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Abstract:  

State of Charge (SOC) represents the available battery capacity and is one of the most important states that need 
to be monitored to optimize the performance and extend the lifetime of lithium-ion batteries. SOC estimation is a 
challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and 
distinct nonlinear behavior. This paper compares two of the basic methods and algorithms for SOC estimation of 
lithium-ion batteries (LIBs) focusing on the description of the two techniques in a test experiment and the 
elaboration of their differences for use in battery management systems (BMS) applications. A Reduced-order 
unscented Kalman filter method is used for estimation and tracking to realizer real-time high-precision estimation 
of lithium-ion battery state of charge. Experimental tests are carried out with a lithium-ion battery cell for model 
and state estimation validations. Many researchers have proposed different methods of estimating SOC that raised 
the challenge of establishing a relationship between the accuracy and robustness of the method. The experimental 
results of the OCV-SOC estimation method, Hybrid Pulse Power Characterization (HPPC) test, and Beijing Bus 
Dynamic Stress Test (BBDST) working condition method are analyzed. The error of SOC estimation based on the 
established Thevenin RC modeling using the Reduced-order-unscented Kalman filter is less than 0.3%. The result 
from the use of the reduced-order unscented Kalman filtering algorithm proves that it has high accuracy in the 
state of charge estimation of the lithium-ion batteries. 
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1. Introduction 

The lithium-ion battery (LIB) is perhaps the most used battery among the new energy sources and is more likely 
to replace lead-acid batteries. Interest in developing batteries for electric vehicles and mobile applications has 
increased tremendously because of its clean energy and environmental friendliness. Lithium-ion batteries are now 
widely used as a main source of energy for many applications from portable electronics to electric vehicles (EVs) 
[1, 2]. The most promising battery technologies are the LIBs and are the preferred power supply for EVs, laptops,  
notebooks, mobile phones, tablets, rechargeable lamps, cameras due to their advantages of large capacity and low 
associated costs, long cyclability life, and high energy density with no memory  [3, 4]. The efficiency of lithium-
ion battery application requires an effective battery management system (BMS) with functional requirements of 
maintaining, monitoring, and estimating an accurate and precise state of charge (SOC) of the battery individually 
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or in a stack [5, 6]. However, LIBs require special handling to avoid deterioration of battery performance and 
prevent situations that could result in severe damage or explosions and reliability of the cell under operation [7]. 
The battery state of charge (SOC) is one of the most important states of a battery to keep track of to optimize 
performance [8]. The monitoring and regulation of the states of batteries are done by a BMS that uses a battery 
analytical model and consists of hardware and software for battery management and to ensure the safe operation 
of the battery and prolong life [9, 10]. The BMS includes, among others, algorithms to determine the battery’s 
more critical states. For EV, electric motorcycles, balance cards, scooters, and smart grids applications, batteries 
must not only deliver a certain amount of energy to the drive train during operation but also provide power in 
different road situations [6]. For this reason, it is essential to know the maximum power that can be delivered to 
and from the battery by charging or discharging, respectively, with SOC being needed for making decisions on the 
operation.  

The electrochemical model, neural network model, and the equivalent circuit model are three commonly used 
equivalent models of lithium-ion batteries, among which the equivalent circuit model has been widely used due to 
its simple structure, suitable accuracy, and the estimation of SOC of the battery by processing a large number of 
real-time input and output data of the battery [11, 12]. To explore the performance differences between different 
model structures, [13] studied 12 kinds of equivalent circuit models with different structures, comprehensively 
analyzed the complexity and accuracy of the models, and concluded that the lower-order Resistor-Capacitor (RC) 
equivalent circuit models have better performance. Mastering the time-varying characteristics of model parameters 
is another key problem in the equivalent modeling of lithium-ion batteries [14, 15]. Factors such as battery aging, 
ambient temperature, and the charge-discharge rate will all have varying degrees of impact on model parameters 
[16, 17]. Through a large number of experiments, exploring the functional relationship between model parameters 
and environmental factors, and then constructing corresponding model parameter compensation strategies, is one 
of the most commonly used methods to improve model accuracy. [15, 18, 19] Analyzed and established the 
relationship between the open-circuit voltage, state of charge, charging/discharging characteristics, and battery 
capacity, and corrected the model's open-circuit voltage by real-time estimation of battery state of charge and 
capacity. Similarly, the internal resistance and resistor-capacitor parameters of the equivalent model can also be 
updated through the corresponding mapping relationship [20, 21]. However, the cell aging status is difficult to 
accurately obtain, especially when the equivalent model parameters are unknown [22]. Therefore, how to make 
full use of the aging law of the battery equivalent model parameters without accurately knowing the current aging 
state of the battery in [23] is the key to solving the above problems. 

