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Abstract 
The growing need for sustainable hydraulic fracturing requires the development of proppants that align 
operational efficiency with environmental management. This paper analyses advances in low-carbon propping 
technologies, such as ultra-low-density proppants (ULDPs), multifunctional proppants, and traditional ceramic 
proppants. Integrating industrial by-products such as fly ash, slag, and drilling cuttings has resulted in substantial 
energy and carbon emissions savings. For example, microwave sintering techniques reduced energy 
consumption by 30%, while life cycle CO2 emissions were reduced by 55% to 68% compared to conventional 
proppants. Mechanical tests confirm that these alternative promoters meet API standards for closing stress at 52 
MPa, with a crushing resistance of ≤ 8% and a fracture conductivity of more than 90%, aided by self-healing 
coatings. In addition, non-combustion methods, including geopolymerisation and additive sintering, have 
allowed temperature reductions of up to 300ºC. This enhances the sustainability of fuel production. Despite these 
promising advances, challenges remain in standardising feedstock quality and adapting to evolving regulatory 
frameworks. However, the annual conversion of 1.1 billion tonnes of industrial by-products into high-
performance proppants offers an opportunity for decarbonisation. To achieve this potential, we must continue to 
address critical gaps in field validation and standardisation of life cycle assessment. This underlines the need for 
interdisciplinary collaboration to integrate circular economy principles into unconventional resource extraction 
practices. 
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Introduction  

Hydraulic fracturing (fracking) has significantly enhanced hydrocarbon production from low-permeability 

reservoirs, making previously inaccessible shale formations viable for exploitation [1, 2]. However, it is 

important to highlight specific concerns regarding the use of natural resources, such as quartz sand. Over-

exploitation of these resources can lead to ecological damage, including habitat destruction and increased silica 

dust pollution, which further exacerbates environmental and health risks [3, 4]. Central to this technology are 

proppants, granular materials such as silica sand or ceramic particles, that maintain fracture permeability by 

preventing fracture closure after the injection of high-pressure fluids. Despite their effectiveness, traditional 

proppant manufacturing consumes intensive energy, primarily due to high-temperature sintering processes and 

resource-intensive mining operations [5, 6]. Consequently, conventional proppant production contributes 

substantially to global carbon emissions, habitat destruction, and water contamination risks, all representing 

urgent environmental concerns [7, 8]. The global proppant market, as shown in Figure 1, is projected to expand 

from USD 9.1 billion in 2023 to approximately USD 15.6 billion by 2030 at a compound annual growth rate 

(CAGR) of 8%, underscoring the critical need for more sustainable production practices [9, 10]. Thus, the 

traditional proppants, notably ceramics manufactured at temperatures over 1300°C, generate around 0.8-1.2 tons 
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of CO2 per ton of product, while silica sand extraction exacerbates ecological problems and silica dust pollution 

[11, 12]. Additionally, regulatory attention has risen over the environmental concerns of fracturing fluids, 

specifically involving chemical spills and damaged health integrity [13, 14]. 

To mitigate these problems, industrial solid waste, including fly ash, slag, and drilling cuttings, is increasingly 

favoured as an alternative raw propulsion material. Flying ash, resulting from coal burning, and slag, the remains 

of the steel industry, offer distinct advantages because of their aluminosilicate composition, which facilitates 

geopolymerisation and reduces the need for high-temperature sintering [15, 16]. Nevertheless, fluctuations in 

waste composition, contamination risks and scalability challenges hinder widespread use. Progress in modifying 

particle surfaces and designing hybrid materials, such as integrating fly ash with resin coatings, is being made to 

overcome these stresses [17, 18]. 

The characteristics of regional markets further facilitate the transition to sustainable practices. For example, 

North America accounts for about 45.6% of global shale gas consumption, reflecting its significant shale gas 

activities [19-21]. The industry is under increasing pressure to adopt strategies that meet decarbonisation 

objectives while maintaining operational efficiency [22, 23]. Recent advances, such as Smart Sand's use of low-

density proppants and optimised supply chain methodologies, demonstrate initiatives to reduce environmental 

effects by reducing chemical use and controlling quantities [24, 25]. Nevertheless, significant barriers remain, 

such as inconsistent quality of waste produced by the proppant, disjoint regulatory frameworks and insufficient 

validation of innovative technologies in the field [26]. 

This review aims to critically assess emerging sustainable alternatives to conventional proppants, providing a 

comprehensive, helpful analysis for environmental scientists, engineers and policymakers. It synthesises existing 

fragmented literature across critical areas of investigation: identification and evaluation of novel proppant 

materials, such as ultra-lightweight and multifunctional proppants; comparative assessment of environmental 

impacts between conventional and waste-derived proppants; development of optimised strategies for the 

utilisation of solid industrial wastes, such as fly ash and slag; improvement of energy efficiency in proppant 

manufacturing processes by reducing sintering temperatures; exploration of non-combustion-based 

geopolymerisation methods; and complete evaluation of low-carbon proppants from mechanical, economic, and 

lifecycle perspectives. By integrating field validation data, and regulatory compliance assessments, this review 

clarifies current advancements and establish guidelines that balance industrial growth with environmental 

sustainability in hydraulic fracturing operations. 

