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Abstract 

Background: mHealth, which stands for Mobile Health, is a new concept that has emerged in recent years to talk 
about a new type of e-health. In mHealth medical activities are supported by mobile devices such as tablets and 
cell phones and these devices assist in tracking health status, support medical treatment, and support scientific 
research. The devices used in mHealth are not only limited to mobile phones but also includes laptops with wireless 
connection and hand-held wristbands that can collect and transmit information about the surrounding environment 
and the health status of the user. Using smartphones apps for medical and healthcare purposes is rapidly increasing. 
Some benefits of mHealth are connecting doctors and patients without meeting, tracking personal health data on 
smartphones, and performing treatments using the mHealth apps.  
Methods: In this study, the factors that influence the intention to use self-diagnostic apps in Vietnam were 
examined. The research model was based on the Unified Theory of Acceptance and The Use of Technology model 
(UTAUT2) as well as the Theory of Perceived Risk (TPR). Data were collected through an online questionnaire 
and SPSS version 20 was employed to conduct regression analysis of the data of 482 respondents. 
Results: The results revealed performance expectancy, effort expectancy, social influence, facilitating conditions, 
and social influence had a positive impact on the intention to use self-diagnostic apps. Furthermore, performance 
expectancy, effort expectancy, and hedonic motivation had a strong impact on users’ intentions to use apps. While 
perceived risk had a negative effect, price value had no effect on users’ intention to use the apps. 
Conclusions: An examination of the factors that influence individuals’ intention to use self-diagnostic apps in 
Vietnam can help app developers and marketers adjust their marketing strategies to meet customers’ needs.      
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1. Introduction  

1.1. Background 

In recent years, an extremely large number of people have used smartphones. This phenomenon is particularly 
evident among young users. Mobile applications that assist individuals have also increased rapidly and 
significantly. Medical and health applications aimed at patients have become prominent. Mobile health 
applications (mHealth apps) are health-related applications that not only monitor and manage health and disease 
conditions but also contribute to enhancing patients’ health. In 2014, more than 100,000 medical and health 
applications for smartphones were listed in the Apple App Store and Google Play Store (1). In 2017, health apps 
were downloaded 3.7 billion times on mobile devices (2). The most popular mHealth apps include health 
management, which involves exercise, lifestyle adjustments, diet, and nutrition, and chronic disease management, 
which comprises mental health, diabetes, and cardiovascular disease. Other categories of health apps include self-
diagnosis, medication reminders, and electronic patient portal applications (3). Because of the convenience and 
plethora of information on the Internet, patients tend to conduct a self-diagnosis at home before going to a clinic 
or contacting a doctor when they experience any abnormal signs of health. A national survey of the Royal 
Pharmaceutical Society of England revealed that 51% of adults in the United Kingdom diagnosed themselves when 
feeling unwell or experiencing a medical symptom. A report on the frequency of Internet use to test and diagnose 
adult health problems in the United Kingdom in 2016 revealed that 41% of adults engaged in self-diagnosis via 
the Internet within a few months (4). Fox and Duggan showed that one-third of the adults surveyed from the United 
States noted that they employed online resources to self-diagnose or diagnose others (5). 

Self-diagnostic apps at the Google Play Store and Apple App Store are easy to find. From the download 
metrics provided for Google Play applications, some self-diagnostic apps have been downloaded by approximately 
one million people. In particular, apps such as WebMD, Prognosis: Your Diagnosis and iTriage Health have been 
downloaded over a million times. According to the Nielsen Vietnam Smartphone Insights Report 2017, the number 
of smartphone users among mobile phone users increased from 78% in 2016 to 84% in 2017. Furthermore, 93% 
of all residents in secondary cities use mobile phones; of these, 71% use smartphones. While 89% of those who 
live in rural areas own a mobile phone, 68% of them possess a smartphone (6). In early 2018 in Vietnam, 70% of 
mobile subscribers were accessing the Internet via 3G or 4G. Statistics have also revealed Vietnamese people like 
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to experience new apps; on average each individual downloads five new apps every month. 
 