The battery operations can be modeled to find and monitor their state, mainly the SOC. In estimating SOC two 
different approaches are used that’s definition-based and model-based [24]. A large number of solutions have been 
proposed by researchers, which have been gradually applied to the SOC estimation process of lithium-ion batteries. 
A SOC estimation study was conducted based on the OCV (Open Circuit Voltage) method in [25]. The online 
SOC estimation was realized using the lagging OCV model in [25-27]. An overview was conducted for the SOC 
estimation methods of lithium-ion batteries in [28]. The advent of Electric Vehicles (EVs) and Hybrid Electric 
Vehicles (HEVs) is to reduce energy consumption and environmental pollution caused by general vehicles [29]. 
The main advanced power battery source in an electric vehicle and electronic devices are based on Nickel Metal 
Hydride battery (Ni-MH) and lithium-ion battery [30, 31]. A lithium-ion battery and Nickel Metal Hydride battery 
(Ni-MH) is characterized by high capacity, long life, and high-power density, the present to be the main energy 
storage system of the electric vehicle going with the declining costs [32]. The economy is another very important 
aspect that will determine whether they can survive in the market competition. Meanwhile, the real-time and 
accurate estimation of the state of charge (SOC) of the battery would have an impact on the economy of the hybrid 
electric vehicle [33, 34]. Notwithstanding, considering the significant importance and wide range of applications, 
many challenges remain incapable in applications and cognizance to characterization and battery managements 
for lithium-ion battery technology [35]. To accommodate the optimal operating conditions for a battery, one should 
observe BMS facilitates safe and efficient charging/discharging of the battery [19]. The work of BMS also needs 
to control the battery charging and its discharging process to avoid a situation such as over-charging and over-
discharging, which leads to premature wear-out of the designed operating voltages. The battery becomes unstable 
and may pose a safety hazard if over-charged [36, 37] stressing the battery and this may lead to damage and 
reduction in its lifespan [38]. The estimation of SOC generally requires modeling of the battery cell and packs, the 
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structure of the battery model, and parameter identification should be based on characteristics of the charge-
discharge test under different temperatures, which need sufficient test data of batteries. Equivalent circuit models 
commonly used for lithium-ion batteries are the Thevenin and RC models [39, 40].   

To realize remaining battery life prediction, real-time battery management, and extending its useful life, more 
accurate monitoring of the battery's available energy and state of charge (SOC) is required. Two methods of 
monitoring the state of charge of lithium batteries are analyzed in this paper. Firstly, the OCV-SOC test method 
was used on the battery and the results were analyzed. The results were used to draw the OCV-SOC curve. The 
relationship between the OCV and SOC was determined through curve fitting in MATLAB. The results were 
compared with the results from the HPPC test. The HPPC test was also done with the same Lithium-ion battery 
and the data was analyzed with the OCV-SOC test results. Aiming at the goal of accurately describing the working 
state of Ternary lithium-ion battery, considering the accuracy and computational of the characterization, the 
Reduced-order UKF method is used to estimate the SOC of the lithium battery, which reduced the computational 
complexity of the traditional method. The rest of the paper is constructed as follows: The mathematical and 
theoretical analysis is conducted in section 2, including Thevenin modeling, state-space iteration, open-circuit 
voltage test, and the proposed HPPC-ROUKF algorithm for SOC estimation. In section 3, the experiments are 
illustrated as well as their estimation effect results. Conclusions and future works are finally reported in section 4. 
 

2. Mathematical Description 

2.1 Thevenin RC modeling 

The model chosen here is the Thevenin RC modeling [41], which is simple yet accurate enough for the control-
oriented purpose in EVs. The branch loop of the circuit has RP and CP, which are utilized to model the battery 
polarization effect. R0 denotes the ohmic resistance and is responsible for the instantaneous voltage drop of the 
step response. UOC denotes the open-circuit voltage of the lithium-ion battery and it changes with different capacity 
levels. UL is the terminal voltage of the lithium-ion battery pack and IL(t) is the current value at both ends. IL 
denotes the terminal current (current flowing into the battery is considered positive).  

CP

UOC/OCV

RPR0

IL

UP

UL

 

Figure 1. Thevenin RC modeling 

In Figure 1, the method was adopted because the topology generally proposes a tradeoff between battery cell 
computational requirements and the approximation of the precision. That can be expressed in Equation (1). 

0L OC PU U U U    (1) 

The model chosen here is the Thevenin RC modeling, based on Kirchhoff’s law, the electrical behavior of the 
circuit can be characterized as a complete cycle of an HPPC test with pulse and voltage reading at very important 
periods. These voltages read from the point of discharging after resting U1, then the point where the current was 
70A while discharging U2, followed by the endpoint of discharge U3. The point of the sharp rise of voltage is 
recorded as U4 and U5 was the last point before charging. In the experiment, this cycle was repeated 9 times. After 
the test, some data were extracted and used for identifying ECM parameters like R0, RP, and CP. 

