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Abstract 

Most of the crude oil production forecasting and modeling studies have focused on the traditional model of decline 

curve analysis as techniques used for generating forecast values of future oil and gas in place in conventional and 

unconventional wells. To many production reservoir economists, the importance of forecast estimations is critical 

because it allows forecast users to have a profound interest in monitoring and improving forecast performance. It 

also provides clear indications for the directions, strategies, and bottom line of both the National Oil Companies 

(NOCs) and International Oil Corporations (IOCs). While the traditional DCS model techniques have well-

grounded mathematical underlining. This statistical design does necessarily assure that predicated function 

regardless of the values of the predictive variables. Moreover, the power traditional oil reservoir production 

forecasting technique is inefficient. This current research attempts to provide appropriate modeling and forecasting 

techniques for reservoirs utilizing a time series approach. It reveals how the historical oil production data can be 

used to project future oil reservoir production and how these projections influence future oil reservoir production 

decisions. Hence, the main objective of this research study is to practically explore the possibility of the 

autoregressive integrated-moving average model as a feasible function preference for predicting crude oil 

production. The historical oil reservoir production time series were used to establish respective autoregressive 

integrated moving average models through the time series technique by Box–Jenkins and the suitable models were 

designated with four performance criteria: maximum likelihood, standard error, Schwarz Bayesian criterion, and 

Akaike criterion for seven elected regions oil reservoir production and the established models conformed to the 

ARIMA (p, d, q). Once the process is identified, the adequacy of the forecasts will be determined and compared 

with the traditional decline curve analysis. Thus, as an accurate and effective oil production prediction for 

stretching a reservoir life cycle and enhancing reservoir productivity and recovery factors. These results provide 

production economists and reservoir engineers with quick, reliable, consistent, and real-time guidelines in 

budgeting, planning, and making decisions regarding field development. Finally, ARIMA forecasting models are 

more precise and deliver operational efficiency for dynamic forecasting of oil reservoir production.  
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1. Introduction 

 

Oil and gas production sustainability is critical to the profitability and bottom line of both the National Oil 

Companies (NOCs) and International Oil Corporations (IOCs). Therefore, the volatility in crude oil production 

poses an acute challenge not only to the NOCs and IOCs but also to the global oil and gas market (Uwakonye, 

Osho & Anucha, 2006). Yikun, et al (2022) noted that over the past decades, global crude oil reserves have 

increased, and production has surged due to hydraulic fracturing technology generally called fracking: a well 

stimulus practice that deploys liquid compound to generate and reestablish slight fractures in a rock formation to 

boost oil production and permit increased efficiency for both oil and gas wells (Zhang, He, Wang, & Liang 2022). 

This makes available for the recovery from a well reservoir that reservoir engineers and production economists 

once believed was impossible to produce. 

 

In the United States where hydraulic fracturing technology is primarily noticeable, the U.S. Energy Information 

Administration assesses that the United States oil and gas production would average about 12 million b/d in 2019, 

a surge of about 10% compared with that of the 2018 daily production output level. By 2020, it suggested that the 

projected oil and production would increase by one million barrels per day and to a yearly average of about 13 

million barrels per day. This plunging daily hydrocarbon output growth level also imitates comparatively fixed 

hydrocarbon price levels and stalling increases in the general productivity index and oil well performance. 

 

 

 

http://www.iiste.org/
mailto:gsosho@pvamu.edu


Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.13, No.1, 2023 

 

37 

 

Figure 1. United States Crude Oil Production and Components of Annual Change 

 

 
 

Source: U.S. Energy Information Administration: Short-Term Energy Outlook  

 

Therefore, modeling the future crude oil production potential of formations by both conventional and 

unconventional is one of the reservoir engineers’ and production economists’ most central responsibilities. As in 

conventional wells, future crude production for unconventional formations is usually projected by fitting a line 

over previous production data based on current trends and then implying the curve to forecast future production 

values, a procedure known as Decline Curve Analysis. It is normally and widely deployed to predict oil and gas 

production and estimate the amount of oil in place. 

 

The DCA predictions are usually the basis of most oil and gas business decisions and strategies on exploration, 

field development, facility and property expansions, and loan guarantees.  It is also used for economic evaluation 

to support oil and gas capital budgeting on operational expenditure OPEX and capital expenditures and CAPEX. 

The traditional Decline Curve Analysis (DCA) forecasting model established by Arps for conventional formations 

is well grounded on empirical observations of production rate. Nevertheless, it does not have an underline 

theoretical derivation. The DCA is an oil well production observed method that deduces patterns in the production 

data from reservoir formations (Osho, Oloyede, Adetosoye, Fernandes, and Samuel 2005). Furthermore, the 

primary goal of the DCA is twofold: first, to create projected values of future production rates. Second, to provide 

an estimate of anticipated eventual recoverable productions. Over time, the DCA technique has improved for use 

in conventional and unconventional formations. The modified DCA method foists an exponential decline with a 

definite decline rate.  

