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Abstract  This research was aimed at observing the inhibiting effects of some substances that are said to be recalcitrant to 
enzymatic activities during the production of cellulosic ethanol, a source of liquid biofuels. The biomass used for 
this work was a perennial grass specie (Pernnisetum purpureum S.), which is a lignocellulosic biomass that is 
predominantly found in the South-South Zone of Niger Delta, Nigeria. The three pretreatment methods; Dilute 
acid, Sulphite Pretreatment to Overcome the Recalcitrance effects of Lignocellulose(SPORL) and Alkaline Wet 
Oxidation were used on three different biomass particle sizes. The saccharification reaction was carried out at 10 
and 15FPUcellulase/gcellulose of enzyme loading. The fermentation reaction was carried out with 
Saccharomyces cerevisiae (5.40X108-5.70X108cell/ml) from yeast. Among the three organic inhibitors analyzed 
for in the cause of the reaction, two were generative as the reaction proceeded while one was deteriorating with 
time. The difference between the theoretical ethanol yield from the total amount of glucose converted (EY2) and 
the theoretical ethanol yield from the initial amount of glucose before fermentation (EY1) was 23.88% and 
8.80% for enzyme loading of 10FPU/g and 15FPU/g respectively, which suggested the formation of side 
products (potential recalcitrance to enzymatic activities). This was further confirmed by the low values of 
enzymatic convertibility of cellulose and enzymatic convertibility of glucose; 28.92% and 25.92% respectively. 
Statistical analysis and optimization of data was done using ANOVA, Pearson correlation, Regression analysis, 
Duncan’s multiple test, t-test for comparing means and response optimization. 
Keywords: Cellulosic ethanol, Hydroxymethylfurfural, Acetic acid, Total Extractable Polyphenolics.   
 
1. Introduction  The first generation bioethanol fuels as produced from mono- or disaccharides as well as starch are identified 
with less challenges of toxic substances interfering with enzymatic activities during production, compared to the 
second generation bioethanol (lignocelluloses biomass and agricultural residues used as substrates) which has an  
immense capital cost on establishing cellulosic ethanol biorefineries.  

Some of these inhibitors to enzymatic activities are components of the plants biomass, while others are 
produced from side reactions in the cause of production. Lignin for instance has an inhibitive effect to the 
functions of enzymes and it is also a precursor to some other chemical substances, especially organic 
compounds. Lignin is a complex heterogeneous polymer, which results from the polymerization of phenols 
forming radicals, through the formation of dimer (a dehydro) by coupling at the β- positions (β-β, β-O-4 and β-
5). It is also expected that during the pretreatment stage of production, certain reactions may produce other 
potential enzymatic inhibitors from the phenolic components of lignin (Argyropoulos et al., 2002; Ralph et al., 
2004; Wagner et al., 2009).   

Besides the sensitivity of enzymes to the physical conditions (temperature, surface area of substrates, 
pH, reaction time) of reaction systems, the operating conditions of the reaction routes from pretreatment to 
fermentation also determine the extents at which these enzymatic recalcitrance are formed and their effects to the 
enzyme used (Yang and Wyman, 2008; Harmsen et al., 2010).   

Ladisch et al., (2009) observed that different phenolic compounds have variable toxic effects to 
enzymatic activities, such that three phenol compounds; vanillin > syringaldehyde>trans-cinnamic acid have 
their inhibitive effects as shown in increasing order. Phenols cause the partitioning of the cell membranes of the 
organism producing the enzyme, therefore reducing their cell growths as well as sugar assimilation. 

During production, side products are also cable of forming; which may also be acting contrary to the 
performance of enzymes. Saha, De Sudipta and Dutta (2011), investigated and confirmed that disaccharides can 
be converted to 5-hydroxymethylfurfural (HMF) under favorable reaction conditions and the HMF formed which 
is a strong inhibitor to enzymatic activities could as well be decomposed to other toxic substances (levulinic acid 
and chloromethylfurfural). Furfural could also be formed from pentose sugar (xylose) if the condition of reaction 
permits such reaction. Also, acetic acid could be formed in the reaction system depending on the reaction 
conditions, either anaerobic or aerobic (reducing or oxidizing); the acetyl groups in hemicelluloses and ethanol 
available in the reaction system could also act as reactants for the formation of acetic acid.  

The rate of generation of these toxic substances with respect to the method of pretreatment cannot be 
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disregarded as several authors have reported that these substances are formed more at high acidic conditions, 
especially at the pretreatment stage of production (Blanch et al., 2011; Dale and Ong, 2012; Dussán et al., 2014 
and Ladisch et al., 2014).  
 
2. Materials and Methods   The chemical reagents used for the process of production, quantitative analysis as well as qualitative analysis in 
this work, were of analytical grades and ordered from Sigma-Aldrich, Germany and Megazyme, Ireland.  
 
2.1 Biomass Handling The  grass biomass  (Pernnisetum purpureum) used for this study was collected within  the South-South Zone of 
Niger Delta, Nigeria. The actual life cycle of the biomass was not ascertained as samples were collected in the 
wild at their early life cycles. 