 

 

 

 



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.11, No.6, 2021 

 

31 

2.2 State-space iteration 
The mathematical description represents the state-space of a physical system as a set of state variables, input, and 
output related, to differential equations. According to Kirchhoff laws, the Thevenin RC modeling is analyzed, and 
the voltage and current expressions of the equivalent circuit are obtained as shown in Equations (2) and (3). 
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Among them, the open-circuit voltage can be characterized by the state variable state of charge (SOC), and a 
nonlinear function relationship can be obtained. Using the knowledge of modern control theory, the equivalent 
circuit model is discretized. The definition of SOC is shown in Equations (4) and (5). 
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 (4) 

 
 0( ( )) ( ) ( )L OC P LU U SOC k U k I R k    (5) 

Where RP and CP represent the polarization resistance and polarization capacitance respectively. The estimate of 
the time and the observation of the current time update the estimate of the state variable. The Kalman filter 
algorithm estimates the essence of the lithium-ion battery SOC by using the ampere-hour (Ah) integration method 
to calculate the SOC and uses the measured voltage value to correct the SOC value obtained by the ampere-hour 
integration method equation.  
After taking the reading of the OCV with its corresponding SOC, the values were input into MATLAB and its 
curve-fitting tool was used to determine the best relationship between them. Open Circuit Voltage-Based 
Estimation (OCV) SOC estimation methods commonly impose a characterization of the OCV curve (mainly 
through a polynomial or a look-up table), as they use either a direct OCV curve inversion method (if the application 
permits cell steady-state voltage measurement), or a cell model-based method. Making voltage measurements to 
determine the SOC for the cell allows us to define the relation. Open-circuit voltage (OCV) refers to the potential 
difference between positive and negative electrodes when the external circuit is disconnected. After a certain 
period of shelving, the terminal voltage of the battery is approximately equal to the open-circuit voltage. There is 
a relatively fixed functional relationship between the OCV and SOC, as shown in Figure 2(a). 
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(a): Relations between SOC and OCV (b): Relations between SOC and R0 
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(c): Relations between SOC and RP (d): Relations between SOC and CP 

Figure 2. Relationship between SOC and OCV with R0, RP, and CP 

The OCV of the battery at each SOC point is measured, and then the OCV-SOC curve, which changes with SOC, 
is drawn. The corresponding functional relationship between OCV and SOC can be obtained by curve fitting tools 
in MATLAB as shown in Equation (6)Error! Reference source not found.. 

 1( )SOC f OCV  (6) 

The relationship between OCV and SOC of the LIB can be observed in Figure 2(a). It was found that OCV and 
SOC have nonlinear positive correlations and from the curve in the above figure, the OCV decreases as the SOC 
decreases until SOC was 0 at 4.20V. The discrete points of the OCV-SOC relationship of the LIB were obtained 
through the intermittent discharge process of the test and the overall variation curve was achieved by using the 
curve fitting method. The result of the fitting function is given by equation {a-b*(1-exp(-x/c))}. 

In Figure 2(b), R0, representing the battery internal “ohmic” resistance was plotted against the SOC. In the above 
figure, the ohmic resistance was high at the initial stage but dropped sharply because the battery was losing its 
energy. The derived equation for the ohmic internal resistance calculation is as shown in Equation (7). 
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From Figure 2(c), RP, representing the battery internal polarization resistance was also plotted against SOC to 
determine its relationship. It was observed that RP was fluctuating until at 0.6 SOC where there was a sharp increase 
from 1 to 7. The steep increase was due to the loss of voltage in the battery. The equation that best describes the 
relation is the corresponding weights as shown in Equation (8). 
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(8) 

In Figure 2(d), the relationship between the CP- Shunt capacitance (around RP) was identified. The CP values were 
plotted against SOC values by adjusting the degree to get a suitable shape. From the graph, the CP drops and 
ascends sharply and was a little flat from SOC 0.8 to 0.7 but dropped again. At 0.4 SOC, its capacitance dropped 
off and couldn’t rise again till the end of the test. The relationship between the CP and SOC is non-linear. The 
derived equation for the relationship between the CP and SOC was determined and the value of capacitor CP can 
be directly obtained in Equation (9). 
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(9) 

The fitted parameter is then shown with a polynomial of the 6th order, and the following results are obtained. The 
fitting results of the curve are R0, RP, and CP, respectively, reflect the parameters for the equivalent circuit of the 
model. The fitted results are shown in Equation (10(10).  
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(10) 

The open-circuit voltage is calculated as shown in Equation (11):. 

  1 1 1
t

OC PU U U U e      (11) 

The time constant is calculated as shown in Equation (12):. 