1.2. Objective 

In developing countries and in particular, the rural areas thereof, lack of infrastructure, limited access to medicines 
and lack of medical staff are significant barriers to health care. Statistics have revealed that in the remote areas of 
Vietnam in 2014, there were only 7.9 doctors per 10,000 individuals. The features of mHealth applications and in 
particular, self-diagnostic apps can be beneficial for the early detection of diseases through symptoms. This leads 
to convenient and cost-effective ways to control particular diseases. The purpose of this study was to examine the 
factors that influence the intention to use and the potential for using self-diagnostic apps in Vietnam. This will 
assist app developers to know the feasibility of self-diagnostic apps expanding the market in Vietnam. 
 

2. Theoretical basis 

2.1. The trend of using self-diagnosis online 

The number of individuals who use the Internet to find information about their health problems is increasing. A 
2012 report revealed that the NHS Choices website, which provides a comprehensive portal for patients in England, 
was visited 15 million times each month (8). By 2014, this number had increased to 40 million. Of these, 
approximately five million views were taken care of by professionals who viewed the service as a reliable source 
of information and advice (9). 

One-third of adults from the United States regard the Internet as a diagnostic tool (5). A 2013 report revealed 
that as a symptom testing tool, iTriage’s free consumer health care app had been downloaded almost 10 million 
times and had 50 million users each year (10). Various self-diagnostic apps have been downloaded by a large 
number of users from the Google Play Store and Apple App Store. In particular, applications such as WebMD, 
Prognosis: Your Diagnosis and iTriage Health have been downloaded several million times. 

In 1996, Vietnamese doctors and programmers jointly created a self-diagnosis and drug dictionary app called 
General Medical 1.0. In 1997, the authors developed Medical 2.0, which is software that works in Windows 16 or 
32 bit. General users as well as doctors and pharmacists can search for commonly used drugs and essential 
information about common diseases and results of routine tests. The app also has a dictionary that includes 
symptoms and syndromes (11). Smartphone users in Vietnam have been able to search and install health apps via 
the Google Play Store or the Apple App Store easily. However, because the language used in most medical apps 
is English, users have difficulty accessing and using these applications. Although several apps with diagnostic 
functions use Vietnamese, these apps have a very limited number of users. In Vietnam, there are only a few medical 
apps, especially self-diagnostic apps, for phones. The majority of people who have signs of illness or poor health 
tend to go to pharmacies, explain their symptoms to the pharmacy assistants, and obtain the necessary drugs. If 
their symptoms are severe and urgent, they usually go to a clinic or hospital. If their symptoms are mild and 
negligible, a portion of young people use a search engine such as Google to find information related to the 
symptoms. Knowledge about the factors that influence users’ intentions will assist with the development of self-
diagnostic apps that are suitable for the mHealth market in Vietnam, which will help many people when their 
symptoms appear. 
Benefits of self-diagnostic applications 

Quickly reduce the anxiety 
Individuals often become worried when they exhibit any signs of illness or abnormal health. A diagnosis, 
regardless of whether it is self-found or determined by a medical professional, may bring relief to the individual 
(1). When individuals make a self-diagnosis through a mobile app, they quickly find the symptoms from which 
they are suffering. They generally feel reassured if their symptoms are common. They usually calm down on 
realizing that their symptoms are fairly common and will soon pass, without the need to consult a doctor (12). 
Time Saver 

Pursuing self-help efforts may save people time they would have spent with a therapist or doctor who could 
help them with their problems (13). Self-diagnosis by looking for symptoms on a mobile app can be completed 
quickly while making an appointment with a doctor may be time-consuming. Furthermore, waiting for an 
appointment can cause much stress and worry about an illness that may not be serious. Symptoms generally 
disappear by themselves before the appointment. Thus, looking up symptoms may calm the individual (12). On 
the other hand, waiting for physicians when an individual is suffering from the symptoms of a serious disease can 
delay the diagnosis and timely treatment. 
Better preparation for an appointment with physicians 
Self-diagnosis helps patients obtain more information about their current condition. If an individual has an idea of 
what their condition is before seeing a doctor or physician, they may feel calmer (1). This may also assist 
individuals to discuss their symptoms with the doctor as they may have a clear idea of their condition and what 
they need to do (12). Furthermore, they will have a better understanding of the doctor’s view of their condition 
when it is discussed with them. 
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Mobility, inexpensive, easy to access and use 
Most people have smartphones, which they always carry around. Consequently, accessing apps to perform self-
diagnosis is extremely convenient and fast, and can be done when and wherever convenient. Due to their simple 
format and location on mobile wireless devices, apps can be easily downloaded. Furthermore, they can be carried 
around for reference, updating information, and commenting, which can be shared with others (1). Self-diagnostic 
apps on mobile phones are usually free or cheap. These apps are thus inexpensive methods to benefit those who 
are struggling financially. Self-help may be one of the only favorable options available to those who live in rural 
areas or small towns (13). A rapid diagnosis would benefit the poor and vulnerable significantly. Therefore, mobile 
self-diagnostic apps make it easy for patients to access medical information, which may not be available in the 
area where they live. 
Privacy 
Self-diagnostic apps can help individuals who are private and feel uncomfortable sharing their medical problems 
with others. Furthermore, their self-diagnosis may save them the embarrassment of an awkward encounter with 
the doctor. However, although looking up symptoms may assist a patients’ peace of mind, it is recommended that 
they still consult a doctor. Physicians and doctors are trained professionals who should help their patients and not 
judge them. Alternatively, patients could consult an online doctor for more information (12). 
 