Advances in Hydraulic fracturing Proppants 

Technological advances in hydraulic fracturing proppants are crucial in improving operational efficiency and 

reducing the environmental impacts of hydrocarbon extraction [27, 28]. This progress is based on innovative 

materials, as Figure 2 illustrates, such as ultra-lightweight proppants, multifunctional proppants, traditional 

proppants, surface modification techniques, in-situ generation methods, and cutting-edge techniques that meet 

the industry's current challenges [29]. 

Significant innovations include Ultra-Lightweight proppants (ULDPs), which are characterised by their 

integration of light and mechanical energy. These materials are produced from industrial by-products like fly ash, 

providing a cost-effective alternative to traditional ceramic proppants, illustrated in Figure 2 [30, 31]. Their 

regulated porosity configurations enable hydrophobic discharge, making them suitable for various fracture 

conditions [32]. Laboratory experiments have verified that even at pressures greater than 20 MPa, these materials 

maintain good conductivity while reducing logistical costs [33]. The creation of multifunctional support 

materials is a significant advancement in the field. These materials have complementary functionality, e.g., 

piezoelectric sensors that monitor fracture geometries in real-time, optimising production. Their interconnected 
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porosity also facilitates the transport of stimulating fluids or the capture of CO2 during extraction. Besides, 

elastomer coatings facilitate self-healing, minimise proppant losses, and increase healthy life [34].  

 

Figure 1. Fracturing Innovations and Enhancements in Proppant Technology for Hydraulic Fracturing 

Sustainability lies at the centre of the concerns, particularly with the application of industrial waste in 

manufacturing proppants [35]. It lowers carbon emissions and costs. Research indicates that these materials 

achieve 90% of the strength of ceramic proppants at half the price. [36, 37] However, their variability in particle 

size requires more excellent standards for large-scale uses [38, 39]. New surface techniques, such as liquid 

modification, allow proppants to adhere to fracture walls more efficiently, reducing the migration of fines by half. 

Shape memory polymers (SMP) expand according to temperature or pressure changes. This property closes 

cracks naturally, thereby providing the highest conductivity [40, 41]. Additionally, chemical reactions such as 

those in sol-gel systems enable the formation of proppants in the tank itself, a process termed "in situ 

generation." The method reduces transport costs and has increased conductivity by 30% in complex geology  

[42]. 

To manage these operations, high-temperature neutron capture techniques and magnetic nanoparticles provide 

accurate 3D representations of fractures, minimising non-productive zones to a bare minimum. Lastly, these 

technologies represent a significant step towards more efficient and environmentally friendlier technologies. 

There are challenges, however, particularly concerning material stability under stress that can be as great as tens 

of MPa and standardisation of procedures. 

Traditional ceramic proppant production 

Ceramic proppants are essential in hydraulic fracturing, a method employed for the extraction of oil and gas.  

They preserve the fracture aperture, hence facilitating optimal fluid flow [43].  They are conventionally 

composed of high-purity aluminosilicates, such as bauxite and kaolin.  Bauxite, infused with alumina, has 

significant resistance to crushing, whereas kaolin, upon sintering, converts into mullite, a phase noted for its 

resilience under subterranean conditions [44, 45]. Complete treatment of these raw materials, including particle 

formation and high-temperature sintering, is essential to achieve mechanical and chemical properties. 

Conventional sintering procedures, requiring temperatures between 1150°C and 1590°C and periods ranging 

from 75 minutes to 10 hours, pose considerable problems [46, 47]. High thermal regimes, although essential for 

chemical transformation and densification, require significant energy expenditure, resulting in increased 

production costs and environmental effects of carbon emissions [36, 48]. In addition, prolonged exposure to high 
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temperatures can trigger unregulated granular development, which can compromise microstructural integrity and, 

subsequently, the mechanical performance of proppant materials [49]. 

Recent research has focused on modifying compositions to reduce sintering temperatures. One viable method is 

to incorporate solid waste into proprietary formulations, such as industrial by-products and recovered mineral 

residues [50]. These additives, often consisting of alkali or alkaline earth oxides such as CaO, Fe2O3, and MgO, 

act as fluxes [51]. During thermal treatment, these components lower the viscosity of the aluminosilicate melt, 

thereby enhancing liquid-phase sintering and promoting particle reorganisation at lower temperatures. 

Furthermore, verifiable oxides found in specific wastes facilitate the formation of transient eutectic phases, thus 

accelerating densification kinetics and reducing energy consumption [52, 53].  This method improves process 

sustainability by valorising waste streams while simultaneously refining the microstructure of proppant materials, 

thereby decreasing porosity and increasing fracture resistance [54]. 

 Research highlights the efficacy of this method.  The incorporation of fly ash, abundant in alkaline oxides, has 

demonstrated efficacy in decreasing sintering temperatures by lowering the eutectic temperature of the ceramic 

mixture [31, 55].  Petroleum-based drilling and cutting pyrolysis residue (ODCPR) is effective in promoting 

low-temperature sintering, hence decreasing production costs and environmental impact [56].  The incorporation 

of carbon gangue has been investigated to lower preparation costs and sintering temperatures, yielding proppant 

materials with favorable densities and failure rates [57]. 

Overall, the judicious integration of solid waste additives in the production of ceramic proppant materials offers 

a viable solution to the challenges associated with high-temperature sintering. By leveraging the melting 

properties of these materials, the requisite mechanical and chemical attributes can be achieved at reduced 

thermal conditions, hence improving durability and profitability.  