 
4 3

4 3

1 3

1

t t

U U
In

U U

 
 

 
  

 

(12) 

Based on the Thevenin RC modeling of the battery and its state space description, the specificity of the SOC 
estimation under the power group application condition was analyzed. The adaptive SOC estimation model 
framework for the combined conditions is shown below in Error! Reference source not found.. 
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Figure 3. The SOC estimation model framework 

In Error! Reference source not found., the IL(k) represents the current input by the system build, and UL(k) is the 
closed-circuit loop voltage output by the system build. The SOC(k) is the SOC value at k time point, and SOC(k-
1) is the SOC value at k-1 th-time point. The whole graph can be represented by the discrete space description of 
the nonlinear SOC estimation model. For (F1) it represents the state equation and (F2) represents the observation 
equation, and then the iterative calculation is realized by combining the discrete processing. By iteratively using 
the expression SOC=SOC(k-1) and replacing the effective parameter with the SOC value, an equation that is 
closely related to time can be obtained and used for the subsequent parameter replacement and characterization. 
Under the influence of random noise, the estimation process at different time points can be obtained. 
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Based on the equivalent model of the battery and its state-space description, the specificity of the SOC estimation 
under the power group application condition is analyzed. The adaptive SOC estimation model framework for the 
combined conditions is shown in Equation (14).  
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( 1) ( ) ( 1)
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 
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(14) 

The first-order prediction of the sinusoidal data point sequence should be calculated with the length of 2n+1 as 
shown in Equation (15). 

 
( ) ( )( 1) , ( 1) , 1, 2, , 2 1i iSOC k f k SOC k i L n        (15) 

Where n is the dimension of the state variable, λ is the scaling parameter, SOC is the mean of the state variable, 
and P is the covariance matrix. The corresponding weights are shown in Equation (16). 
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(16) 

The status update is calculated as shown in Equation (17). 

  ( ) ( | 1) ( ) ( ) ( | 1)L LSOC k SOC k k k U k U k k       (17) 

This method implements the estimation process based on the Kalman framework in the estimation process but 
does not require the nonlinear equation linearization calculation as the traditional SOC estimation methods. 
 

2.3 Reduced-order UKF Estimation  

To illustrate the UKF of the state estimation, a new application example corresponding to noisy time series 
estimation is provided. Combined with Thevenin RC modeling, considering the practical application, only SOC is 
selected as the system state variable, and the terminal voltage UL of the battery is taken as the observed variable 
of the system. The established battery state-space expression is as shown in Equation (18). 
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In the formula, the SOC value at time k+1 is predicted at time k, ∆t is the sampling interval time, QN is the rated 
capacity of the battery, and the actual value is subjected to capacity calibration. ILk is the current at time k, and the 
charging direction is positive. The output variable UL,k is selected. 

, 1 1( )L k kU f S O C   is a relationship 

between the open-circuit voltage and the SOC of the lithium battery? wk and vk+1 are process noise and observed 
noise, respectively.  
For the nonlinear problem of lithium-ion batteries, UKF does not adopt the way of forced linearization of the 
system but obtains a certain number of sampling points near the state estimation according to the sampling theorem 
and the statistical principle [42]. The sampling point is usually called the Sigma point and the condition that the 
Sigma point needs to satisfy is that it has the same mean value and covariance as the original state to ensure the 
transitivity to the original state. Then, the Sigma point set is nonlinearly transmitted using the state equation, the 
transformed mean and the optimal solution are obtained in the iterative process. This approximation is essentially 
a statistical approximation rather than a solution but has a higher computational accuracy for the statistics of 
nonlinear distributions. The implementation of reduced-order UKF can be divided into two stages: prediction and 
update. According to the symmetric sampling strategy, the Sigma point is selected as the sampling point and needs 
to satisfy the same mean and covariance as the original state. Let the value of the SOCk state variable at the time k 
known and the error variance matrix Pk. The implementation principle and the specific process is as follows. 
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1) Prediction stage 

The estimated value of the system state variable at time k+1, as shown in Equations (19). 

