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Abstract 

Diabetes has become the most common metabolic disease worldwide. In particular, type 2 diabetes is the most 
commonly encountered type of diabetes, which is characterized by impaired insulin secretion and/or action. One 
of the effective methods to control diabetes is to inhibit the activity of α-amylase and α-glucosidase enzymes which 
are responsible for the breakdown of starch to more simple sugars, using plant products. This study evaluated the 
total phenolic (TPC), total flavonoid (TFC), and antidiabetic potential of Thymus schimperi and Thymus vulgaris 
via in vitro inhibition of α-amylase and α-glucosidase, using the hot water and aqueous: methanol (20:80, v/v) 
extracts. The α-amylase inhibitory potentials of the extracts were investigated through reducing sugars analysis 
using 3,5-dinitrosalicylic acid color reagent (DNSA) using starch solution as substrate. The α-glucosidase 
inhibition was determined by pre-incubating α-glucosidase with different concentrations of the extracts followed 
by the addition of p-nitrophenylglucopyranoside (pNPG). Aqueous: methanol (20:80, v/v) extract of T. schimperi 
contained highest TPC (46.01 ± 4.54 mg GAE/g dw) and TFC (14.72 ± 1.14 mg QE/g dw) also showed stronger 
α-amylase inhibition activity (IC50 = 0.33 ± 0.05 mg/mL) and the hot water extract exhibited stronger α-glucosidase 
inhibition (IC50 = 0.05 ± 0.01 mg/mL) capacity than that of T. vulgaris. The TPC and TFC were positively related 
(p < 0.05) with α-amylase inhibition activity but negatively correlated (p > 0.05) with α-glucosidase inhibitory 
activity. These results indicated that the inhibition of these enzymes can lead to lower postprandial blood glucose.  
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1. Introduction 

Diabetes mellitus is a metabolic disease characterized by hyperglycemia and disturbances in fat and protein 
metabolism that results from defects in both insulin secretion and/or insulin action. In particular, type 2 diabetes 
mellitus is the most encountered form of diabetes, accounting for more than 80% of the total cases of diabetes 
(Chan et al., 2010). Various pharmacological approaches have been used to improve diabetes via different modes 
of action including stimulation of insulin release, inhibition of gluconeogenesis, increasing the number of glucose 
transporters and reduction of glucose absorption from the intestine (Ahmed et al., 2010). One of the most effective 
ways of controlling postprandial hyperglycaemia is to suppress starch digestion as it is the main contributor of 
glucose in the human body from diet. Suppression of starch hydrolysis is conducted through the inhibition of 
carbohydrate hydrolyzing enzymes such as α-amylase and α-glucosidase in the digestive organs (Mustafa et al., 
2010). Inhibitors of these enzymes delay carbohydrate digestion and prolong the overall time for carbohydrate 
digestion, resulting in a decrease in the rate of glucose absorption (Yang et al., 2012).  

Traditional medicinal plants have been used for many years by different cultures around the world for the 
management of diabetes. In recent years, investigation on herbal medicines has become progressively important 
in the search for a new, effective and safe therapeutic agent for the treatment of diabetes. Many pure bioactive 
compounds isolated from plants have been demonstrated to have blood glucose-lowering effect, several of which 
are flavonoids (Kati et al., 2010), triterpenoids (Wenli et al., 2009), carotenoids (Miaad and Saeed, 2017), and 
alkaloids (Soon et al., 2013). Studies indicated that some of the dietary plants possessed inhibitory effect against 
α-glycosidase and or α-amylase, such as sorghum, foxtail millet and proso millet, (John et al., 2014) guava leaves 
(Shakeera et al., 2013) and eggplant (Esther et al., 2013). In addition, in vitro inhibitory activities have been 
reported for phenolic extracts of foods, including fruits (Jayaprakasam et al., 2005; Castañeda-Ovando et al., 2009; 
Misbah, 2013), vegetables (Oboh et al., 2012), medicinal herbs (Abdullah and Izabela, 2013), green and black tea 
(Kati et al., 2010 ), and berries (McDougall et al., 2005). 