 

Ayeni and Pilat (1991) noted that the DCA is perhaps only applicable to predicting oil and gas depletion-type of 

reservoirs with high production capacity. The study suggested that it may not be adequate for reservoirs that are 

producing at a constant rate or nearly constant with time. Omekara et al. (2015) applied the autoregressive moving 

average to forecast Nigeria’s oil production from 2006 - 2015. The importance of their findings suggests that oil 

production could be used to establish the future oil refinery volume in the Nigerian economy. This production 

forecast does not consider other relevant information they know in making their predictions. The results indicated 

that projected rationality is often challenged by determining whether the forecasters’ prediction errors are 

predictable. 

 

Since forecasts are of great importance and generally used in hydrocarbon production estimates. Hydrocarbon 

production forecast values are typically deployed for estimating residual oil in place, actual reserves, and expected 

ultimate recoverable reserves. To many production reservoir economists, the importance of forecast estimations is 

very critical, not only because it allows forecast handlers to check and advance prediction performance but also 

because it provides clear indications as to the directions, strategies, and bottom line of both the National Oil 

Companies (NOCs) and International Oil Corporations (IOCs).  

While the traditional DCA model techniques have well-grounded mathematical underlining. In addition, they are 

generally used to optimize production operations, business strategies, and planning. Thus, comprehensive oil and 

gas production forecast values technically lead to good business strategies and decisions. The distinction of oil and 

gas production forecast estimations is naturally a keen interest in monitoring and improving oil and gas production 

performance for both reservoir engineers and production economists. Hence, the principal objective of this research 

study is to practically investigate the likelihood of the autoregressive integrated-moving average approach as a 
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feasible process preference for predicting crude oil production. Once the model has been identified, the adequacy 

of the forecasts will be determined and matched with the traditional decline curve analysis. 

 

In the early 1900s, production engineers noted that oil and gas future production could be projected by fitting an 

exponential function to historical decline rates data. Towler (2002) noted that DCA is used to investigate the 

association between oil and gas production flow rate and time for production. Generally, it was observed that the 

exponential function only suited well for certain oil and gas formations in production at the time. However, it did 

not sufficiently characterize the performance of some producing formations in depletion drive reservoirs. 

Furthermore, the traditional decline curve analysis can only extrapolate historical production data as an input-

output modeling process and provide history match forecasts by using a well defines hyperbolic differential 

function in the form: 

 

2. The Theoretical Framework 

 

2.1 Box-Jenkins Models 

A historical series sequence is said to be stationary when its mean is finite and autonomous of time. When variables 

exhibit a constant finite mean, variance, and autocovariance are time-independent finite, constant, and stationary. 

When the three criteria are met, this time series process then implies weak stationarity. Generally, times series of 

variables often display nonstationary levels. As noted by Muşetescu, R. C., Grigore, G. E., & Nicolae, S. (2022), 

and In 19976 Box and Jenkins established a functional procedure for a total class of the autoregressive integrated 

moving average models.  The autoregressive integrated moving average processes are relevant mainly for 

stationary time series processes, if the mean is normally distributed, the variance and the autocorrelation function 

stay constant over time. Autoregressive integrated moving average processes are suitable for series with robust 

pattern characteristics, seasonal and nonseasonal processes, and random walk. 

 

In model selection, the first stage is to identify a rough class of processes and their subclasses.  The second stage 

is for the tentative process to be fitted to the historical series. Then, the third stage is to obtain parameter estimates.  

The loose estimates attained the at identification stage are utilized as initial values for the estimation of parameters.  

Lastly, diagnostic checks are deployed to determine the inappropriateness of fit.  When no inappropriateness is 

specified, the estimated process would then be deployed for forecasting. However, when inappropriateness is 

unveiled, the reiteration processes of identification, estimation, and diagnostic checking were rerun pending when 

an appropriate process is discovered. 

 

The value of a time series prediction is governed by the performance of the stochastic model that describes it.  The 

basis of parsimony which is widely used by forecasters states that a model must sufficiently represent the data 

applied to it and as few parameters as possible (Osho, 2019).  A major effort is applied to finding an appropriate 

stochastic model for predicting the future value of the series. The theoretical underpinnings defined in Box and 

Jenkins (1976) are quite sophisticated, but the nonspecialist can understand the methodology’s essence.   

