Feasibility of residential grid connected PV system under the Jordanian net metering renewable energy law

Yousif El Tous
Electrical Engineering Department, Al-Balqa’ Applied University, Amman 11134, Jordan
E-mail: yousifeltous@yahoo.com

Sandro Abdelhafith (Corresponding author)
Projects Design Department, Future Sun Co. Wasfi Al-Tall Street, Amman, Jordan
E-mail: sandro.abdelhafith@yahoo.com

Abstract
Jordan is very rich in renewable energy resources, especially with solar energy, with an average daily peak sun hours of 5.8, on the other hand it is not an oil producing country and imports 96% of the energy used, in this paper the economic feasibility of a 3.0 kWp PV system is analyzed for three residential scenarios with low, medium and high electrical energy demand the payback period for the three scenarios are compared and the effect of the electrical tariff structure is studied, the study showed that the 3rd scenario with the highest consumption resulted with a much lower payback period of 3.42 years.

Introduction
Jordan is a very rich country in renewable resources, especially solar the average peak sun hours are estimated to be around 5.8 hours which is amongst the highest in the world, furthermore the temperatures are not very high which is beneficial for the panels efficiency.

Jordan is a non-oil-producing country and imports 96% of the energy used. As a consequence, energy imports accounts for roughly 22% of the GDP. The population’s growth rate is high; about 2.3% per year. This causes the demand on energy sources, mainly oil products to increase rapidly. Implementation of renewable energy resources such as solar energy, will lead to economical, social and environmental benefits [1].

The Jordanian market is currently witnessing a huge increase in photovoltaic energy projects demand and that's due to the increase in electricity bill costs and due to the introduction of the renewable energy law which has included the net metering application [2].

Extensive research has been made in the field of photovoltaic energy projects and the economic feasibility of the renewable energy systems, in a recent paper Yousef El-Tous [3] compared the feasibility study of two identical systems one in Jordan and the other in Italy and took into account the effect of the Italian feed in tariff [4], the study resulted in a clear advantage for the system located in Italy, with an annual income of $ 2445.

Education sector has experience a great interest in photovoltaic project due to the high energy bill, Ma’en Al-Sayed Ahmad et al. [5] proposed a system to provide 50% of the electric energy of the University of Jordan and found the optimal angel to be 30 degrees, Matlab/ Simulink simulation program was used, the system payback period resulted to be 12 years. Issa Etier et al. [6] proposed a project of about 3.5 MW to cover the energy demand of the Hashemite University of Jordan, the research resulted an LCOE of 0.18 $/kWh. Ibrahim M. Al-Adwan [7], studied the performance of the first grid connected residential PV system in Jordan and effects of the system on the voltage levels and power quality.

And in the field of stand-alone PV systems, Marwan M. Mahmoud et al. [8] compared the feasibility of supplying remote villages in Palestine by PV, Diesel generators and conventional grid, and showed that the payback period for supplying the remote villages with PV energy is less compared with diesel and electrical grid expansions.

This paper will present three scenarios with identical PV systems but with different electrical loads the three scenarios will be 510 kWh / Month (scenario 1), 990 kWh / Month (scenario 2) and 1500 kWh / Month (scenario 3). The feasibility study for a 3.0 kW system is then evaluated for each of the three scenarios, and the effect of the electrical tariff structure is analyzed, the different scenarios are simulated using the Hybrid Optimization Model for Electric Renewables (HOMER), the software is used evaluate the energy production of the PV system.

Electrical Bill tariff structure
The Jordanian electric tariff structure is divided into 7 segments as shown in table 1[9].

Table 1: Jordanian electricity bill structure

<table>
<thead>
<tr>
<th>Electrical consumption [kWh]</th>
<th>Structure [kWh]</th>
<th>Cost [USD/kWh]</th>
<th>structure cost [USD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 160</td>
<td>160</td>
<td>0.046</td>
<td>7.43</td>
</tr>
<tr>
<td>161 - 300</td>
<td>140</td>
<td>0.101</td>
<td>14.19</td>
</tr>
<tr>
<td>301 - 500</td>
<td>200</td>
<td>0.121</td>
<td>24.23</td>
</tr>
<tr>
<td>501 - 600</td>
<td>100</td>
<td>0.16</td>
<td>16.08</td>
</tr>
<tr>
<td>601 - 750</td>
<td>150</td>
<td>0.20</td>
<td>29.75</td>
</tr>
<tr>
<td>751 - 1000</td>
<td>250</td>
<td>0.24</td>
<td>60</td>
</tr>
<tr>
<td>More than 1000</td>
<td>-</td>
<td>0.33</td>
<td>-</td>
</tr>
</tbody>
</table>

It can be readily seen from table 1 that as the consumption goes up the electricity bill increases exponentially, Table 2 shows the total consumption Vs cost for a supposed consumption equal to each of the segments.