Even nowadays some spices and culinary herbs play an important role in primary health care and in the 
treatment of diabetes, especially in developing countries (Wongsa, 2012). Natural hypoglycemic compounds may 
be attractive alternatives to synthetic drugs or reinforcements to currently used treatments. Their huge advantage 
is that they can be ingested in everyday diet. T. schimperi Ronniger is a wild endemic herb to Ethiopia and is 
traditionally used for food flavoring as well as medicinal ingredient. The dried leaves are used to flavor tea, coffee, 
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food and also boiled as a tea substitute and are believed to be good for diabetic patients (Nigist & Sebsebe, 2009). 
T. vulgaris L. is an important medicinal plant (Golmakani and Rezaei, 2008; Al-Bayati, 2008) which has been 
used for centuries as spice, home remedy, drug, perfume and insecticide, and also reported to have antidiabetic 
activity (Rime et al., 2014). So far, there are few studies on α-amylase inhibition activities of the dried leaf T. 

schimperi (Engeda et al., 2015). Therefore, the objective of the present study was to compare TPC, TFC and in 

vitro antidiabetic potentials of hot water and aqueous: methanol (20:80, v/v) extracts of the dried leaves of T. 

schimperi and T. vulagaris. Also correlation between total phenolic contents and α-amylase and α-glucosidase 

inhibition capacity of these herbs was evaluated. 
 
2. Materials and Methods 

2.1. Chemicals 

 Gallic acid, Folin–Ciocalteu reagent, quercetin, acarbose, 3, 5-dintrosalicylic acid (DNSA), potato starch, 
phosphate buffer, sodium chloride, sodium carbonate, aluminum chloride, sodium potassium tartarate, α-
glucosidase, α-amylase, and p-nitrophenyl-α-D-glucopyranoside were purchased from Sigma-Aldrich. The other 
chemicals and solvents used in this experiment were of analytical reagent grades. 
 
2.2.  Sample preparation and extraction  

Fresh leaves of T. schimperi Ronniger were collected from Dinsho, Bale Mountain National Park, South East 
Ethiopia and fresh leaf of T. vulgaris was collected from garden in Dalhousie Agricultural College, Canada. The 
leaves were air dried for 10 days and then ground to fine powder using electric grinder (FM100 model, China). 
The hot water and aqueous: methanol (20:80, v/v) extracts were prepared by dissolving 1 g of the leaf fine powder 
separately in 10 mL each solvent. The hot water extract was heated for 5 min using water bath. The mixtures were 
then subjected to sonication (model 750D, VWR Intl. Ltd., Montreal, QC, Canada) for 15 min x 3 times, with 10 
min intervals in between sonication cycles to keep the temperature below 30oC during the extraction. After 
centrifugation (model Durafuge 300, Precision Scientific, Richmond, VA, USA) at 5000 rpm for 10 min, the 
supernatant was filtered using Whatman number 1 filter paper. The methanol was evaporated from aqueous: 
methanol (20:80, v/v) extract under N2 and the remaining water (in aqueous: methanol (20:80, v/v extract) and hot 
water extract were freeze dried for 10h using freeze drier (model 2085C0000, Kinetics Thermal Systems, Stone 
Ridge, NY, USA). Samples of each treatment were extracted and analyzed in triplicate and immediately stored in 
amber vials at -20oC until used for analysis. 
 
2.3.  Determination of total phenolic content (TPC) 

The TPC was estimated by Folin-Ciocalteu method as described in Shan et al. (2005) with slight modification 
using gallic acid as the standard. To 0.1 mL of the extract, 1 mL Folin- Ciocalteu reagent (diluted ten times) was 
added and the mixture was left for 5 min and then 1 mL (75 g/L) of sodium carbonate was added. The absorbance 
of the resulting blue color was measured at 765 nm with a UV-Visible spectrophotometer (JENWAY, 96500, UK) 
after incubation for 90 min at room temperature. The TPC was estimated from gallic acid (1–100 µg/mL) 
calibration curve (y = 0.015x + 0.09, R2 = 0.99) and the results were expressed as milligram gallic acid 
equivalent/gram of dried plant material (mg GAE/g dw).  
 