1−= tt yBy                                                                                   (1) 

tttt yyyyB =−=− −1)1(                                                                        (2) 

A useful process to characterize a non-stationary time series is the autoregressive integrated moving average model 

ARIMA (p, d, q) model: 
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An appropriate conversion is often necessary in some cases to be estimated from data. Assume a process in this 

order has been fitted. In practice the estimates are usually obtained directly from the error model by differencing 

the process: 
dp

dp

d BBBBBB +

+−−−−=−=  ...1)1)(()( 2

21                                 (7) 

The error model is generated to articulate the process in terms of the previous term series: 

qltqltdptdpltt aayyy −+−+−−++−++ −−−++=  ...... 111111                                      (8) 

The forecasting precision of the processes may be likened numerically using the values of the estimated residual

a

^

  values in the time series of the univariate process.  The extent of information is relative to the inverse of the 

standard deviation. An additional measure for matching the forecasts that are an estimate of the variance and the 

mean square error.  A process with a small mean square error gives more precise forecasts than a process with a 

large mean square error (Osho, 2018).  The mean square error is given as the average square of residuals of the 

forecasts when the residual is given as follows: 
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Generally, another criterion that was defined by using the root mean square error of the forecasted value a 
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This statistical benefit of having the point calibrations is equal to zero when the prediction values are perfectly 

accurate, and it is routinely equal to one when the raw prediction of no change. 

 

3. Results 

For the study, oil production monthly data from 2007 - 2020 from seven regions were obtained. The time plots for 

oil production are presented in Figure 2. To confirm whether the time series data is stationary, plots were shown 

in Figure 3. It is noted that the time series is non-stationary and with no variation at a static level. First, a visual 

inspection of each well production data and the time plot indicate the forecast errors have essentially equal variance 

over time with mean all around zero. A unit root analysis was conducted to establish stationarity for each well 

production data. 

Figure 2. The Time Plots for Oil Production Monthly Data from 2007 – 2020 

 

 

For this, the augmented Dickey-Fuller (ADF) test indicated that the series is non-stationary. Since the ADF test 

describes whether the change in 𝑦𝑡+1 = 𝜑1𝑦𝑡+𝑙−1+. . . +𝜑𝑝+𝑑𝑦𝑡+1−𝑝−𝑑 − 𝜃1𝑎𝑡+𝑙−1−. . . −𝜃𝑞𝑎𝑡+𝑙−𝑞 is clarified with 

a lagged value and by a linear trend and estimated for non-stationarity. To predict the oil reservoir production, the 

time plots for oil production of the time series against periods are presented in Figure 2 for each Well and examined 

that there is an increasing pattern in the time series and therefore, the observed pattern was eliminated. The results 

indicated that stationarity was established after the second difference.  
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Figure 3. Transforms Difference (2, period 12) 

  
 

 
 

 
 

 
 

For stationarity, the time series displayed in Figure 3, oscillates about the mean with the ACF and PACF decay to 

around zero relatively promptly which demonstrates the stationarity. Additionally, to gauge whether the time series 

is from a stationary process, the unit root Dickey-Fuller test for stationarity was conducted. Figure 4 indicates ACF 

and Partial ACF with seasonally differenced series for each well. Figure 2 shows the transforms after the difference 

between the autocorrelation and partial autocorrelation plots and the findings were shown in Table 1. Furthermore, 

using the ACF and PACF plots of the proposed process for each Well were determined. Accordingly, it is essential 

to transmute the nonstationary time series to become stationary and generate a stationary, the first differences were 

obtained as shown in Table 2. The first difference series is displayed as shown in Figure 3. Those ACF and PACF 

plots of the first differences with the lagged time signify stationarity. 

 

Figure 4. ACF and Partial ACF with Seasonally differenced Series for Each Well 
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Figure 5 indicates ACF and Partial ACF for ARIMA Model for each Well. To establish whether the errors in the 

ARIMA forecast are normally distributed, the forecast errors with a time plot were visualized. The coefficient 

estimates of each model were displayed in Table 2 with the standard errors. It was noted from the results that the 

coefficient estimates and p-values for each AR and MA process are very significant. From these examinations of the 

times series, it is concluded that the formed ARIMA models are satisfactory.  

 

Figure 5. ACF and Partial ACF for ARIMA Model for Each Well 
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  Table 1: ARIMA Models 

Well 

Region 
AR d MA AIC BIC 

AR MA 

Sig sig 

Well 1 1 2 1 5075.2 5084.7 0.042 0.000 

Well 2 1 2 2 4817.0 4829.7 0.000 0.008 

Well 3 2 2 1 4529.1 4541.8 0.000 0.000 

Well 4 1 2 1 4745.3 4754.8 0.064 0.000 

Well 5 2 2 2 4866.9 4882.9 0.006 0.001 

Well 6 2 2 1 4558.5 4571.2 0.008 0.001 

Well 7 1 2 1 5091.3 5101.0 0.009 0.001 

 

Consequently, it was determined that the mean for each Well data is normally constant thru the time series over time 

and therefore their applicability for time series models was established. The values of error autocorrelation and error 

partial autocorrelation functions for each well are given in Table 2 and their respective plots are presented in Figure 

4. The PACF also has one spike that concluded that an auto-regressive of order one is suitable for the time series data. 

From the ACF, these suggest that there was one spike in all most for all the time series Well-data and nearly all 

signaling an AR (1) and MA (1) behavior. In addition, differencing was carried out one time to establish stationarity, 

this enhances the identification of an autoregressive integrated moving average ARIMA model as a suitable model for 

oil well production time series data. With the autoregressive and moving average orders identified based on the pattern 

revealed by ACF and PACF with the first order differencing, the ARIMA model for each Well is specified in Table 

1.  