2.2. Introduction to the theory of technology application 
Theory of Reasoned Action (TRA): The TRA model posits that behavioral intention is the most important factor 
predicting consumer behavior in which two factors of user attitude and subjective standards affect use behavior 
(14). In the TRA model, the user's attitude is measured by positive and/or negative perceptions about the properties 
of the product. Standard subjective factors show the influence of social relations on individual users. 

Theory of Perceived Risk (TPR): Bauer (1960) argued that the perceived risk behavior of technology products 
includes perceived risks related to products and services as well as perceived risks related to online payment (15). 
The former involves customers’ concerns about loss of features, financial loss, and the amount of time lost when 
using technology products and/or services. The latter includes risks such as confidentiality, safety, and total loss 
that may occur when consumers conduct transactions electronically.  

Theory of Planned Behavior (TPB): A perceived behavioral control factor was added to the TRA model to 
form the TRB. Behavioral control components reflect whether it is easy or difficult to conduct behavior. This is 
dependent on the availability of resources and opportunities for behavior. TPB assumes that behavior can be 
predicted or explained by behavioral trends to implement that behavior. Behavioral trends are assumed to include 
motivational factors that affect behavior and are defined as the level of effort individuals expend when trying to 
perform that behavior (16). 

Technology Acceptance Model (TAM): The TAM, which was developed by Fred Davis and Richard Bagozzi, 
explains the factors that are related to the adoption of technology and the intention to use technology (17). 
Perceived usefulness and perceived ease to use are two factors that directly affect the user’s attitude. The TAM 
examines the relationship and impact between the following factors: perceived usefulness, perceived ease of use, 
attitude of use, intention to use, and usage behavior in accepting users’ technology. 

Unified Theory of Acceptance and Use of Technology model (UTAUT model): Venkatesh and David (2003) 
incorporated all the theories mentioned in the UTAUT model. The TRA, TPB, and TAM have the most influence 
on UTAUT. Furthermore, UTAUT has four core elements that have an impact on behavioral intention and use 
behavior such as performance expectancy, effort expectancy, social influence, and facilitating conditions (18). 
Subsequently, Venkatesh et al. (2012) added factors such as hedonic motivation, price value, and habits into the 
original UTAUT model to form UTAUT2 (19). 

 
3. Methods 

Research model 

The UTAUT2 model was employed in this study. The main variables of the model include performance expectancy 
(PE), effort expectancy (EE), social influence (SI), hedonic motivation (HM), price value (PV), and perceived risk 
(PR). The six variables have a direct impact on the user’s intention to use self-diagnostic apps A further variable 
includes demographic factors such as age, gender, education level, and occupation. The main variables of the 
model are depicted in Figure 1. 
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Figure 1: Main variables of the UTUAT2 model 