The biomass was washed thoroughly and copiously with deionized water, chopped into size (1-2cm) 
and air dried in a greenhouse for six days. 

The dried biomass was ground, then sieved to 0.15mm, 0.20mm, 0.35mm, 0.45mm and 0.71mm 
particle sizes using a DH-300T test sieve machine. The dried and sieved biomass was preserved in a cool and dry 
place at an average temperature of 120C. 
 
2.2 Determination of cellulose, hemicellulose, lignin and total extractable phenols (TEPs) The amounts of hemicelluloses, cellulose, lignin and total extractable phenolics were determined as reported by 
Ekpo et al., (2016).  
 
2.3 Pretreatment Processes  Three pretreatment processes; dilute acid (DA), sulphite pretreatment to overcome the recalcitrance effect of 
lignocelluloses (SPORL) and alkaline wet oxidation (AL) were used . All pretreatment occurred at the conditions 
of 0.2Mpa, 1300C and residence time of 16mins in a pressure vessel. The biomass loading was 3%(v/w); dilute 
acid pretreatment utilized 1.1% (v/v) H2SO4  (Zhu et al., 2011; Idrees et al., 2013 and Dussán et al.,2014) While 
SPORL method used 1.0%(v/v) H2SO4 acid solution  and 1.5mL of 3%(w/v) Na2SO3 (Zhu et al., 2009, Zhu et 
al.,2011, Qureshi et al., 2013 and )  and alkaline wet oxidation was carried out with  0.019M Na2CO3 solution 
(Bjere, et. al., 1996; Klinke et al., 2002; Martin et at., 2007 and Martin, Marcet and Thomsen, 2008). At the end 
of each pretreatment, the pretreated biomass were washed to bring the pH of solutions close to neutral value then 
filtered to obtain the residues for further reaction process and analyses.  
 
2.4. Analyses of Reducing Sugars (Glucose and Xylose)  Analysis of glucose: Four standard solutions of glucose (0.63, 1.25, 2.50 and 5.00g/L) were prepared. 2mL of 
sample or glucose standard solution and 3mL of Dinitrosalicyli acid reagent were placed in boiling water for 
5minutes then cooled to room temperature. Using distilled water as blank solution, the transmittance of both 
standard glucose solutions and samples were measured with a UV-Visible spectrophotometer (1801 UV-VIS) at 
540nm wavelength. A calibration curve was prepared for the standard glucose solutions by plotting a graph of 
log% transmittance against concentration of the standard glucose solutions and the concentration of the samples 
were deduced from their transmittance.   

Analysis of the amount of  xylose  was carried out with four prepared standard solutions of xylose 
(0.10, 0.25, 0.50 and 1.00g/L) used for producing the standard calibration curve. 3mL of standard solution or 
sample was measured into a beaker and 0.95mL of 6.37N HCl solution added to the beaker, followed by the 
addition of 5mL mixture of 0.5g phloroglucinol and glacial acetic acid then the solution boiled for 5mins, cooled 
and the absorbance read with a 1801UV/VIS series spectrophotometer at 554nm (Trinder, 1975; University of 
Nebraska Laboratory Manual, 2009).  

 
2.5 Analysis of Ethanol   The analysis of ethanol was carried out by completely oxidizing ethanol present in the analyte  to acetic acid 
using nicotinamide-adenine dinucleotide (NAD+) as  an oxidizing agent. The catalyst used for this analysis were 
alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (Al-DH). The principle of this analysis was derived 
from the stoichiometric relationship of 1:2 moles of ethanol to reduced nicotinamide-adenine dinucleotide 
(NADH) formed in the cause of the reaction as shown below:  
                                              (ADH) 
C2H5OH      +       NAD+                 CH3COH      +      NADH      +     H+     -------------------------(1)  
 
                                                           (Al-DH) 
CH3COH      +      NAD+    +   H2O              CH3CO2H      +      NADH     +     H+     ---------------(2)  
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The concentration of NADH was determined by measuring its absorbance at the wavelength of 340nm 
using a 1801UV/VIS series spectrophotometer (Beutler 1988and Megazyme  2014)   
 
Calculation:  
Conc. of Ethanol (g/L) =    V*MW        x     ΔA        -------------------------------------------------(3) 
                                            ε * d*v*2                    
Where:  V= final volume (mL) 
              MW= molecular weight of ethanol (g/mol)  
              ε (extinction coefficient of NADH at 340nm) = 6300 ( l x mol- x cm-) 
              d = light path (cm) 
              v = sample volume (mL)  
              ΔA =  absorbance (NADH) differences for  both sample and blank. 
              2 = 2moles of NADH produced for 1mole of ethanol   
 
2.6 Analysis of Hydroxymethylfurfural    Standard solutions of 5-hydroxymethylfurfural (0.00125, 0.0025, 0.0050 and 0.0075mg/L) were used to prepare 
the standard calibration curve for quantitative analysis of this compound. Sample preparation prior to analysis 
was carried out by mixing 5mL of the solution of sample with 0.5g of activated charcoal in a boiling tube and 
boiled for 1min then filtered with Whatman filter paper 1. The absorbance of both samples and standards were 
detected with  1801UV/VIS series spectrophotometer at 280nm (White 1994; Zappal et al.,2004 ; Rocha et al., 
2004; Kmecl and Skerl, 2004 and Zhang et al., 2013).  
 