Benefice of Using Solid Waste Utilisation in Proppant Production 

4.1 Types of Solid Waste Materials 

Table 1 compares industrial solid wastes used in proppant production, focusing on fly ash, slag, and drill cuttings. 

Fly ash is notably cost-effective, achieving 90% of ceramic proppant strength at half the cost, thanks to its high 

SiO2 (≥70%) and Al2O3 (20-35%) content [58]. However, Fe2O3 levels must be lowered by 30% by advanced 

pre-treatment, including 5% HCl leaching for structural integrity. Drill cuttings also show promise as processing 

via pyrolysed calcium- and iron-rich residues improves the proppant strength by 15% in ODCPR-bauxite 

systems. While keeping awareness of cost and performance, these materials show good advantages for proppant 

manufacturing, as shown in Figure 2.  
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Figure 2. Integration of Solid Waste Materials into Proppants Manufacturing 

Consider fly ash, for instance. The residue left after burning coal contains substances like silica and alumina. 

This material can create strong, lightweight ceramic proppants [59, 60]. Not only does this reduce our reliance 

on traditional materials, but it also helps to clean up the waste from coal power plants[61, 62]. Some studies 

indicate that fly ash rich in alumina can produce proppants that perform well in deep wells[50, 59]. Additionally, 

it may require less energy to manufacture them, which is good for everyone. 

Then there are drill cuttings, those bits of rock that come up when it dries for oil and gas. They can be turned into 

something useful by heating them in pyrolysis [63, 64]. This process leaves behind materials like calcium oxide 

and iron oxide, which can make proppants stronger and less dense [59, 65]. The pyrolysis process costs money 

but is much better than dumping the cuttings and risking environmental harm problems [66, 67]. 

Slag, a by-product of steel production, is another object of investigation. Although it is not as widely used as fly 

ash or drill cuttings, several experimental initiatives have proven its effectiveness [11-13]. The considerable 

annual production of slag offers the possibility of using it as a proppant, thus supporting waste management [68]. 

But, as with other materials, ways must be found to make it more cost-effective and ensure consistent quality. 

Even old glass is being considered! Recycling glass into proppants could help reduce the amount of waste in 

landfills and transform ordinary waste into a useful material. The only issue is that turning glass into proppants 

takes a lot of energy, so we need to find ways to make that process cheaper [69, 70]. The only issue is that 

turning glass into proppants takes a lot of energy, so we need to find ways to make that process cheaper [71, 72]. 

 



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.15, No.1, 2025 

 

49 

Table 1. Comparison of Solid Waste Materials as Alternative Proppant Raw Materials 

Waste 

Type 
Source Industry Key Properties Proppant Application Challenges Ref 

Fly Ash 
Coal Power 

Plants 

High silica and alumina 

content 

Lightweight, high-

strength ceramic 

proppants 

Availability varies by region 
[73-

75] 

Drill 

Cuttings 

Oil and Gas 

Drilling 

Rock fragments, variable 

composition 

Ceramic proppants, 

especially ODCPRs 

Processing complexity, 

environmental concerns 

[76, 

77] 

Slag 
Steel 

Production 
Metal oxides, silicon dioxide 

Potential proppant, less 

common 

High processing costs, 

consistency issues 

[54, 

78] 

Rice 

Husk Ash 

Agriculture 

(Rice 

Processing) 

High in silica, light, and 

porous. 

Lower compressive 

strength, needs binder. 

Inconsistent material 

properties and mechanical 

strength. 

[79, 

80] 

Wood 

Ash 

Biomass (Wood 

Burning) 

Contains silica, calcium, 

potassium, and magnesium. 

Varies depending on the wood 

type. 

Lightweight, can be used 

in certain low-strength 

applications. 

High variability, requires 

reinforcement, lower 

mechanical strength. 

[81] 

Glass 

Waste 

Municipal, 

Industrial 
Silica-rich, recyclable Synthetic proppants Energy-intensive processing 

[50, 

57, 

69] 

 

Lastly, using spent Cu-based oxygen carriers, leftovers from copper industries, is still pretty new. Still, they 

might help make ceramic proppants better by lowering the temperature needed [74, 77].  

Overall, utilising waste materials to produce proppants is a commendable initiative that benefits the environment 

and has the potential for cost savings. However, challenges remain, such as reducing production costs and 

ensuring material consistency.  

4.2 Preparation Processes 

The effective incorporation of industrial by-products, as outlined in Figure 3, into proppant manufacturing 

necessitates a meticulously structured preparation methodology to ensure adherence to stringent hydraulic 

fracturing performance criteria. This methodology comprises a series of sequential operational phases, including 

feedstock selection [82, 83] and characterisation, preliminary processing and particle size adjustment [36], 

binder formulation and integration [84], shaping techniques, thermal processing, and a comprehensive evaluation 

of performance and sustainability, each contributing to the development of high-efficacy, environmentally 

responsible proppants. 
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Figure 3. Incorporation of industrial by-products for proppants production 

Material Selections and Characterization 

Industrial solid waste streams, particularly fly ash and bauxite residues, are recognised as prime prospects for 

proppant synthesis due to their intrinsic silica (SiO2) and alumina (Al2O3) content, aligning with critical proppant 

performance metrics.  For instance, fly ash with elevated SiO2 concentration (≥70%) improves crush resistance 

in proppants, as evidenced by its application in ceramic proppant cores integrated with clay and bauxite coatings. 