PE is the extent individuals believe that using a self-diagnostic app will help them acquire certain benefits. 
Individuals tend to adopt technology so that they can help themselves more. Useful scales for using a self-
diagnostic app may include: speed and convenience, saving money and time, preparing before seeing a doctor, and 
reminding patients to pay more attention to health care. Accordingly, the first hypothesis was formulated:  
H1: Performance expectancy impacts positively on the user’s intention to use self-diagnostic apps. 
EE is primarily based on ease of use, complexity, and level of difficulty. The ease of use of the system is the degree 
to which an individual believes that using a self-diagnostic app on a smartphone will not require much physical 
and mental effort. In the context of using smartphone apps, an easy-to-use system needs user-friendly interfaces 
such as clear and visible steps, relevant and understandable content, easy-to-use functions, and information related 
to health symptoms should be easy to search for. Therefore, the second hypothesis was as follows: 
H2: Effort Expectancy impacts positively on the user’s intention to use self-diagnostic apps. 
SI is the extent to which an individual is aware that significant others recommend they use the self-diagnostic app. 
The behavior of family members, friends, colleagues, and people around them also tends to affect the use behavior 
of that individual. Accordingly, the third hypothesis was formulated: H3: Social Influence impacts the user’s 
intention to use self-diagnostic apps positively. 
HM is defined as the fun or pleasure derived from using technology. Individual’s living standards are constantly 
improving. The pursuit of technical utility is not only to achieve certain functions but to enjoy doing so. Venkatesh 
et al. (2012) added hedonic motivation as a predictor of consumer intent to use technology. 
The fourth hypothesis was as follows H4: Hedonic Motivation impacts the user’s intention to use self-diagnostic 
apps positively. 
PV is the cost that may influence a user’s intention to use the technology. Prices are often associated with the 
quality of a product and/or service to determine the perceived value of that product or service. Jing Li revealed 
that some participants said that free values affect their consumption behavior (20). When using an online service, 
many individuals are concerned about the cost thereof. Ma et al demonstrated that the cost-saving aspect of using 
self-service technology (SST) has a positive effect on customer satisfaction (21). Altmann, and Gries found that 
cost factors involved in using mHealth apps were negligible (22). Consequently, PV was included in the analysis 
to determine if the price has an impact on individuals’ intention to use self-diagnostic apps. The fifth hypothesis 
was as follows:  
H5: Price value has a positive impact on the user’s intention to use self-diagnostic apps. 
Bauer (1960) stated that PR is related to uncertainty and the consequences of consumers’ actions. According to 
the TPB, perceived risk can reduce uncertain consumer behavior control and will have a negative impact on their 
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behavioral decisions. Perceived risk has a certain impact on the user’s decision to use self-diagnosis apps. 
Accordingly, the sixth hypothesis was formulated:  
H6: Perceived risk has a negative impact on the user’s intention to use self-diagnostic apps. 
Demographic factors may have various impacts on the intention to use self-diagnosis apps. The seventh hypothesis 
was: 
H7: Age, gender, education level, and occupation have different impacts on the intention to use self-diagnostic 
apps. 
Research design 

This study was conducted through two steps: a qualitative preliminary study and a formal quantitative study: In 
the qualitative preliminary study, in-depth interviews were conducted with 10 people who used self-diagnostic 
apps to determine the scale, which was the basis for developing the questionnaire in the formal quantitative study. 
In the latter step, data were collected through an online questionnaire found on the following website: 
www.wenjuan.com. Convenience sampling was employed. A total of 516 questionnaires were completed; of these 
34 were deemed invalid and thus, the data collected from 482 questionnaires were analyzed. 

Intention to use self-diagnostic apps was based on the six main components of the UTUAT2. This included 
26 scales. Furthermore, three scales were added. Thus, there were 29 observed variables. A five-point Likert scale, 
ranging from 1 (completely disagree) to 5 (completely agree), was employed to assess the statements in the 
questionnaire. The software used in this study was SPPS version 20. The data were collected and analyzed by 
employing the following tools: Cronbach’s alpha to determine the reliability of the scale; exploratory factor 
analysis (EFA); and correlation and regression analyses of key components and their relationships in the model 
and the intention to use self-diagnosis applications among groups including gender, age, education, and occupation. 

 
4. Results 

Sample survey information 

The questionnaire assessed the respondents’ gender, age, educational level, and occupation. The results revealed 
the sample comprised 304 women (63.1%) and 178 men (36.9%). Of the respondents, 246 (51%) were between 
the ages of 18 and 24 years, 207 (42.9%) between the ages of 25 and 30, 28 (5.8%) between 31 and 41 years, and 
one (0.2%) between 41 and 50 years of age. Most of the respondents (352; 73%) were university graduates. The 
respondents were engaged in the following occupations: 164 (34%) were students, 113 (23.4%) were office 
workers, and 40 (8.3%) were specialists. Thus, the majority of the respondents were young and educated. The 
demographic information of the respondents is presented in Table 1. 