 ( ) ( 1 | ) ( ),i i
kSOC k k f SOC k u      (19) 

The algorithm uses the last time point instead of the SOC in the state space function, and only one calculation is 
needed to obtain the predicted SOC value. The predicted SOC was obtained by using Equation 17. The predicted 
value of the SOC state variance can be obtained as shown in Equation (20).  
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Where, ( )iSOC k  is the sampling point obtained by using the unscented transformation, i=1, 2, 3, ..., 2n+1, uk 

is the input variable. The sampling point is predicted in one step by combining Equation (20) with ……, and the 
mean value of the system state quantity prediction is obtained by weighted summation as shown in Equation 
(20). Similarly, the error variance matrix of k+1 time is predicted as shown in Equation (21). 
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The Sigma sampling points are updated and SOC(k|k+1) is obtained from Equations (20) and (21), and the 
sampling points are updated by combining Equation (6). Substituting the state quantity predicted value point set 
at time k+1 into the observation equation, using the observation equation to obtain the predicted value of the k+1 
time observation, and performing a state transfer in the observation equation. Then, the weighted sum is calculated 
to obtain the mean value of the measurement amount at time k+1, as is shown in Equations (22) and (23). 
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The variance matrix of the measured values, the covariance of the state quantity, and the measured quantity at time 
k+1 is calculated as shown in Equation (24).  
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2.3.1 Update state-space equation 

 2) Update phase 

The Kalman gain, update system state variable values, and the error variance matrix are calculated, as shown in 

Equation (25). 
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The Reduced-order UKF method implementation process is shown in Figure 4. Here, since the state variable is 
only one dimension, the number of selected Sigma points is 3. The Sigma point is passed through the system state 
equation to derive the predicted point group. Then, the Kalman gain and the error between the true value of the 
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observed variable and the prediction are used to continuously correct the predicted value. The correction principle 
is the same as KF, that is, the correction is large when the deviation is large, and the correction range is small when 
the deviation is small. Finally, the optimal estimate of the system state variables can be obtained. 

SOC value at 
time k

Calculate the 
Sigma points

SOC prediction

Kalman gain

Predicted 
variables of the 

prediction system

The true value of the 
observed variable of 

the system

Update SOC and 
error moments

SOC value at 
time k+1

Unscented 
transform

Update the Sigma 
Point

Prediction stage

Update phase

 
Figure 4. ROUKF Implementation process diagram 

As shown in Figure 4, the parameters and weights determined by the unscented transformation are prepared for 
the state quantity Sigma points. In the Sigma points finding module, the Sigma points with the same mean and 
covariance of the original state are obtained according to the symmetric sampling strategy. The obtained Sigma 
points perform a nonlinear transfer in the state prediction module, and the weighted summation obtains the mean 
value of the state quantity predicted value at the next time. The sigma points are then updated by the predicted 
mean and the UT module. The updated Sigma points predict the observation value according to the observation 
equation, obtain the Kalman gain, and the correction parameters. In the state variable and error matrix updates 
module, the predicted value means and the corresponding error covariance are updated according to the real-time 
observation data and the Kalman gain until the next iteration is completed. 
 

3. Experimental Verification Analysis 

3.1 Implementation of the test platform 

Mastering the basic working characteristics of the lithium-ion battery, including the open-circuit voltage 
characteristics, temperature, rate, and aging characteristics is an important basis for battery equivalent modeling 
and state of charge (SOC) estimation. The accuracy of battery open-circuit voltage has a significant effect on SOC 
estimation performance. Therefore, this section focuses on the analysis of the open-circuit voltage characteristics 
of a battery. To obtain the basic characteristics of battery charge and discharge, the following experimental 
platform was built as shown in Figure 5. 

Temperature Monitoring 
Box

BST 750-200-100-4 
Battery Test System

Lithium-ion Battery

Host PC for 
monitoring  and 
control of BTS

Power Cable

Communicat
ion Cable

TCP/IP

Voltage and 
Current 

Cable

 

Figure 5. The sketch of the battery testing platform 
Figure 5, shows the lithium-ion battery test platform built, mainly including the BTS 750-200-100-4 battery test 
equipment, the incubator, 70Ah power lithium-ion battery, and a home computer. The black line in this figure 
indicates TCP/IP data transmission connection, and the red line is an electrical connection. Based on the above 
experimental platform, the following experiments were carried out. 
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Table 1. Basic technical parameters of the battery 

Factor Parameter 

Cell Nominal Capacity/Ah            

Size: Length * Width * Height /Mm 

70 

14*38*91 

Rated Nominal Voltage/V 3.7 

Maximum Load Current /A 3.0C 

Charge Cut-Off Voltage/V 4.2±0.05 

Discharge Cutoff Voltage/V 2.4 

Working Temperature /℃ -15~70 

Rated Capacity/Ah 4.0 

 

3.2 Determination of Parameters 

The comparison of the two methods of SOC estimation was made out of experiments conducted and some 
references made from other papers and articles. In the experiments, the same lithium-ion battery was used for both 
methods. The process of each method is described and the results analyzed. The Hybrid Pulse Power 
Characterization (HPPC) test is intended to determine the dynamic power capability over the device’s usable 
voltage range using a test profile that incorporates both discharge and region pulses. Data from the HPPC test 
includes the voltage response curve, response time constants during discharge, rest, and region operating regimes. 
This data is used to evaluate resistance degradation during subsequent life testing and to develop hybrid battery 
performance models for vehicle systems analysis. HPPC tests provide the necessary data to quantify the battery 
capacity and estimate dynamic characteristics. The process for the test is as follows;  

1. The battery is fully charged 

2. The battery is left to rest for 30mins 

3. The battery is discharged for 10 seconds 

4. The battery is left to rest for 40 minutes 

5. A 10-second charge pulse is performed 

6. The battery is left to rest for 30 minutes 

7. Cycle continues from 3 to 6 for 9 other times and ends 

Table 2, shows the result from the HPPC test matching the SOC to each OCV and the battery parameters that were 
obtained after computations. 