2.4.  Determination of total flavonoid content (TFC)  

The TFC was determined as described in Ayoola et al. (2008) with minor modifications. The analysis was based 
on the formation of yellow color of flavonoid-aluminum complex. Aluminum chloride (2 mL, 2%) was mixed 
with the same volume of the leaf extract (1 mg/mL). Individual blanks were prepared consisting of 2 mL of sample 
solution and 2 mL of methanol without aluminum chloride. Then absorbance readings at 415 nm were taken after 
1 h of incubation at room temperature against a blank sample. The TFC was determined using a standard curve (y 
= 0.24x + 0.11, R2 = 0.98) of quercetin (1- 40 μg/mL) and values were calculated as milligram quercetin 
equivalents/gram of dried plant material (mg QRE/g dw).  
 
2.5.  Porcine pancreatic α-amylase inhibition assay (DNSA method) 

The DNSA assay for reducing sugar was conducted using various crude extracts of the leaves and starch as a 
substrate for amylase enzyme as described in Kwon et al. (2008) with minor modification. Test samples 200 µL 
(0.01- 2.5 mg/mL) in a 0.02 M sodium phosphate buffer solution (pH 6.9 with 0.006 M sodium chloride) containing 
200 µL Porcine pancreatic α-amylase were incubated at 25oC for 10 min, after which, 200 µL of 1% boiled potato 
starch solution in 0.02 M sodium phosphate buffer solution (pH 6.9 with 0.006 M sodium chloride) was added. 
After incubation of the reaction mixture at 25°C for 10 min, the reaction was stopped by adding 400 µL of DNSA 
reagent (1.0 g of 3, 5- dinitrosalicyclic acid, 20 mL of 2 M NaOH and 30 g of sodium potassium tartarate in 100 
mL distilled water). The sample test tubes were then incubated in a boiling water bath for 5 min and cooled to 
room temperature. The reaction mixture was then diluted by adding 4 mL distilled water and absorbance of 200 
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µL of brown solution of 3-amino-5-nitrosalicylic acid was measured at 540 nm using micro plate reader (FLUO 
star Optima, BMG Labtech, Durham, NC, USA). Distilled water (without amylase inhibitor) (200 μL) was used 
as a control. 

To remove matrix sugar interference, the absorbance of the mixture consisted of 200 μL of sample (may 
contain reducing sugars), 200 μL of phosphate buffer (no amylase), 200 μL of starch, 400 μL 3, 5- dinitrosalicyclic 
acid, and 4 mL of distilled water was recorded at 540 nm as blank. Acarbose was used as reference. The α-amylase 
inhibitory activity was expressed as % inhibition and was calculated as shown below:  
% inhibition = [Acontrol – (Asample –Ablank)/Acontrol]x100 
 
2.6.   α-Glucosidase inhibition assay 

α-Glucosidase inhibitory activities were evaluated according to the chromogenic method described by Ivan et al. 
(2012), with some modifications. The enzyme solution contained 20 μL α-glucosidase (0.5 unit/mL), 20 μL of 
sample (at various concentrations) or drug (acarbose) and 60 μL 0.01 M phosphate buffer (pH 6.9). The mixture 
was incubated at 37 oC for 15 min. After 15 min, 20 μL of p-nitrophenyl-α-D-glucopyranoside (pNP-G) (5 mM) 
in the same buffer (pH 6.9) was used as a substrate solution and again incubated at 37oC for 15 min. The reaction 
(Figure 6.3) was terminated by adding 80 μL of 0.2 M sodium carbonate solution. Each experiment was conducted 
in triplicate. The change  in the absorption observed at 405 nm due to the hydrolysis of p-nitrophenyl-α-D-
glucopyranoside (pNP-G) was monitored in a 96-well plate with micro plate reader (FLUO star Optima, BMG 
Labtech, Durham, NC, USA). Increase in absorption at 405 nm was due to enzyme activity as the enzyme 
hydrolyzes the pNP-G to release p-nitrophenolate ion. The temperature was maintained at 37oC during the 
experiment.The positive control sample was the mixture of the enzyme (20 L) and substrate (20 L) without 
inhibitors. Instead 20 L of working buffer was added. The sample controls and blanks were the mixtures of 
sample and control, respectively, except α-glucosidase which was replaced instead with buffer. The IC50 values of 
samples were calculated and reported as the mean ± SD of the three experiments. The enzyme inhibitory rates of 
samples were calculated as follows: 
                                Inhibition% = [(AS - ASB)/AC - ACB)]x 100 
Where, AS, ASB, AC, ACB are the absorbance of sample, sample blank, control, and control blank, respectively. 
 