 Table 1: Demographic information   
  Quantity  Ratio (%) 
Sex Male 178 36.9% 
 Female 304 63.1% 
Age 18–24 246 51.0% 
 25–30 207 42.9% 
 31–40 28 5.8% 
 41–50 1 0.2% 
Education Primary school 1 0.2% 
 Junior high school 17 3.5% 
 High school 69 14.3% 
 Intermediate/Vocational school 18 3.7% 
 College/ University 352 73.0% 
 master's degree and higher 25 5.2% 
Job Student/PhD student 164 34.0% 
 Government officials 9 1.9% 

 
Business management (including junior and middle and senior 
management) 

16 3.3% 

 Office staff  113 23.4% 
 Specialists (doctors/lawyers/sports/reporters/teachers, etc.) 40 8.3% 
 Unskilled labor 20 4.1% 
 Service staff (salespeople/shop staff/waiters, etc.) 25 5.2% 
 Self-employed/contractor 21 4.4% 
 Freelancer 19 3.9% 
 Agriculture, forestry, livestock, and fishermen 4 0.8% 
 Temporarily not working 33 6.8% 
 Other jobs 18 3.7% 
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Analyze the reliability of the scale 

The collected data was analyzed by employing SPSS (Statistical Package for the Social Sciences) version 20. The 
results of Cronbach's Alpha (Table 2) revealed that all scales had high reliability (> 0.7) and were thus included in 
the EFA. 

Table 2: Cronbach’s alpha 
The variables Cronbach’s alpha 
Performance Expectancy 0.897 
Effort Expectancy 0.863 
Social Influence 0.849 
Hedonic Motivation 0.891 
Price Value 0.897 
Perceived Risk 0.788 
Intention to use 0.829 

The results of the EFA revealed a factor loading of observed variables greater than 0.7, Bartlett testing with 
Sig. = 0.000, coefficient KMO = 0.843 (> 0,5), total variance extracted by 71.079 (> 50%), in addition, sig value. 
<0.05. Thus, six factors with Eigenvalues greater than 1 were extracted from the 26 observed variables. Therefore, 
the scales were acceptable. The results of the EFA are shown in Tables 3 and 4. 

Table 3: Results of the KMO analysis 
Kaiser–Meyer–Olkin measure of sampling adequacy. 0.835 

Bartlett’s test of sphericity 
Approx. Chi-Square 7231.130 
Df 325 
Sig. 0.000 

 
Table 4: Results of the EFA analysis 

Variable 
Component 

1 2 3 4 5 6 
PV5 0.895      
PV1 0.840      
PV4 0.829      
PV2 0.820      
PV3 0.805      
PE5  0.862     
PE2  0.813     
PE1  0.811     
PE3  0.803     
PE4  0.776     
HM1   0.917    
HM3   0.825    
HM2   0.798    
HM4   0.777    
EE2    0.858   
EE1    0.816   
EE3    0.808   
EE4    0.770   
SI1     0.858  
SI2     0.834  
SI3     0.788  
SI4     0.744  
PR3      0.848 
PR2      0.803 
PR1      0.705 
PR4      0.700 
Eigenvalues  6.255 3.772 2.441 2.404 1.960 1.649 
% of Variance 24.059 14.507 9.388 9.246 7.537 6.341 
Caculative % 24.059 38.566 47.954 57.201 64.738 71.079 

Before the regression analysis, it was necessary to analyze the linear correlation relationship between the 
dependent variable and each independent variable as well as the relationship between each independent variable. 
Pearson Correlation Coefficient was employed to determine these relationships. The absolute value of r indicates 
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the severity of the linear relationship (r has a value between -1 and 1). The results are presented in Table 5. 
Table 5: Matrix coefficient correlation 

Correlations 
 PE EE SI HM Cost PR INT 

PE 1       
EE 0.290** 1      
SI 0.203** 0.303** 1     
HM 0.375** 0.344** 0.299** 1    
PV −0.105* 0.015 0.063 −0.049 1   
PR −0.287** -0.108* −0.245** −0.158** 0.119** 1  
INT 0.551** 0.512** 0.465** 0.574** −0.093* -0.450** 1 