Table 2. Model parameters under different SOC   

SOC UOC/OCV “R0 (Ω)” “RP (Ω)” “CP (F)” I(A) 

100% 4.1840 4.12554 0.000384 23758.36 70 

90% 4.0513 3.994727 0.000414 21033.79 70 

80% 3.9360 3.881074 0.000457 20340.74 70 

70% 3.8309 3.778826 0.000483 19245.86 70 

60% 3.7366 3.686263 0.00031 27796.68 70 

50% 3.6511 3.600253 0.000301 26486.94 70 

40% 3.6163 3.565963 0.00031 27796.68 70 

30% 3.5900 3.540066 0.000326 26145.8 70 

20% 3.5367 3.487571 0.000387 22662.86 70 

10% 3.4545 3.406629 0.000557 12523.86 70 
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Figure 6, shows the overall process of the test at a starting voltage of 4.2 volts and a cut-off voltage of 2.4 volts. 
The cut-off voltage was set to 2.4 volts to protect the battery from reaching its minimum voltage. The change rule 
of each parameter is obtained by the HPPC experiment, in which the current change is set as shown in Figure 6(b).  

Furthermore, the experimental results can be obtained by the HPPC experiment, in which the voltage change is 
shown below in Figure 6(d).  
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(c): HPPC test experimental voltage 
response 

(d): Voltage diagram loop change 

Figure 6. Pulse discharge test index curves 
Figure 6(a), represents the complete current curve, and Figure 6(b) a single current curve Figure 6(c), represents 
the complete cycle of the HPPC test with the pulse and voltage reading at very important periods, and Figure 6(d) 
represents a single voltage curve. According to Figure 6(d), the voltage reading from the point of discharging after 
resting U1, then the point where the current was 70A while discharging U2, followed by the endpoint of discharge 
U3. The point of the sharp rise of voltage is recorded as U4 and U5 was the last point before charging. In the 
experiment, this cycle was repeated 9 times. After the test, some data were extracted and used for identifying the 
ECM parameters like R0, RP, and CP. The capacity experiment analysis was conducted for calibration of the 
capacity and energy of the battery. Constant current charging and discharging cycles are carried out and the 
capacity usually only takes into account the strain of material reactions. However, energy and power are different 
since the voltage component is still used. Figure 7(a) and (b), is the capacity and energy variation curve with time 
and it can be deduced from the figure that the capacity of the battery is approximately 70Ah. The maximum values 
obtained in the experiment are 69.053Ah and 26676Wh. The higher the voltage platform, the higher the output 
and the change in time, and the changing direction of the two variables over time are approximately the same as 
seen in Figure 7.  



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online)  

Vol.11, No.6, 2021 

 

39 

0 7000 14000 21000 28000

0

18

36

54

72

13000 13250 13500 13750 14000 14250 14500

-2

0

2

4

6

8

10

C
 (

A
h)

t (s)

 C

6.7848Ah 6.9598Ah 6.7420Ah

69.053Ah

 
0 7000 14000 21000 28000

0

50000

100000

150000

200000

250000

300000

12600 12900 13200 13500 13800 14100 14400
-10000

0

10000

20000

30000

13050 13080 13110 13140 13170 13200

-1650

-1100

-550

0

550

1100

1650

2200

E
 (

W
h)

t (s)

 E

27933Wh 23802Wh 23397Wh

26676Wh

 
(a): Capacity diagram loop change (b): Energy diagram loop change 

Figure 7. Capacity and Energy transition waveform effect 

Figure 7(a) depicts the capacity curve and Figure 7(b) represents the energy variation curve. The error waveform 
analysis reveals that the modified algorithm is adequate and the error is significantly decreased relative to the 
minimal. Since the given initial value varies significantly from the initial value, the battery's internal polarization 
effect is improved at the initial discharge point. The error in the state calculation of two algorithms at the beginning 
of the discharge is greater than at the later level. 
 
3.3 OCV-SOC Test Result 
The OCV method can be very accurate, but as it needs a rest time to estimate the SOC, it cannot be used in real-
time. Comparing OCV-SOC at different temperatures gives different curves. The OCV-SOC characteristic curve 
is greatly influenced by the temperature change cannot be used for the estimation of SOC accurately, however, it 
can be used as a tool for estimating other methods. The OCV-SOC relationship is shown in Figure 8. 