Coal mining refuse, abundant in SiO2 and Al2O3, meets the compositional criteria for mullite-based proppants; 

nonetheless, the cited sources primarily emphasise fly ash and bauxite mixtures [85]. 

 Advanced analytical techniques, including X-ray fluorescence (XRF) and X-ray diffraction (XRD), are essential 

for characterising these materials. Research on fly ash activation underscores the significance of XRD in 

detecting crystallographic alterations during alkali treatment [85, 86]. XRF is employed to quantify the elemental 

composition of waste-derived geopolymers and zeolites [87]. The phase composition of fly ash (amorphous 

versus crystalline) directly influences its appropriateness for proppant production [88]. 

Pre-treatment and Particle Sizing Control 

The preliminary processing of solid waste materials is essential to enhance their viability for proppant production, 

as illustrated in Figure 4. Various crushing and grinding methods are employed to achieve a consistent particle 

size distribution, usually under 75 μm, which also boosts reactivity during subsequent thermal treatment [89]. 

For instance, studies on ceramic proppants often involve sintering processes that benefit from uniform particle 

sizes [90]. 

Techniques such as magnetic separation and acid leaching remove impurities, including unburned carbon and 

heavy metals, that may jeopardise the proppant's structural integrity as mentioned in Figure 5 [57]. For example, 

applying a 5% hydrochloric acid (HCl) solution to fly ash led to a 30% reduction in iron oxide (Fe2O3) content, 

hence alleviating undesirable crystallisation during heating [91]. 
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Figure 4. Purification Process for Proppants Enhancement 

Including binding agents such as sodium silicate or kaolin in quantities of 10 to 20 weight percent improves the 

material's plasticity, facilitating pellet formation via extrusion or granulation [92, 93]. Using binding agents is a 

common practice in ceramics and materials science. 

Due to the inherent unpredictability of waste material composition, flexible mixing ratios and real-time 

monitoring technology are essential to ensure process uniformity [77]. 

Binder Formulation and Homogenization 

Integrating binder systems is essential for improving the mechanical integrity of proppants formed from waste 

materials. Binder systems, including sodium silicate or geopolymer precursors, promote the creation of cohesive 

pellets, as illustrated in Figure 5. For instance, geopolymer binders can be sourced from natural or synthetic 

aluminosilicates, and the process involves a chemical reaction between aluminosilicate oxides and alkali 

polysilicates, resulting in the formation of polymeric (Si-O-Al) bonds and amorphous to semi-crystalline 

structures [94]. This process is crucial for enhancing the infrastructure system's sustainability and economic 

viability by utilising waste materials and reducing carbon dioxide emissions. 

 

 

Figure 5. Binder System Integration for Proppants Manufacturing 

Studies have shown that adding 5-10 wt% nano-clay to coal mining refuse can enhance interfacial bonding and 

diminish brittleness, as presented in Figure 4, yielding proppants with superior mechanical properties [65, 95]. 

For example, using nanoparticles in various applications, such as hydraulic fracturing, has been explored to 
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improve performance [96]. High-shear mixing under optimised conditions ensures the creation of a homogenous 

slurry, which is critical for achieving uniform proppant morphology [95]. This process is vital for ensuring that 

the proppants have consistent properties, which are essential for their application in hydraulic fracturing [97].  

The principles of using binder systems, enhancing mechanical properties with additives, and ensuring uniform 

morphology through mixing conditions are well-established in materials [98]. 

Shaping Methodologies 

Proppant fabrication from industrial waste streams encompasses several methodologies, including extrusion, 

palletisation, and additive manufacturing [57]. Frequently employed with spray drying, rotary granulation has 

emerged as a scalable technique for producing spherical particles, exhibiting a diameter variability of less than 

5% [99, 100]. This increased homogeneity enhances efficiency in hydraulic fracturing operations [101].  

Additive manufacturing techniques, particularly 3D printing, are being explored to create proppant shapes 

customised for specific operational needs [102]. Customised designs have the potential for increased mechanical 

strength and enhanced flowback management during fracturing operations [103].  

These advanced manufacturing techniques facilitate the use of diverse industrial waste materials, including fly 

ash and lower-grade bauxite, in producing high-performance proppants characterised by reduced density and 

augmented strength [53]. Using such waste products helps reduce the need for raw materials and creates a more 

sustainable method of proppant production [40, 56]. 

Thermal Processing and Consolidation 

The sintering process, a heat-activated densification mechanism, is essential to improve the resistance and 

performance of the proppant [59]. Conventional sintering consists of heating proppants to 1100-1300°C, 

allowing reinforcement phases such as mullite in formulations based on fly ash [104, 105]. This procedure 

enables compression resistors above 52 MPa, with regulated cooling (2-5°C/min) crucial to prevent thermal 

cracking [106, 107]. 

Microwave sintering, an emerging alternative, demonstrated energy savings of 30% compared to conventional 

methods in experimental environments [108, 109]. Although promising for its efficiency and reduced 

environmental impact, this technology remains on track for proppant production, with most industrial 

applications still dependent on established thermal methods [110]. Non-sintering approaches, such as inorganic 

polymer proppants, use chemical bonding to obtain light, high-strength structures without high-temperature 

treatment [110, 111].  