Table 2: consumption Vs cost

<table>
<thead>
<tr>
<th>Consumption [kWh]</th>
<th>Cost [USD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>7.43</td>
</tr>
<tr>
<td>300</td>
<td>21.62</td>
</tr>
<tr>
<td>500</td>
<td>45.85</td>
</tr>
<tr>
<td>600</td>
<td>61.93</td>
</tr>
<tr>
<td>750</td>
<td>91.68</td>
</tr>
<tr>
<td>1000</td>
<td>151.68</td>
</tr>
</tbody>
</table>

Figure 1 shows the graphical representation of the data given in table 2.

Figure 1: Electrical consumption Vs cost
It is clear from figure 1 that above 1000 kWh consumption the cost per kWh triples and that shows the saving potential of photovoltaic systems for consumers with higher electricity demands.

Solar irradiation

Solar irradiance data for Amman location were obtained from different sources [10, 11 and 12] the data obtained is shown in table 1, the average solar radiation is about 5800 (Wh/m². Day), which is a very high value suitable for electrical power generation.

Figure 4 shows the average daily solar radiation incident on one square meter area (Wh/m². Day) for the year 2010.

Table 1 The average daily solar radiation incident on one square meter area (Wh/m². Day).

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>2970</td>
<td>3861</td>
<td>5352</td>
<td>6341</td>
<td>7596</td>
<td>8188</td>
<td>8154</td>
<td>7428</td>
<td>6313</td>
<td>5003</td>
<td>3764</td>
<td>3169</td>
<td>5678</td>
</tr>
<tr>
<td>2005</td>
<td>3072</td>
<td>4022</td>
<td>5469</td>
<td>6187</td>
<td>7461</td>
<td>8119</td>
<td>7963</td>
<td>7164</td>
<td>6418</td>
<td>5188</td>
<td>3641</td>
<td>3117</td>
<td>5652</td>
</tr>
<tr>
<td>2006</td>
<td>3106</td>
<td>3445</td>
<td>5993</td>
<td>6595</td>
<td>7882</td>
<td>8341</td>
<td>8314</td>
<td>7488</td>
<td>6238</td>
<td>4857</td>
<td>3608</td>
<td>3084</td>
<td>5746</td>
</tr>
<tr>
<td>2007</td>
<td>3402</td>
<td>4026</td>
<td>5524</td>
<td>6634</td>
<td>7495</td>
<td>8420</td>
<td>8204</td>
<td>7348</td>
<td>6488</td>
<td>4905</td>
<td>3846</td>
<td>3214</td>
<td>5792</td>
</tr>
<tr>
<td>2008</td>
<td>2976</td>
<td>4264</td>
<td>5970</td>
<td>6961</td>
<td>7877</td>
<td>8334</td>
<td>8327</td>
<td>7483</td>
<td>6219</td>
<td>4809</td>
<td>3632</td>
<td>3066</td>
<td>5826</td>
</tr>
<tr>
<td>2009</td>
<td>3535</td>
<td>4415</td>
<td>5952</td>
<td>6670</td>
<td>7638</td>
<td>8446</td>
<td>8397</td>
<td>7532</td>
<td>6507</td>
<td>4927</td>
<td>3603</td>
<td>3007</td>
<td>5886</td>
</tr>
<tr>
<td>2010</td>
<td>3562</td>
<td>4483</td>
<td>5978</td>
<td>6751</td>
<td>7981</td>
<td>8368</td>
<td>8084</td>
<td>7442</td>
<td>6142</td>
<td>5032</td>
<td>3638</td>
<td>3204</td>
<td>5889</td>
</tr>
</tbody>
</table>

Figure 4: The average daily solar radiation incident on one square meter area (Wh/m². Day) for the year 2010

PV system model

This paper will present three scenarios with identical PV systems but with different electrical loads the three scenarios will be 510 kWh / Month (scenario 1), 990 kWh / Month (scenario 2) and 1500 kWh / Month (scenario 3). These three scenario cover the main consumer categories in Jordan low, medium and high demand, The system model was build using HOMER (hybrid optimization model for electric renewables) [], the system components and quantities are identical for the three scenarios the component specifications are shown in table 2.
Table 2: PV system component specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PV system</td>
<td>3.0</td>
<td>26</td>
<td>0</td>
<td>-0.45</td>
<td>46</td>
<td>15.3</td>
<td>Inverter</td>
</tr>
<tr>
<td>Inverter</td>
<td>3.5</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total system cost [USD]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6300</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 shows the homer layout for the three scenarios, the three PV systems are identical except for the load demand.

