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Abstract 
In the present paper we established a fixed point theorem in compact metric space and another result is proved 
for pseudo compact tichnov space. Our results are generalization form of many known results. 
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2. Introduction & Preliminaries: 
There are several genralizations of classical contraction mapping theroem of Banach [1].In 1961 Edelstein [4] 
established the existence of a unique fixed point of a self map T of a compact metric space satisfying the 
inequality d(T(x), T(y))  <d (x, y) 
which is genralization of Banach. In the past  few years a number of  authers such as  Fisher [5], Soni [11,12]  
have stablished a number of intresting results on compact metric spaces. More recently Fisher and Namdeo [6], 
Popa and Telci [10], Sahu [13] described some valuble results in compact metric spaces. 
Jain and Dixit [7], Pathak [9], Khan, S. and Sharma [8] worked on pseudo-compact Tichonov spaces. Recently 
Bhardwaj etl.[2,3] also worked for thease spaces. 
3. Main Results 
Theorem 3.1: 
Let F be a continuous mappings of a compact metric space X into itself satisfying the condition; (3.1) 

 <    (3.1)  
    For all x, y ϵ X, x≠y and ≤2, where  are non negative real numbers, then F has a 
unique fixed point.  
PROOF: 
First we define a function T as follows: 
T(x) =d(x,y(x)), for all x ϵ X. Since d and F are continuous on X, T is also continuous X. From compactness of 
X, there exists a point P∈X, such that 
(3.1.1)      T(P) =inf{T(x): x ∈X} 
            If T(P) ≠ 0, it follows that P≠F(p) 
 And so T(F(P))=d(F(P), (p)) 
               d(F(P)),F(F(P))<d(P, )+ +  
therefore,  
              d(F(P)), (P)) < d(F(P), ) + d(F(P), (P)) + (  + ) d(P,F(P)) 

That is, d(F(P), ) [1- ] < ( )d(P,F(P)) 

             d(F(P), (P)) < ( )/ [1- ] d(P,F(P)) 

That is, T(F(P)) < ST(P) 
                        Where S= ( + )/ [1- ] ≤ 1 

                                    ≤2 
   Which is a contradiction to the condition (1.2) and hence P=F(P),consequently P is a fixed point of F.  
Uniqueness: 
Now we shall prove the uniqueness of P. Let if possible Q≠P be another fixed point of F. 
Now d(P,Q)= d(F(P)),F(Q)) 
d(F(P),F(Q)) < d(P, )+ + + +d(P,Q) 

That is d(P,Q)< (  + )d(P,Q) 

Which is a contradiction because ≤2 
Hence P is a unique point of F. 
Theorem 3.2: 
Let P be a pseudo compact Tichonov space and μ be a non-negative real number valued continuous function over 
(P×P) satisfying. 
[3.2.1] μ(x, x) = 0, for all x ∈ P and 
         μ(x, y) = μ(x, z)+ μ(z, y) for all x,y and z ∈ P  
         Let  T:P → P is a continuous map satisfying; 
[3.2.2] 
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        μ( , )  = μ(x,y)[1+ μ(x, )+ μ(y, )+ μ(x,y)+min{ μ(x, ), μ(y, ), μ(x,y)}] 
for all distinct x,y ∈ P, then T has a unique fixed point in P. 
Proof: We define d: P→ R by 
ф(P) = μ (Tp, p) 
for all p ∈ P, when R is a set of real numbers clearly ф is continuous, being the composite  
of two functions T and μ, since P is pseudo compact Tichonov space; every real valued  
continuous function over P is bounded and attains its bounds. Thus there exists a point say  
V∈ P, such that 
ф(V) = inf{ ф (P) : p ∈ P} 
It is clear that ф(P) ∁ R. We now affirm that v is a fixed point for T. If not, let us  
that ≠ v. 
so by (2.2) 
ф( )= μ( v, ) 
           = μ(T (TV), TV) 
ф(T(v))< ( , v)[1+ μ( ,v) ] 
            = μ( ,v) 
This implies ф(T(v))= μ( v, ) <  μ( , v) 
A contradiction, so T(v) = v 
i.e. v  P is a fixed point for T. 
To prove the uniqueness of  v, if possible, let w P be another fixed point for T,i.e 

= w and w ≠ v 
So by, [3.2.2] 
μ(v, w) = μ( , ) 
< μ(v, w)[1+ μ(v, )+ μ(w, )+ μ(v, w) + min{ μ(v, ), μ(w, ), μ(v, w)}] 
μ(v, w) < μ(v, w) 
Again it is a contradiction. Hence v ∈ P is a unique fixed point for T in P. 
This completes the proof. 
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