Surface modification approaches, including chemical or pressure-assisted bonding, enhance proppant 

cohesiveness [36]. These methods often use pressure or chemicals to hold the proppants together [112]. However, 

heat-treated proppants remain dominant because of their better mechanical properties [113]. Overall, whereas 

conventional sintering remains the industry standard for high-performance applications, alternatives like 

microwave and non-sintering techniques may provide sustainability advantages. Nonetheless, these ideas require 

further validation to attain a balance between efficiency, and scalability [84].   

In short, heating is a key step in making proppants strong, but making them without heating is another method 

that might have some advantages and challenges. 

Performance and Sustainability Assessment 

Scientists use advanced testing procedures to determine the viability of waste materials, such as slag and fly ash, 

for hydraulic fracturing [84]. These thorough evaluations focus on the proppant's essential qualities, such as 

strength, roundness, and pressure resistance [54]. According to research, proppants made from recycled materials 
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frequently match or outperform standard proppants while providing additional environmental benefits. This 

novel strategy improves hydraulic fracturing efficiency and supports industrial sustainability [31].  

There are two main ways to make these proppants. One way is called thermal consolidation (sintering). This 

means heating the waste materials but not melting them. This makes them strong and lasts a long time. For 

example, glass-ceramic proppants, which are noted for their superior mechanical qualities, can be manufactured 

by sinter-crystallization of recycled materials [114]. The other way is called the non-sintered method. This 

means using the waste materials without heating them so much [111]. However, most studies focus on thermal 

consolidation because it usually makes stronger proppants. 

Searchers use a lifecycle analysis to see how suitable these proppants are for the environment. This allows to 

determine the energy consumption, the amount of pollution generated and the amount of resources needed for 

the production of the proppants [36, 115, 116]. It is essential to know that using waste materials can reduce 

pollution by up to 30% [117]. Also, because of the possibility of recycling these proppants, they are even better 

for the environment in the long run. So, using waste to make proppants is a good way to save resources and 

reduce pollution. 

Lowering Sintering Temperatures through Additive Incorporation 

Sintering is a vital step in proppant manufacturing, traditionally requiring high temperatures (1100-1400°C) to 

impart mechanical strength for hydraulic fracturing operations [104, 118]. High temperatures, however, translate 

into high energy usage, causing carbon emissions and operational expenses [119, 120]. Recent advances 

demonstrate that the strategic application of additives makes reducing sintering temperatures by 100-300°C 

(considering room temperature ±23°C) possible with equal or better mechanical performance, such as catalogued 

in Table 2 [69, 71]. This approach aligns with circular economy and sustainable development principles, offering 

a means to cleaner and cheaper proppant manufacturing. 

Use of Additives in Temperature Reduction 

Research indicates that sintering additives (Table 2) play a crucial role in lowering the processing temperatures 

of ceramic proppants while maintaining their mechanical properties, thereby promoting energy conservation and 

the recycling of industrial waste.  The additives operate primarily via three mechanisms: forming a liquid phase, 

optimisation of particle size, and the effects of synergistic fluxing [121-123]. Below are the main categories of 

additives and their contributions. 

Fluxing agents, such as calcium carbonate (CaCO3) and feldspar, reduce sintering temperatures by promoting 

liquid phase sintering, as shown in Table 2. For example, 5% by weight of CaCO3 reduces the sintering 

temperature to 1350°C (a reduction of 150°C) in bauxite-based proppants, reaching fracture levels below 8.5% at 

52 MPa. The feldspar, comprising 4% by weight, helps sintering at 1400° C., resulting in a temperature 

reduction of 100° C. With optimised milling, sintering can occur at 1280° C., reducing 220° C. These additives 

improve densification while maintaining strength, aligning with sustainability-oriented manufacturing objectives.  

Additives such as dolomite and fly ash allow sintering at low temperatures by promoting the formation of mullite 

or corundum. Dolomite (MgCa(CO3)2) combined with fly ash fritters and bauxite efficiently at 1200°C 

(reduction of 300°C), resulting in a mullite-corundum complex with acceptable mechanical properties. Flying 

ash, acting both as raw material and flux, facilitates the crystallisation of mullite at 1200° C. These approaches 

not only reduce energy demand but also value industrial by-products.  

Industrial waste, such as pyrolysis residues (ODCPR) and oil-based pyrolysis, offers two advantages. Manganese 

dioxide (MnO2) in ODCPR-bauxite mixtures allows for frying at 1280° C. (reduction of 220°C.), producing low-

density (<2.7 g/cm3) and high-strength proppants. Pyrolusite (20% by weight) reduces the sintering temperature 

of quartz-based proppants from 900°C to 400°C to 500°C, thus facilitating consolidation at low temperatures. 
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Metallic oxides, such as CaO and FeO in ODCPR, improve fluxion by chemical activity. Multi-component 

systems further amplify temperature reduction. For example, a combination of Al2 O3 (5% by weight), cap glass 

(20% by weight) and NaF (4% by weight) reduces sintering temperatures to 1100°C (a reduction of 400 to 

500°C) in drill cuttings-based trousers.  [124-126].  

Effective sintered additives aim to reduce temperatures through shared mechanisms: (1) liquid formation, (2) 

particle size optimisation and (3) liquid agent combination. CaCO3, field spar and MnO2 promise to reduce 100-

150°C while maintaining brewing performance. Combine additives or internal flow properties (e.g. ODCPR, 

flight gas) to combine waste up to 1200 °C sintered, thereby achieving the sustainability objectives of ceramic 

thruster production. 