2.7.  Statistical analysis 

The data were subjected to analysis of variance (ANOVA) and Duncan’s multiple range tests were used for mean 
separation at p < 0.05. Linear regression analysis was used to calculate IC50 value. Pearson correlations among 
antioxidant activities, total phenolic and flavonoid contents were considered at p < 0.05. 

 

3. Result and Discussions 

3.1. Total phenolic and flavonoid contents 

The TPC in various solvent extracts from the leave of T. schimperi and T. vulgaris varied widely, ranging from 
15.65 ± 4.01 to 46.0 ± 4.5 mg GAE/g dw (Table 1). The TPC content followed the order: aqueous: methanol (20:80, 
v/v) extract of T. schimperi > aqueous: methanol (20:80, v/v) extract of T. vulgaris > hot water extract of T. 

schimperi > hot water extract of T. vulgaris. There was no significant difference (p > 0.05) in TPC between 
aqueous: methanol (20:80, v/v) extracts of T. schimperi and T. vulgaris but these values were significantly higher 
(p < 0.05) than the TPC of hot water extracts of T. shimperi and T. vulgaris. According to the study conducted by 
Hasya et al. (2019), Thymus zygioides var. lycaonicus showed stronger TPC (193.47 ± 4.45 mgGAE/g ) than that 
of both T. shimperi and T. vulgaris. 
Table 1. Total phenolic (mgGAE/ g dw) and total flavonoid (mgQRE/g dw) contents of T. schimperi and T. 

vulgaris  

        Extract TPC 
 (mgGAE/g dw)* ± SD 

TFC 
 (mgQRE/g dw)** ± SD 

TS. ( aqueous: methanol:20:80, v/v) 46.0  ± 4.5c 14.7 ± 1.1c 
TS (hot water) 21.55 ± 3.80b 3.69 ± 1.42a 
TV ( aqueous: methanol:20:80, v/v) 45.23 ± 13.02c 10.65 ± 2.15b 
TV (hot water) 15.65 ± 4.01a 1.13 ± 0.20a 

TS: Thymus schimperi; TV: Thymus vulgaris; dw: dried weight of plant material. Where * and ** are total 
phenolic and total flavonoids expressed as gallic acid and quercetin equivalents per gram of dried weight , 
respectively. Values are expressed as mean ± SEM (n = 3) from triplicate experiments. Means with different letters 
in a column were significantly different at the level of p < 0.05. 

The TFC (mg QRE/g dw) varied from 1.13 ± 0.2 to 14.7 ± 1.1 and decreased in the order of aqueous: methanol 
(20:80, v/v) extract of T. schimperi > aqueous: methanol (20:80, v/v) extract of T. vulgaris > hot water extract of 
T. schimperi > hot water of T. vulgaris (Table 1). TFC in aqueous: methanol (20:80, v/v) extracts of T. schimperi 
and T. vulgaris were significantly different (p < 0.05), but in the hot water extracts were not significantly different 
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(p > 0.05). 
 
3.2. Porcine α-amylase inhibitory activity (DNSA method) 

One of the effective methods to control diabetes is to inhibit the activity of   α - amylase enzyme which is 
responsible for the breakdown of starch to more simple sugars (Probhakar and Doble, 2011). This is contributed 
by α- amylase inhibitors, which delays the glucose absorption rate thereby maintaining the serum blood glucose 
in hyperglycemic individuals (Cazzola et al., 2011; Wadkar et al., 2008). Different studies have shown that 
phenolic compounds play a role in mediating α-amylase inhibition and therefore have potential to contribute to the 
management of type 2 diabetes (Cheplick et al., 2010; Ranilla et al., 2010).  