Table 3. Values from experiment SOC and OCV 
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Figure 8. The relation between SOC-OCV curve 

In the OCV method, the battery’s voltage is continuously measured, and the corresponding SOC is obtained from 
the experiment. In the OCV-SOC test, the lithium-ion battery was charged to the full capacity of 4.2V at 70Ah. 
The battery was left to rest for about forty (40) minutes and slowly discharged for 10 seconds. After discharging, 
the battery is rested for another (30) minutes to step into another SOC level. The cycle continued until the SOC 
reached 0.1 after starting from 1. The results are shown in the table above with the graphical representation of their 
relations.  
 
3.4 SOC estimation and Simulation Verification 
The values R0, RP, and CP were all substituted into the algorithm in a mean way and the established test battery 
model was a three-unit 70Ah lithium-ion battery of AVIC. Figure 9, shows the comparison of the voltage and 
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current curves from the HPPC experiment and the variation with time. The overlaying curves shown in the figure 
depict the real or actual occurrence with the battery at specific times. 

  

(a): Complete cycle voltage and current 
curve 

(b): Single-cycle voltage and current 
curve 

Figure 9. HPPC test cycles experiment effect 
After identifying the parameters of the model build, the dynamic simulation model of the Thevenin RC modeling 
was constructed in Simulink. The identified parameters were put into the simulation model, the different working 
currents were input, the voltage response of the model was compared with actual voltage data, the model was 
verified, and validated the Simulink simulation structure, as shown in Figure 10(a). The built model validates the 
Simulink simulation structure to calculate SOC with discharge current with the application of the method of the 
ampere-hour (Ah) integral method, as shown in Figure 10(b). The internal structure of the Thevenin RC modeling 
is Figure 10(c), where each circuit component is a controllable parameter that changes over time. The model has 
five inputs and one output. The inputs are I, R0, RP, CP, and UOC and the output, the terminal voltage U. This model 
can simulate the working condition of the lithium-ion battery. To evaluate the accuracy of the model parameters, 
the variable operating current is added to the model and the difference between the model output voltage and the 
time output voltage is compared. The Simulink model verification structural diagram is shown in Figure 10. 

 

 

(b):  Inner structure of ampere-
hour (Ah) 

 

(a): Terminal voltage verification 
model 

(c): Inside the Thevenin RC 
modeling in Simulink 

Figure 10. Simulink Model Verification Structural Diagram 
 An accurate, intuitive, and comprehensive electrical model, which includes I, R0, RP, CP, and UOC, was built to 
capture the dynamic characteristics of a battery. The modeling accuracy will degrade when the operating 
conditions change because the model parameters are time-varying. The test battery model was a three-unit 70Ah  

lithium-ion battery of AVIC Lithium-ion Battery. The Thevenin RC modeling is established through 
parameterization with HPPC experimental results. To verify the validity of the SOC estimated values in the 
simulation, the results are compared with and the results from the HPPC experiment and the computations done 
thereafter. The value of current (I), in the experimental data obtained by the test equipment, is taken as the input 
condition, and the simulation terminal voltage is obtained through the simulation model and the experimental 
terminal voltages are compared to obtain the results as shown in Figure 11. 
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(a):  Voltage comparison curve (b): Voltage estimation error curve 

Figure 11. The model verification output result effect 
In the experiment, the values of R0, RP, and CP were all substituted into the algorithm in a mean way. In Figure 
11(a), and Figure 11(b) the variation among the original experiment results, calculated voltage, and simulated 
voltage is the modeling error. The simulated outcome in comparison to the original data is present in Figure 11(a), 
SOC explain in Equation (26). 

0

0

( )t
L

n

I t
SOC SOC dt

C
    (26) 

It can be seen from the figure that the predicted value curve gradually approaches the true value curve as the 
number of filtering increases, and fluctuates around the true value curve. The error value also gradually shrinks 
from the initial large error and eventually fluctuates around 0, showing a tendency to converge. 
 