 

Table 2. Additives for Lowering Sintering Temperature 

Additive(s) Proppant Material(s) 

Sintering 

Temperature 

(°C)  

Temperature 

Reduction (°C) 

(Approx.) 

Ref 

Calcium Carbonate 

(5 wt%) 

Natural bauxite, solid 

waste coal gangue 
1350 150 [122, 127] 

Feldspar (4 wt%) Bauxite 1400 100 [128, 129] 

Feldspar (Optimised Milling) Bauxite 1280 220 [130] 

Manganese Dioxide 

(With ODCPRs & Bauxite) 

ODCPRs, Bauxite 1280 220 [131] 

Vanadium Pentoxide 

(With ODCPRs & Bauxite) 

ODCPRs, Bauxite (Implied Lower) - [127] 

Dolomite (with Fly Ash & Bauxite) Fly Ash, Bauxite 1200 300 [132] 

Al2O3, Cullet Glass, NaF (with Drill 

Cuttings) 
Drill Cuttings 1100 400-500 [133] 

Pyrolusite (20%) 

Solid waste silica 

fume (Quartz 

Ceramic Proppant) 

900 400-700 [134] 

CaO, BaO, MgO, FeO (from 

ODCPRs) 

(Implied with 

Bauxite) 
(Implied Lower) - [127] 

 

Additive combinations take advantage of complementary flow and densification processes, significantly 

improving energy efficiency and sustainability. Table 2 clearly shows the specific results associated with each 

category of additives, showing how these unique formulations reach temperatures below the conventional 
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sintering range of 1300 to 1600°C. Additive selection depends on their interactions with the base material, while 

sustainability initiatives focus on integrating waste-derived resources and energy-saving practices. This approach 

not only improves performance but also promotes environmentally friendly manufacturing. 

Use of solid waste in temperature reduction  

In the production of ceramic proppants, it is crucial to lower sintering temperatures to enhance energy efficiency 

and boost material performance. Although conventional mixtures are essential in this process, the integration of 

diverse solid waste has emerged as a practical alternative [135, 136]. Many studies have shown that these wastes 

significantly contribute to lower sintering temperatures, resulting in economic and environmental benefits. 

Among the effective solid waste, fly ash stands out as a candidate of choice [137]. This by-product, which is the 

product of coal burning in power plants, contains high concentrations of silica and alumina. Research indicates 

that integrating fly ash into proppant formulations can reduce the required sintering temperature [138].  

Moreover, proppants formulated with fly ash have desirable mechanical properties and often have performance 

characteristics that satisfy or exceed those of traditionally produced materials. The coal gangue also emerges as a 

solid waste promising for proppant production [139, 140]. As a by-product of coal mining operations, the coal 

gangue has a favourable chemical composition that allows it to replace bauxite in propelling formulations [141]. 

Manufacturers can achieve substantial savings using the coal gang while reducing sintering temperatures. This 

dual advantage underscores the importance of exploring alternative materials to improve resource efficiency 

within the industry [142].  

Furthermore, the ash of the rice hull, created from the burning of the rice bark, offers essential advantages in 

producing proppant. Enriched with silica, rice shell ash can effectively reduce sintering temperatures while 

improving the physical properties of the ceramic material [73, 143]. This strategy is attractive because it 

promotes increased profits and sustainable agricultural waste management while supporting our broader 

environmental goals. It’s worth noting that bauxite waste, a by-product of alumina mining, offers a fantastic way 

to reduce temperatures in proppant production.  

Research indicates that including bauxite waste in proppant formulations lowers sintering temperatures while 

maintaining the structural integrity of the final product. These tailings significantly reduce the environmental 

impact of bauxite mining while actively promoting the recycling of industrial by-products [11, 144]. The careful 

incorporation of solid wastes into ceramic applications tells you that the flying tips, the charcoal rod, the rib tip 

tips and the bauxite tips considerably reduce the frying temperatures. This process improves the effectiveness of 

environmental defences entirely in favour of activities that reduce energy consumption and consumption to a 

minimum [145, 146]. The literature strongly supports the approach, highlighting are powerful and considerable 

impact to improve the durability of the ceramics proppants production. 

Mechanisms of Sintering Additives 

Sintering additives lower the thermal energy required for ceramic proppant densification through three 

interrelated mechanisms: liquid-phase formation, enhanced solid-state diffusion, and surface energy modification. 

The interplay of these mechanisms enables energy-efficient production while maintaining mechanical 

performance, though trade-offs between additive efficacy and proppant properties necessitate careful 

optimisation, as explained in Figure 6 [135]. 

The most often-used method employs additives to generate transient liquid phases at low temperatures, allowing 

particle rearranging and pore elimination [147].  In bauxite-coal gangue systems, for example, CaCO3 breaks 

down into CaO by the use of low-melting eutectic liquid produced by interactions between silica and alumina 

[148]. This phase facilitates sintering at 1350°C-150°C below additive-free formulations while maintaining a 

breakage ratio of 8.41% under 52 MPa closure pressure [149].  Likewise, feldspar's low melting point (~1100°C) 
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generates a viscous glassy phase that envelops bauxite particles, diminishing interfacial energy and facilitating 

sintering at 1280 °C when paired with refined milling techniques. Manganese dioxide (MnO2) illustrates this 

mechanism by dissolving into the corundum lattice, resulting in lattice distortions and the formation of low-

viscosity melts (e.g., anorthite, CaAl2Si2O8) that improve densification in ODCPR-bauxite systems at 1280°C 

[150]. The effectiveness of these additives is fundamentally influenced by the wettability and viscosity of the 

liquid phase, which determine pore clearance kinetics and the resultant microstructure [151]. 