**Correlation is significant at the 0.01 level (2–tailed). 
*Correlation is significant at the 0.05 level (2–tailed). 

The matrix coefficient correlation (Table 5) revealed that the dependent variable intention to use had a close 
linear correlation with the following five independent variables: PE, EE, SI, HM, and PR at the expected level. 
Correlation was considered significant at the 0.05 level, and the correlation coefficients between the oscillating 
variables in the paragraph [0.450; 0.574], satisfy the condition r ∈ [−1; 1]. All the variables were satisfactory and 
thus, included in the multivariate linear regression analysis. However, the independent variable PV with the 
correlation coefficient r = [0.093] had no effect on users’ intention to use self-diagnostic apps. If all VIF indicators 
are less than 10, multicollinearity does not occur. The VIF values are presented in Table 6, which shows the model 
regression weights. 

Table 6: Results of multivariate regression analysis 

Model 
Unstandardized 

coefficients 
Standardized 
coefficients 

T Sig. 
Collinearity 

statistics 
B Beta   VIF 

(Constant) 1.147  5.791 0.000  
PE 0.201 0.252 8.091 0.000 1.288 
EE 0.188 0.254 8.357 0.000 1.230 
SI 0.212 0.190 6.269 0.000 1.218 

HM 0.317 0.294 9.428 0.000 1.300 
PV −0.038 −0.038 −1.360 0.175 1.034 
PR −0.253 −0.253 −8.626 0.000 1.150 
The results depicted in Table 6 revealed that all the VIF indicators were less than 10 thus indicating that the 

independent variables were not closely related. Thus, the regression model did not display multicollinearity. 
However, the results revealed Sig. = 0.175 (> 0.05) and thus, the PV variable was not statistically significant. 
When this element was excluded from the model and regression analysis conducted, corrected regression analysis 
results were obtained, which are displayed in Table 7 

Table 7: Results of calibrated multivariate regression analysis 

Model 
Unstandardized 

coefficients 
Standardized 
coefficients t Sig. 

Collinearity 
statistics 

B Beta VIF 
(Constant) 1.074  5.628 0.000  

PE 0.204 0.255 8.215 0.000 1.280 
EE 0.187 0.253 8.312 0.000 1.229 
SI 0.207 0.185 6.155 0.000 1.205 

HM 0.319 0.296 9.479 0.000 1.298 
PR −0.257 −0.258 −8.826 0.000 1.136 

R square 0.642         
Adjusted R square 0.638         
F value 170.805     0.000   

Linear regression equation: 
YIntention = βPE + βEE + βSI + βHM + βPR 
Correction coefficient R2 = 0.638, which means that five independent variables explained 63.8% of the variance 
of the dependent variable. Value F’s Sig. = 0,000 (<0.05) and thus, hypothesis H0 R2 = 0 (or β1 = β2 = β3 = β4 = β5 
= 0) is rejected so the linear regression model is suitable for the data set and can be used. Therefore, hypotheses 
H1, H2, H3, H4, and H6 were accepted. The regression equation with variables with a standardized coefficient on 
intention to use self-diagnostic apps is as follows: 
YIntention = 0.255 PE + 0.253 EE + 0.185 SI + 0.296 HM − 0.258 PR 
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The results revealed that the intended use variable was affected by the independent variables. The variables, PE, 
EE, SI, and HM had a positive impact on the intention to use while PR had a negative impact on the intention to 
use. 
Testing differences according to qualitative variables 
To test the difference in intention to use between the male and female users, we conducted an independent sample 
t-test. Table 8 reveals that the Levene Test was valid for Sig. = 0.677> 0.05. Thus, the variance of the two groups 
was not different. Consequently, in the results of the independent sample t-test, we used the results of the equal 
variance with Sig. = 0.703> 0.05. Therefore, there was no difference between the men and women in relation to 
the intention to use self-diagnostic apps. 