The extracts from the crude T. schimperi and T. vulgaris leaf extracts screened for in-vitro α-amylase enzymes 
inhibitory activity. The results were shown in Figure 1. The α-amylase enzymes inhibitory activity was 
concentration dependent.  At 2.5 mg/mL, the porcine α-amylase inhibitory activity of aqueous: methanol (20:80, 
v/v) extract from T. shimperi was 68.6 ± 5.9%, and the inhibitory activity of its boiling water extract was 48.7 ± 
7.1%. The inhibitory activity of aqueous: methanol (20:80, v/v) extract from T. vulagaris was 60.7 ± 9.2%, and 
the inhibitory activity of its boiling water extract reached 27.1 ± 3.9%. Aqueous: methanol (20:80, v/v) extracts of 
T. shimperi demonstrated stronger percentage of α-amylase enzyme inhibitory activities than that of T. vulgaris 
extracts. These values are lower than citronella grass, lemongrass oils (Jumepaeng et al., 2013) and finger millet 
(Shobana et al., 2009 ), but higher than cereal grains such as wheat, buckwheat, corn and oats (Randhir et al., 
2008) and foxtail millet (Kim et al., 2011). As positive control, at the concentration of 2.5 mg/mL, acarbose 
showed the strongest α-amylase inhibition activity (98.9 ± 8.8%).  

The inhibitory activity was determined as the mean of triplicate measurements and expressed as the 50% 
inhibitory concentrations (IC50) values (Table 2). The aqueous: methanol (20:80, v/v) extract of T. schimperi 
demonstrated stronger percentage of α-amylase enzyme inhibitory activity than the rest of the extracts. As positive 
control, acarbose showed the strongest α-amylase inhibition activity, five times stronger than the inhibition 
potential of aqueous: methanol (20: 80, v/v) extract of T. schimperi .Whereas, hot extract of T. vulgaris showed 
the lowest α-amylase inhibition activity (IC50 > 2.5 mg/ml). There were significant differences (p < 0.05) in the 
IC50 values among the extracts. But α-amylase enzyme inhibitory activities of these extracts were significantly 
lowers (p < 0.05) than the α-amylase enzyme inhibitory activity of acarbose. The α-amylase inhibition capacity of 
aqueous: methanol (20: 80, v/v) extract of T. schimperi of our previous study (Engeda et al., 2015) was weaker 
(IC50 = 0.44 mg/mL) than that of the present study (IC50 = 0.33 mg/mL). This variation may be because of the 
geographical location and growing conditions of T. schimperi, such as soil and climate (Yang et al., 2018).  
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Figure 1. The porcine α-amylase inhibitory activities of aqueous: methanol (20: 80, v/v) and boiling water extracts 
of T. schimperi and T. vulgaris. Results were expressed as mean ± SD (n = 3). 
 
3.3.  In vitro α- glycosidase inhibition activity 

The extracts were also tested through the α-glucosidase inhibitory assay and the results were shown in Figure 2. 
At the concentration of 2.5 mg/mL, hot water extract of T. schimperi showed the highest a-glucosidase inhibition 
activity (96.8 ± 10.5%) followed by hot water extract of T. vulgaris (86.7 ± 8.3%), aqueous: methanol (20:80, v/v) 
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extract of T. schimperi (84.4 ± 8.5%), aqueous: methanol (20:80, v/v) extract of T. vulgaris (60.7 ± 9.2%) and 
acarbose (65.4 ± 5.8%). 

The IC50 values were shown in Table.2. Hot water extract of T. schimperi showed strongest α-glucosidase 
inhibition activity ten times stronger than that of aqueous: methanol (20:80, v/v) extract of T. vulgaris and more 
than four times stronger than the α-glucosidase inhibition activity of hot water extract of T. vulgaris and more than 
thirteen times stronger than that of α-glucosidase inhibition activity and acarbose. There was no significant 
difference in IC50 values (p > 0.05) between aqueous: methanol (20:80, v/v) extract of T. schimperi and acarbose 
in their α-glucosidase inhibitory effects. But these values were significantly different from that of hot water extracts 
and aqueous: methanol (20:80, v/v) extract of T. vulgaris. Similar result was reported by Toshiyuki and Miyazawa 
(2012) on safflower (Carthamus tinctorius L). According to this study the different extracts exhibited stronger α-
glucosidase inhibition activity than acarbose. Similarly, according to the study conducted by Abid et al. (2014), 
ethyl acetate fraction of Thymelaea hirsute showed stronger α-glucosidase inhibition potential than that of 
acarbose. The hot water extracts of T. schimperi and T. vulgaris as natural sources thus can be potentially used to 
suppress glycemic load by reducing α-glucosidase activity.  
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Figure 2. α-glucosidase inhibitory activity of aqueous; methanol (20:80, v/v) and boiling water extracts of T. 

schimperi and T. vulgaris. Results were expressed as mean ± SD (n = 3).  
 