Although secondary to liquid-phase effects, specific additives enhance ion mobility in the solid state, especially 

during the last stages of sintering.  MnO2, as explained briefly in Figure 6, for example, incorporates Mn4+ ions 

into the corundum lattice, creating oxygen vacancies that facilitate the diffusion of Al3+ and O2- ions. While less 

common than liquid-phase methods, diffusion enhancement is crucial in improving microstructural homogeneity 

by utilising partial melts. In Al2O3-cullet glass systems, sodium fluoride (NaF) effectively reduces diffusion 

activation energy, reinforcing grain boundaries without needing full liquid-phase saturation [152, 153]. 

Additionally, feldspar and cullet glass serve as fluxes that significantly lower the surface energy of ceramic 

particles, leading to improved bonding at lower temperatures. This process enhances overall material 

performance and stability. Below normal sintering conditions, Feldspar reduces the interfacial tension between 

bauxite particles and molten phases, enabling neck development at temperatures ranging from 1400 °C to 100 °C. 

Systems with restricted liquid-phase formation, where atomic-scale surface contacts predominate early-stage 

densification, depend mainly on this mechanism [154, 155]. 

 

 

Figure 6. Optimisation Sintering Additives for Ceramic Proppants 

 

Combining additives often produces better results using synergistic reactions. This is illustrated in fly ash-

bauxite proppants via the MnO2-dolomite system [156]. While dolomite-derived MgO promotes mullite 

nucleation, which results in full densification at 1200 °C, MnO2 facilitates liquid-phase sintering; likewise, by 

merging glass-mediated melting (cullet) with fluoride-enhanced diffusion (NaF), Al2O3, cullet glass, and NaF 

combinations lower sintering temperatures to 1100 °C [157].  Nonetheless, additive inclusion presents trade-offs. 

Excessive liquid phases might elevate porosity (e.g., >5 wt% CaCO3 increases breaking ratios), whereas 

expensive additions such as V2O5 may negate energy benefits. Furthermore, the requirement of compositional 
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optimisation is a factor in phase stability, particularly the anorthite produced by MnO2 that influences acid 

resistance [158]. 

Effective sintering temperature reduction hinges on balancing liquid-phase formation, diffusion enhancement, 

and surface energy modification. Additives like CaCO3, feldspar, and MnO2 demonstrate robust performance in 

bauxite- and waste-derived systems, with synergistic combinations enabling sintering below 1200 °C [121]. 

Performance Evaluation of Non-Burning Proppants 

Mechanical proppant strength is essential to hydraulic fracturing success as it directly affects fracture 

conductivity, toughness, and resistance to subsurface stress. Lo-carbon proppants, which have been engineered 

to lower carbon footprints without diminishing structural strength, share the same mechanical characteristics or 

superior ones compared to conventional proppants such as silica sand, resin-coated sands and ceramic products. 

Their compressive strength, crush resistance, and sphericity/roundness are tested and compared to industry 

standards and available market alternatives, as it is shown in Table 3 [159, 160]. 

 

Table 3. Comparative Mechanical Properties of Low-Carbon vs. Conventional Proppants 

Property 

Solid Waste-

Based 

Proppants 

Silica Sand 
Resin-Coated 

Proppants 
Ceramics Ref. 

Compressive 

Strength 
54 MPa 35-40 MPa 45-50 MPa 50-100 MPa [161-163] 

Crush 

Resistance  
5.2% fines 14.8% fines 4.1-4.9% fines <3% fines 

[111, 163, 

164] 

Sphericity 0.92 0.65 0.85 0.95 
[111, 162, 

165] 

Density 2.2 g/cm3 2.65 g/cm3 2.4-2.6 g/cm3 3.2-3.8 g/cm3  

 

Proppants from by-products have unmet robust chemical stability, polymer coatings are reluctant to acid-induced 

mass loss to less than 5% after 72 hours of hydrochloric acid (HCl) exposure. The thermal degradation remains 

below 3% after 14 days at 150°C, aligning with the performance of high-end ceramics and ensuring durability 

under challenging tank conditions. Although the low-carbon proppants do not attest to the compressive strength 

of ultra-high-strength ceramic (70-100 MPa), they are out of reach of 40% of the carbon incorporated (1.2 kg 

eq/kg CO2 compared to 2.5 kg eq/kg CO2 for ceramics). Using recycled materials further improves their 

durability, making them a viable alternative without compromising operational efficiency. This balance impairs 

the objectives of decarbonisation in the extraction of hydrocarbons. 
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Balancing Strength and Sustainability Innovations in Proppant Materials 

Recycling Waste from By-product to Layer High-Performance Proppants 

The use of solid waste in manufacturing proppants is an eco-friendly approach to environmental and economic 

issues in hydraulic fracturing. While effective in maintaining fracture conductivity, traditional methods of 

producing proppants are environmentally degrading and wasteful. The mechanical properties of proppants can be 

enhanced by using industrial waste by-products like fly ash. Low-grade bauxite and fly ash proppants possess a 

bulk density of 1.352 g/cm3 and a breakage ratio of 5.3% at 35 MPa pressure [166]. Similarly, Coal gangue low-

density ceramic proppants perform best at 1400°C with a bulk density of 1.28 g/cm3 and a breakage ratio of 

7.89% at the pressure of 52 MPa [166]. 