 

Once the models were identified, parameter estimates were obtained using SPSS program precisely intended for 

ARIMA process construction. Furthermore, each Well time series process was checked for suitability by deploying 

the diagnostic command in SPSS. For each model, a residual error analysis test was conducted. For each identified, 

each Well time series process, the standard error test was similarly performed. These results were obtained at a level 

http://www.iiste.org/


Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.13, No.1, 2023 

 

45 

 

of significance (p = 0.05) and the corresponding degrees of freedom are provided in Table 2. Each Well model was 

found to be satisfactory at p =0.05. 

 

Table 2: Parameter Estimates for ARIMA Models  

Well 

Region 

ARIMA 

(p,d,q) 

Parameter 

estimates 

 

Standard error 

 

Approx.  

Sig 

 

df 
AIC  BIC  

 

log-

likelihood 

Well 1 (1,2,1) 

-0.056 

0.946 

 

0.080 

0.030 

0.042 

0.000 

 

174 5075.2 

 

 

5084.7 

 

 

-2534.58 

Well 2 (1,2,2) 

-0.945 

0.073 

0.922 

0.202 

0.244 

0.247 

0.000 

0.008 

0.000 

174 4817.0 

 

 

4829.7 

 

 

-2404.51 

Well 3 (2,2,1) 

0.462 

-0.302 

0.957 

 

0.075 

0.073 

0.050 

 

0.000 

0.000 

0.000 

 

 

174 

 

4529.1 

 

 

 

 

4541.8 

 

 

 

 

-2260.57 

Well 4 (1,2,1) 

-0.038 

0.917 

 

0.082 

0.034 

0.064 

0.000 

 

174 4745.3 

 

 

4754.8 

 

 

-2369.64 

Well 5 (2,2,2) 

0.466 

0.057 

1.624 

-0.725 

 

0.168 

0.111 

0.149 

0.119 

 

0.006 

0.610 

0.000 

0.000 

 

174 4866.9 

 

 

 

 

4882.9 

 

 

 

 

-2428.49 

Well 6 (2,2,1) 

-0.045 

-0.022 

0.969 

 

0.078 

0.078 

0.022 

0.008 

0.001 

0.001 

 

174 

 

4558.5 

 

 

 

4571.2 

 

 

 

-2275.25 

 

 

Well 7 

  

(1,2,1) 

 

-0.196 

0.989 

 

0.075 

0.041 

 

0.009 

0.001 

 

174 5091.3 

 

 

5101.0 

 

 

-2542.73 

 

4. Conclusion 

This current study discourses fitting of ARIMA model to selected United States oil production monthly data from 

2007 – 2020 from seven regions obtained from the United States Energy Information Administration, International 

Energy Statistics. The primary goal is an attempt to build a forecasting model that may be deployed to generate 

forecasts values of United States oil production essential and required for oil field economics decision-making and 

strategic budgeting and planning. Initially for the United States selected oil production wells, the data were non-

stationary. After the unit root and differencing were conducted to sure the stationarity. The result of the analysis 

confirms that the suitable model is a multiplicative autoregressive moving average with a difference order. The 

historical oil production time series were deployed to establish various ARIMA processes through Box–Jenkins 

technique and the satisfactory models were designated upon four performance criteria: maximum likelihood, standard 

error, Schwarz Bayesian criterion, and Akaike criterion for seven elected regions’ oil production and the established 

models conformed to the ARIMA (p, d, q).  

 

The outcomes achieved demonstrate that the forecast models may be to generate forecast values for future oil 

production. Thus, accurate and effective oil production prediction is crucial for stretching a reservoir life cycle and 

enhancing reservoir productivity and recovery factors. Finally, ARIMA forecasting models are more precise and 

deliver operational efficiency for dynamic forecasting of oil reservoir production. The study results confirm that 

ARIMA modeling can investigate time series dynamics by removing the consequences of hysteresis. The 

acknowledged oil reservoir production ARIMA models can provide accurate and predictive capabilities. This study 

further reveals that ARIMA modeling is a robust and efficient technique for oil reservoir production forecasting and 
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provides consistent decision-making needed for successive oil reservoir production. These results provide production 

economists and reservoir engineers with quick, reliable, consistent, and real-time guidelines in budgeting, planning, 

and making decisions regarding field development. 
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