Table 8: Results of t- test by gender 

  
Levene's test for equality of 

variances 
t-test for equality of means 

  F Sig. t 
Sig. (2–
tailed) 

Intention 

Equal variances 
assumed 

0.173 0.677 −0.382 0.703 

Equal variances not 
assumed 

  −0.379 0.705 

We conducted a one-way ANOVA test to verify the difference in intention to use between the different age 
groups, education levels, and occupations. The results presented in Table 9 show the Levene test has Sig. values 
greater than 0.05 (significance level) and the F test has Sig. > 0.05. Consequently, there was no difference in 
intention to use the self-diagnosis apps in relation to age and education level. 

Table 9: Results of One-way ANOVA 
Variable Levene statistic Sig. F Sig. 
Age 0.345 0.708 0.226 0.878 
Education level 1.417 0.227 0.465 0.802 

The results in relation to occupation revealed that the Levene test has Sig. = 0.011 (<0.05). The assumption 
of uniform variance between groups of qualitative variable values was violated. Therefore, the variance between 
the working groups was not equal. Therefore, we were unable to use the ANOVA table but had to employ the 
Welch test for assuming a uniform variance. 

Table 10: Results of Welch test 
 Levene statistic Sig. 
 2.258 0.011 

Welch  0.878 
The results of the Welch test result revealed Sig. = 0.878 (> 0.05). Therefore, there was no statistically 

significant difference in the intention to use self-diagnostic apps of users in different occupations. 
 

5. Discussion and conclusion 

The model of factors influencing the intention to use self-diagnostic apps outlines six factors that may have an 
influence thereof. The results revealed five factors, namely, HM, PE, EE, SI, and PR affected user intention. The 
factors HM, PE, EE, and SI had a positive a positive impact on the intention to use self-diagnostic apps. Of these, 
HM had the strongest impact on users’ intentions to use. 

The factor PR had a negative impact on intention to use self-diagnosis apps. At present, the security of 
information on the Internet in Vietnam is questionable. Consequently, many individuals worry that their personal 
information and payment information will not be secure. The problem of online payments on websites or mobile 
apps in Vietnam is prevalent. Individuals worry that the personal information and banking details are not safe. To 
compete in the market as well as to ensure that self-diagnosis apps are not risky, it is imperative for suppliers to 
have a consumer protection policy to ensure the safety of users’ information. It is also recommended that a guide 
be written to help users secure their personal information. The factor, PV did not really impact on intention to use. 
This suggests that consumers are willing to pay for a self-diagnostic app if it meets their needs and they are satisfied 
with the app’s quality. Demographic factors such as gender, age, education, and occupation did not have an 
influence on the intention to use self-diagnostic apps. Of the respondents, 20.5% said that they regularly go for a 
health examination every six months and 51.7% said that they would go to hospital if they experienced unusual 
health symptoms. Only 5% of respondents knew about and had used self-diagnostic apps. It is possible that there 
are a limited number of mobile health apps and the quality of these is below standard. For mHealth apps and in 
particular, self-diagnostic apps to become more popular, it is imperative for developers to improve their quality as 
well as marketing strategies so that information is more widely disseminated. 
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6. Limitations and further research 

The respondents were mostly young people (18-30 years old) and lived in large cities such as Ho Chi Minh City 
and Hanoi. This is a limitation in that only a certain target group was represented. It is recommended that future 
studies include a more representative Vietnamese population. 

Furthermore, as noted previously, only 5.04% of the respondents had used self-diagnostic apps. This suggests 
that the respondents’ knowledge about self-diagnostic apps was lacking. Consequently, this study may only be 
meaningful in relation to the model. However, this study has implications for other research in the field of mobile 
health. At the same time, app developers and marketers should take cognizance of the factors that influence the 
intention to use self-diagnostic apps and create apps that are accessible to users. As noted, most of the respondents 
were young people who were often exposed to technology. It is recommended that more in-depth studies be 
conducted on factors that influence the intention to use self-diagnostic apps in middle-aged and older adults. The 
majority of respondents were students and office workers who lived in urban areas. It is recommended studies be 
conducted in rural areas where medical facilities and medication are limited. 

Furthermore, as noted, the respondents lacked knowledge and experience in using self-diagnostic apps. It is 
recommended a follow-up study be conducted to analyze whether knowledge actually affects the intention to use 
self-diagnostic apps on smartphones. It is believed that if more people who use self-diagnostic apps are included 
in a study, the results will be more reliable. 
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