However, heavy metal and organic compound waste material contaminants severely impact proppant 

performance and safety. Pre-treatment methods such as hydro-acoustic cavitation effectively remove 

contaminants. Still, they are expensive [167]. Emerging recycling technology, including fluidised bed reactors, 

has increased the mechanical integrity of proppants from wastes under optimised sintering conditions [168]. 

Though cost reductions are part of the situation when using waste feedstocks, problems are encountered, 

predominantly waste pre-treatment and quality control. Nevertheless, scientific studies prove that low-density 

proppants developed at reduced sintering temperatures can meet industrial demands with fewer preparation 

expenses [56]. Moreover, field-scale simulations demonstrate that optimal proppant pumping programs can 

potentially boost gas production by 8.2%. 

Using solid waste in proppant production has economic and environmental benefits. By increasing recycling and 

supporting positive regulation, proppants from waste can help make hydraulic fracturing sustainable while being 

high-performance and low-cost. 

Environmental Challenges of Proppant Production 

Proppants are essential for hydraulic fracturing, but their manufacture poses environmental and health problems. 

To adapt to sustainability and economic objectives, a transition from low-carbon to high-carbon alternatives is 

required, as explained in Figures 7 & 8 [169, 170]. Traditional resin-coated proppants, for example, emit toxic 

compounds such as phenol and formaldehyde, resulting in groundwater contamination and the destabilisation of 

fracking fluids. Premature curing of resin coatings further reduces the conductivity of the fracture, compromising 

operational efficiency [171]. 

To address these problems, durable alternatives have been developed: non-phenolic resin-coated proppants 

remove toxic components and reduce groundwater pollution while optimising hardening kinetics to match 

fracture closure dynamics, thereby improving performance stability [172, 173]. Fly ash proppant, synthesised 

from coal-burning by-products, has enhanced compressive strength and durability.  
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Figure 7. Transition Challenges in Low-Carbon Proppants Adoption 

This approach reduces carbon emissions and helps recover industrial waste, aligning with the principles of the 

circular economy, as presented in Figure 8. Notwithstanding this advancement, propensity production continues 

to be linked to habitat disruption, soil erosion, and water pollution. Energy-intensive sintering processes, 

frequently reliant on fossil fuels, significantly impact the carbon footprint [174]. 

Mitigation options include microwave sintering, which expedites densification by volumetric heating, achieving 

up to 99% savings in hybrid systems. However, the challenges of scalability hinder widespread commercial 

adoption. Non-toxic coatings and low-temperature sintering minimise environmental impacts while maintaining 

mechanical integrity. Economically, low-carbon propellants can result in higher upfront costs, but they can 

achieve long-term savings through reduced ecological remediation, regulatory compliance and waste disposal 

expenditures [175, 176]. 

Fly ash propellers, for instance, diminish raw material expenses and coal waste disposal burdens while 

enhancing operating efficiency through improved heat resistance and crushing capabilities [177].  Biomass 

proppants originating from renewable sources provide an alternative sustainable solution. These biodegradable 

materials mitigate the effects of resource extraction, necessitate less production energy, and exhibit performance 

akin to traditional proppants [178]. 
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Figure 8. Environmental Impact and Solution in Proppants Production 

 

Overall, the production of proppants faces considerable environmental barriers.  However, progress in low-

carbon materials (such as fly ash and bio-based raw materials), energy-saving processes (such as microwave 

sintering) and waste recovery offer viable solutions.  This development aligns the decarbonisation objectives 

with the economic requirements of hydraulic fracturing operations [164]. 

Conclusion  

The introduction of low-emission carbon reduction solutions derived from solid waste components signifies a 

fundamental shift in the hydraulic fracturing industry. This study examines the use of industrial by-products such 

as coal ash, coal gangue, and rice husk ash to enhance the material properties of proppants while significantly 

decreasing environmental impacts by reducing energy consumption and carbon emissions. Furthermore, the 

application of modern production methods, such as low-temperature sintering, illustrates the industry's robust 

commitment to sustainable practices consistent with the principles of a circular economy. Moreover, to use these 

advancements, the field must explore non-sintered support technologies crucial for attaining sustainable 

hydrocarbon extraction. The efficacy of these technologies relies on addressing technological, environmental, 

and regulatory challenges that currently impede their extensive dissemination.  Future research should 

concentrate on the sustainability and scalability of non-sintering techniques, promoting interdisciplinary 

collaboration among engineers, environmental scientists, and policymakers. These targeted initiatives will 

facilitate transformative benefits, including reducing carbon emissions and improving resource efficiency, which 

will align hydraulic fracturing methods with the Sustainable Development Goals. With these sustainable options, 

the hydraulic fracturing industry can effectively address resource extraction issues while supporting 

environmental management and corporate responsibility. Ultimately, these collaborative efforts will ensure the 

resilience of the oil and gas sector in the future while maintaining low carbon emissions. 
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