,  Karapinar[19] introduced the nation of quadruple fixed 

point. The object of this note is to prove quadruple random fixed point theorem in partially ordered metric 

spaces. 

 

2. Preliminaries 

Definition 2.1[19]. Let  be a partially ordered set and . The map  has the mixed monotone 

property if  is monotone nondecreasing in  and  and is monotone nonincreasing in ; that is, for 

any , 

    

     

     

      

Definition 2.2[19]. An element  is called a quadruple fixed point of a mapping  if  

         

      

Definition 2.3[20]. Let  be a partially ordered set and   and   Then the map  has the 

mixed g-monotone property if  is monotone g-non-decreasing in  and  and is monotone g-non-

increasing in  and ; that is, for any  . 

      

  g(    

       

      

Definition 4[20]. An element  is called a quadruple coincidence point of a mappings  

and   if  

     

    

Definition 5[20]. Let  and   be mappings. We say  and   are commutative if  

              for all  

Let  denote the all functions  which are continuous and satisfy that  

(i)   

(ii)  for each  

Let  be a measurable space with  a sigma algebra of subsets of  and let  be a metric space. A 

mapping  is called measurable if for open subset  of  A mapping 

 is said to be random mapping if for each fixed  the mapping  is measurable. A 

measurable mapping  is called a random fixed point of the random mapping  if 

 for each  A measurable mapping  is called a random coincidence of 

 and  if  foe each  

 

3. Main Result  

Theorem: Let  be a complete separable metric space, and let  be a measurable space and . Let  

 and be mappings such that  

(1)  are continuous for all , 
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(2)  are measurable for all  and espectively, 

(3)  and  are such that  has the mixed g-monotone property and  

          (1) 

 For all  for which ,  and 

 for all  Suppose  for each And  is continuous and commutes with 

 and also suppose either  

(a) is continuous or  

(b)  has the following property: 

(i) If a non decreasing sequence  then  for all , 

(ii) If a non increasing sequence  then  for all  

If there exist measurable mappings  such that  

                        For all .                  

  

Then there are measurable mappings  such that  

                                  For all  

 that is,  and  have a quadruple random coincidence point . 

                                   Proof . Let  be a family of measurable mappings. Define a function  as follows: 

 Since is continuous for all  we conclude that  is 

continuous for all  Also, since  is measurable for all  we conclude that  is 

measurable for all  (see Wagner [11],page 868).Thus,  is the Caratheodory function. Therefore, if 

 is a measurable mapping, then  is also measurable (see [9]). Also, for each  

the function   defined by                     is measurable; that is,  

                                                    Now, we will construct four sequences of measurable mappings  and  and four 

sequences  and  in X as follows: 

Let  such that  

                                         (2) 

Since  then by a sort of filippov measurable implicit function theorem [1,5,6,24] , 

we can choose  such that  

                                        (3) 
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         Again taking into account that  and continuing this process, we can construct 

sequences {  and  in  such that  

                                 (4)   

We shall show that  

 

                         (5) 

 

For this purpose, we will use mathematical induction. By using (2) and (3), we obtain 

 

                      

                  

                  

                 

                              

For all .  

Therefore (5) hold for  

Suppose that (5) hold for some  Then since  has the mixed g-monotone property and by (4) we  

have 
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Thus (5) holds for all  

Assume, for some  that  

  

  

Then, by (4),  is a quadruple coincidence point of  and  From now on, assume for 

any  that at least  

  

  

Due to (1) and (4), we have  

  

                       

                            (6)                                   

 

  

                           

                                  (7) 

 

  

                 

                      (8) 

    

  

              

 

                        (9)                                            

Having in mind that  for all  , so from (6 )-(9 ) we obtain that  
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                                       (10) 

                              

 It follows that  

 

Thus,  is a positive decreasing 

sequence. Hence there exist  such that  

      Suppose that 

 Letting  in (10),we obtain that  

 
     

It is contraction. We deduce that  

                   (11) 

         We shall show that there exists   and  are 

Cauchy sequences. Assume the contrary, that is one of the sequence ,   

or  is not a cauchy sequence, that is, 

            or       

Or 

          or        

              

This means that there exist , for which we can find subsequences of integers  and  with 

 such that 

 

                       (12) 

Further, corresponding to  we can choose  in such a way that it is the smallest integer with 

 and satisfying (12). Then  

               (13) 

By triangular inequality and (13), we have 
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Letting  and using (11), we get 

 
Similarly , we have 

 

 

 
Again by (13) ,we have  

   

                                           

                      

                            

                   

                          

Letting  and using (11), we get 

                 (14) 

Similarly , we have 

               (15) 

                 (16) 

                (17) 

 

Using (12) and (14)-(17), we have 

      

                

                                                                                                                                          (18) 

Now using inequality (1) we obtain  

  

         

                       (19) 
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         (20)  

  

     

  

 

           (21) 

     

       

     

     

      (22) 

                               

From (19) – (22) we deduce that  

  

           (23) 

Letting  in (23) and having in mind (18) we get that 

                                

It is contraction. Thus   and  are Cauchy sequences in 

 

Since  is complete and  then there exist  such that  
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                                 (24)   

     Since  and  are measurable, then the function 

 and  , defined by 

                                                                     (25) 

Are measurable too. Thus  

                                                         (26)                      

Since  is continuous, (26) implies that   

          (27) 

 by using the fact that  and are commutative, From (4) 

  

                                             

                                                                                                                    (28) 

  

                                             

                                                                                                                   (29) 

  

                                             

                                                                                                                    (30) 

   

                                             

                                                                                                                    (31) 

Now we will show that if the assumption (a) and (b) hold, then  

                   For all   . 

Suppose (a) hold from (26), (27), (28) and the continuity of  we obtain 
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and similarly 

       

                           

                           

                          

       

                           

                           

                          

      

                           

                           

                          

Thus , we proved that  is a quadruple random coincidence of  and  

Suppose, now the assumption (b) holds. Since   

                          

                         

                          

                         

Therefore, by the triangle inequality  

      

                                       

   

     

                                

  

And since  we have 
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Letting  and by (27), we get  

                         

But                   

Hence               

Hence              

Similarly, we can show that   

                          

                         

                        . 

For all  

Thus we showed that  is a quadruple random coincidence of  and  
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