Table 2. IC50 (mg/mL) of α–amylase and α-glucosidase inhibition activity of T. schimperi and T. vulgaris leaf 
extracts. 

Extract α – amylase α-glucosidase 

TS (aqueous: methanol:20:80, v/v) 0.33 ±  0.05b 0.69 ±  0.04d   
TS (hot water) 2.24 ±  0.53d 0.05 ± 0.01a  
TV (aqueous: methanol:20:80, v/v) 1.56 ±  0.09c 0.51 ± 0.02c 
TV (hot water) > 2.50 0.24 ± 0.09b 
Acarbose 0.07 ± 0.01a 0.71 ± 0.12d 

TS: Thymus schimperi; TV: Thymus vulgaris. Values are expressed as mean ± SD (n = 3) from triplicate 
experiments. Means with different letters in a column were significantly different at the level of p < 0.05. 
 

3.4 Correlation Analysis  

The analyses of linear correlation between enzymes’ inhibitory activities and TPC and TFC (Table 3) showed that 
the inhibitory effects of samples against the activity of α-amylase could be due to the levels of phenolic compounds 
existing in the extracts with the correlation coefficients +0.78, +0.67, at p < 0.05, respectively. These results 
suggest that higher phenolic content does confer higher α-amylase inhibitory activity. Inhibitory activities of the 
extracts against α-glucosidase were negatively proportional to both TPC and TFC, and the correlation coefficients 
were R2 = −0.22, −0.24, at p > 0.05, respectively. Several studies have found a direct correlation between the 
amount of phenolic compounds in plant extracts and their capacity to inhibit α-enzymes (Patrick et al., 2005; Chen 
& Kang, 2014). However, not always plant extracts with the high phenolic content have been demonstrated to 
exert the inhibitory activity on α-amylase (Hairong and Baojun, 2014), which points out the importance of the 
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nature of the different molecules and the interactions among them. Furthermore, different studies confirmed the 
negative correlation between phenolic contents and α-glucosidase inhibition activity. According to the result 
reported by Jeonga et al. (2013), α-glucosidase inhibition activity of Rehmannia glutinosa tuberous root extracts 
was negatively correlated with TPC. To the contrary the study conducted by Hairong and Baojun (2014) on onion, 
reported that TPC values of samples were positively correlated to α-glucosidase and negatively correlated with α-
amylase inhibitory activities. Silva Pinto et al. (2009), have also shown a positive correlation between α-
glucosidase activity and TPC of Gingko bilibo L. leaves extracts. 
Table 3. Correlations between enzyme inhibition activity and total phenolic and flavonoid contents. 

Inhibition Activity TPC (mgGAE/g dw)* TFC (mgQRE/g dw)** 
α-amylase +0.78 -0.22 
α-glucosidase +0.67 -0.24 

Where * and ** are total phenolic and total flavonoids expressed as gallic acid and quercetin equivalents, 
respectively; dw: dried weight of plant material.  
 
Conclusion 

The present investigation showed that the in vitro antidiabetic properties of T. schimperi and T. vulagaris were 
related with their α-glucosidase and α-amylase inhibitory effects. Hot water extract of T. schimperi had stronger 
α-glucosidase inhibitor and aqueous: methanol (20:80, v/v) extract showed stronger α-amylase inhibitory potential 
in comparison with T. vulgaris. These results also indicated that there was positive linear correlation between TPC 
and α-amylase inhibition activity but negatively correlated with α-glucosidase inhibitory activity. However, 
phenolic compounds may not be the only class of active compounds to contribute to antidiabetic effects of these 
two herbs. The α-glucosidase inhibition activity of hot water extract of T. schimperi was much stronger than that 
of the standard drug acarbose and thus this extract might help in the identification of new lead molecules for natural 
α-glucosidase inhibitors. However isolation and characterization of the active compounds associated with α-
amylase and α-glucosidase inhibition have to be carried out to confirm these observations. It can be therefore 
concluded from this study that the presence of the phytochemicals in these plants might be the reason for these 
inhibitions and that the plants may essentially contain herbal bioactive compounds which require further structural 
elucidation and characterization to identify the specific bioactive constituents. Also further in vivo and clinical 
investigations should be done for confirming the antidiabetic activity of these dietary herbs.  
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