Figure 2: PV system scenarios (1, 2, and 3).
Results

The simulation results obtained from the simulation program are shown in table 3

Table 3: PV system simulation results

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated capacity</td>
<td>3.00</td>
<td>kW</td>
</tr>
<tr>
<td>Mean output</td>
<td>0.65</td>
<td>kW</td>
</tr>
<tr>
<td>Mean output</td>
<td>15.7</td>
<td>kWh/d</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>21.8</td>
<td>%</td>
</tr>
<tr>
<td>Total production</td>
<td>5,564</td>
<td>kWh/yr</td>
</tr>
</tbody>
</table>

The total annual energy production from the PV system is 5737 kWh which is translated to a monthly value of about 464 kWh which is a very attractive number, the daily output suggest that the average peak sun hours are 5.16 this is less than the mentioned 5.8 due to the inefficiencies due to temperature, dust, clouds, electrical losses, etc.

Figure 3 shows the monthly electrical energy production of the 3.0 kWp system. The data is given in Table 4.

Figure 3: monthly electrical energy production of the 3.0 kWp system

It is clear from figure 3 that the energy production peaks during the summer months and that’s due to higher irradiation and longer days.

Table 4: monthly electrical energy production of the 3.0 kWp system

<table>
<thead>
<tr>
<th>Month</th>
<th>Energy Yield [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>383</td>
</tr>
<tr>
<td>Feb</td>
<td>390</td>
</tr>
<tr>
<td>Mar</td>
<td>514</td>
</tr>
<tr>
<td>Apr</td>
<td>489</td>
</tr>
<tr>
<td>May</td>
<td>540</td>
</tr>
<tr>
<td>Jun</td>
<td>523</td>
</tr>
<tr>
<td>Jul</td>
<td>536</td>
</tr>
<tr>
<td>Aug</td>
<td>532</td>
</tr>
<tr>
<td>Sep</td>
<td>477</td>
</tr>
<tr>
<td>Oct</td>
<td>464</td>
</tr>
<tr>
<td>Nov</td>
<td>364</td>
</tr>
<tr>
<td>Dec</td>
<td>352</td>
</tr>
<tr>
<td>Annual</td>
<td>5564</td>
</tr>
<tr>
<td>Avg. Monthly</td>
<td>464</td>
</tr>
</tbody>
</table>
Table 5 shows the economic feasibility of the three scenarios and the comparisons of the electricity bill before and after the PV system, the electricity bill was calculated according to the electric tariff structure mentioned earlier.

Table 5: Economic analysis of the three scenarios

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>47.5</td>
<td>463</td>
<td>47</td>
<td>2.2</td>
<td>45.3</td>
<td>543.4</td>
<td>11.59</td>
</tr>
<tr>
<td>990</td>
<td>148.5</td>
<td>463</td>
<td>527</td>
<td>50.2</td>
<td>98.3</td>
<td>1179.6</td>
<td>5.34</td>
</tr>
<tr>
<td>1500</td>
<td>316.3</td>
<td>463</td>
<td>1037</td>
<td>163.1</td>
<td>153.2</td>
<td>1838.9</td>
<td>3.43</td>
</tr>
</tbody>
</table>

It can be readily seen from table 5 that the higher the consumption the greater the savings which is due the exponential increase in the energy costs with the increase of consumption, which directly affects the payback period of the project.

In the case of scenario 3 the payback period is 3.43 which is extremely attractive, it is also noteworthy mentioning that the Jordanian electric energy tariff are in constant increase.

Conclusion

In this paper the economic feasibility of a 3.0 kWp PV system was compared for three load scenarios. The first scenario with a monthly consumption of 510 kWh resulted an annual saving of $ 45.3 and a payback period of 11.59 years which is very high and can be considered not feasible, in Scenario 2 the monthly consumption was 990 kWh, the annual savings resulted to be $ 1179.6 and the payback period 5.34, finally the most attractive case was seen in Scenario 3 with the highest monthly energy consumption of 1500 kWh, the annual savings resulted to be $ 1838.9 and the payback period 3.43.

It is clear that the best payback period is obtained in systems with an energy consumption of more than 1000 kWh, nonetheless a good payback period is obtained for systems with medium consumptions (800 – 1000) kWh. The payback periods could be greatly improved by providing feed in tariffs and incentives on the PV systems.

References