3.5 Simulation Verification Analysis 

To verify the estimation effect of the algorithm, the LIB test under Beijing Bus Dynamic Stress Test (BBDST) 
condition was performed on the ternary LIB shown in Figure 12. 
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Figure 12. BBDST working condition parameters and description 

The Beijing Bus Dynamic Stress Test (BBDST) working condition test used the lithium battery LFP70AH ternary 
lithium battery. The BTS750-200-100-4 battery testing equipment provided by Shenzhen Yakeyuan Technology 
Co., Ltd was used. The BBDST working condition is the actual data acquisition of the Beijing bus. Since the 
experiment was carried out on a battery of 70Ah, the data in Pc(w) was obtained by reducing Ph(kW), and Pc(w) 
was used for the experiment of the LFP70Ah ternary lithium battery. It can be seen from Table 2, that the time of 
a complete BBDST is 300s, the BBDST condition test is performed 20 times on the battery. The BBDST condition 
test data is shown in Figure 13. 
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Figure 13. BBDST working condition experimental data 

Figure 13(a), and (b) are the experimental current and voltage data of the first BBDST working condition, and the 
experimental current and voltage data of 20 BBDST conditions respectively. Since the BBDST operating condition 
is power discharge, it can be seen from Figure 13(a) and (b), that as the number of cycles increases, the discharge 
current increases, and the battery terminal voltage as a whole shows a downward trend. The Thevenin RC modeling 
was established by parameter identification of HPPC experimental data. To verify the validity of the model, the 
model data and actual data were compared and analyzed with additional battery operating conditions data. The 
model was verified using the BBDST working condition, and the various working conditions of the battery were 
simulated by constant power discharge for a certain period. The test device obtains the current value in the 
experimental data as the input condition, and the simulated terminal voltage is compared with the experimental 
acquisition terminal voltage by the simulation model, and the result is shown in Error! Reference source not 
found.. 

In Error! Reference source not found.(a), SOC1 is the real terminal voltage data curve obtained by the voltage 
verification model, and SOC2 (UKF) is the output terminal voltage curve obtained and Error! Reference source 
not found.(b) is a UKF error by the simulation model under the input current condition. It can be seen from  Figure 
6 that the simulation and the actual test curves have a similar trend, which can better simulate the battery discharge. 
According to the established first-order Thevenin RC modeling and the Reduced-order UKF method, the SOC 
estimation of the BBDST working condition is carried out that can be seen in Figure 13.  

  

(a): UKF-based on lithium battery SOC 
estimation effect 

(b): Error-based on lithium battery SOC 
estimation effect 

Figure 14. UKF estimated and Error estimation curves 

The SOC estimation results are based on the Reduced-order UKF method proposed. The Reduced-order UKF 
method estimated lithium-ion battery SOC algorithm was verified by 0.1C constant current discharge throughout 
the whole SOC. However, only the change of parameter R has an obvious effect on the model output. This way, 
the design procedure of model-based adaptive parameter state estimators can then be simplified. The error between 
the initial value and the true value is given at least 10% in advance so that the SOC estimation is performed, and 
the obtained result is shown in Figure 15(a) and (b). 
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(a): Comparison of SOC estimation curves 
(ROUKF) 

(b): SOC estimation error (ROUKF) 

Figure 15. ROUKF estimated and Error estimation curves 
Figure 15(a) is a graph of estimation results, SOC1 is a true SOC value, and SOC2 is the estimated result for SOC 
value using a Reduced-order UKF method. Figure 15(b), is an error curve obtained by subtracting two SOC value 
curves. It is known from Error! Reference source not found. that the error of SOC estimation based on the 
established Thevenin RC modeling using the Reduced-order UKF is less than 2%. It can correct the error of the 
initial value very well, does not depend on the accuracy of the initial value, and has a strong correction function.  
 
4. Conclusions 
It is important and difficult to accurately estimate the SOC of a lithium battery. A battery based on the Thevenin 
RC modeling is used, taking into account its advantages of low error, long-term testing, and accounting 
polarization effects, and transient analysis for power battery charging and discharging. The OCV-SOC and the 
HPPC method of estimating SOC was analyzed through experiments. From the two approaches, it can be 
concluded that the OCV-SOC method alone is not an accurate or an independent method to estimate SOC but a 
basic tool for other methods including the HPPC Reduced-order UKF estimation method. The OCV-SOC is a 
direct method of measuring the open-circuit voltage and using it to estimate SOC, this resulted in a greater error 
margin so the advancement of it to the HPPC test method. However, in this method: the use of the Reduced-order 
UKF method will inevitably introduce nonlinear errors if the nonlinearity of the battery is not established. The 
Simulink model was established on MATLAB and combined with experimental data under BBDST working 
conditions for simulation analysis. With the HPPC test and BBDST method, the Thevenin RC modeling was used 
and its parameters were verified. The results show that the Reduced-order UKF method can estimate the SOC of 
the lithium battery very well, than the traditional UKF method, and the estimation error can be controlled within 
0.3%, which verifies that the Reduced-order UKF method has high accuracy in the SOC estimation of lithium-ion 
battery. Although the HPPC test with other models has high accuracy than the OCV test, research is still ongoing 
to get a more accurate algorithm for accurately estimating the SOC of the lithium-ion battery. In future research 
work, we will be concerned about finding an effective assessment indicator of the State of Health (SOH) of LIB 
for a safe and sound energy management system of the LIB packs.   
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