2.7 Analysis of Acetic Acid  The amounts of acetic acid in samples was determined using volumetric analysis.  
0.20M sodium hydroxide solution was used to titrate against the sample using 3 drops of phenolphthalein 
indicator. The titration was carried out in triplicate and the average volume (VBav) evaluated (Pant, 2010).  The 
equation of reaction and calculations are as shown below:  
HC2H3O2(aq) + NaOH(aq)  NaC2H3O2(aq) + H2O(l)   ---------------------------------------------------(4)  
    1mole        :  1mole  
 CA (mol)   =  CB* VBave*NA        --------------------------------------------------------------------------(5) 
                              VA*NB  CA =Concentration of acetic acid (mol)   
CB =  Concentration of NaOH (mol) 
VBave = Average titire volume of NaOH  (mL) 
VA    = Volume of acetic acid at end point (mL) 
NA  = Stoichiometric number of mole of acetic acid 
NB =   Stoichiometric number of mole of NaOH 
% Acetic Acid  =      Mass of Acetic Acid in Solution    X  100     -----------------------------------(6) 
                                  Total Mass of Solution (Sample)  
 
2.8 Enzymatic Hydrolyses of Cellulose  Substrate loading of 0.5%(w/v) and cellulase loading of 10 and 15FPU/g as well as some volume of viscozym  ( 
to prevent cellobiose accumulation) were used for the hydrolysis of cellulose at 500C, adjusted to pH of 4.8 and 
residence time of 12hours (Emmel et al.,2003; Martins et al., 2008; Zhu, et. al.,2009; Blanch et. al., 2011; 
Curvelo et al.,2012 and Wanderley et al., 2014).  
 
2.9 Fermentation  Strains of Sacchromysis cerevisiae were isolated from yeast cells and inoculated in a sterilized (1210C for 
15min)  culture medium solution of 5g/L yeast extract, 4g/L peptone and 20g/L glucose, adjusted to a pH value 
of 7 and left for 24 hours at 340C, giving 40X108-6.50X108cell/mL amounts of cells for fermentation. The 
medium was centrifuged and filtered to collect the S. cerevisiae strains then diluted to solution. A fermentation 
medium contained 50g/L glucose, 4g/L yeast extract, 2g/L (NH4)2SO4, 2g/L KH2PO4 and 1g/L MgSO4. The 
Inoculum,  Fermentation medium and hydrolysate were combined in the volume ratio of 0.04 : 0.44 : 
0.56(D’Amore el al., 1988; Gibbons and Westby, 1989; Tahir et al.,2010; Wanderly et al., 2014; Idrees et al., 
2013).   
 
2.10 Statistical Analyses of Data  ANOVA, Pearson correlation, Regression analysis, Duncan’s multiple test, t-test for comparing means and 
Minitab response optimizer software were used as statistical tools to analyze the data generated from analyses. 
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3.0 Results and Discussion  Table 1. Proximate analysis of Biomass Components  
        Biomass Component                                                Amount (%)              
    Neutral Detergent Fiber(NDF)                                     76.23±0.98   
 
    Acid Detergent Fiber(ADF)                                           36.9±1.51   
 
     Hemicellulose(HEM)                                                    39.31±0.72 
 
         Cellulose(CEL)                                                         34.04±0.24  
 
         Lignin(LIG)                                                               5.62±0.09 
 
          Ash(ASH)                                                                6.86±0.002  
 
  Total Extractable Polyphenolics (TEPs)                          0.63±0.001  
               

Table 1 shows the results for the proximate analyses of the crude grass biomass. These results are in 
conformance with the work of Chulalaksananukul et. al., (2012).  

Hemicelluloses are observed to be removed from biomass as the pH of the pretreatment medium 
increases toward acidity as shown in Table 2, this results in degradation of carbohydrates components in a 
similar order, as seen in Figure 4 and Table 6.  
Table 2. Biomass composition (%) after different pretreatment methods at variable particle sizes. 
Particle Size                Dilute Acid                                ꞋSPORL                                   Alkaline Wet Oxidation 
                 HEM   CEL  LIG   ASH  TEPs    HEM   CEL  LIG   ASH  TEPs      HEM  CEL  LIG  ASH  TEPs 
200µm       4.52    60.96   4.14   2.44   1.40      31.12   46.24  3.46   2.32   0.64        32.88  40.88  1.52  1.34   0.55 
350µm       5.02    67.50   2.68   2.92   2.16     36.86  46.66   2.66    2.90   1.48        36.76  46.02  1.30  1.52   1.24 
450µm       5.66    69.48   1.03   2.28   1.55     35.76  54.10   1.00    2.82   1.36        36.36  49.48  1.24  2.50   1.26 
Values are mean of analysis carried out in triplicate. 
ꞋSPORL: Sulfite Pretreatment to Overcome the Recalcitrance effects of Lignocellulose.    
HEM : Hemicellulose; CEL:  Cellulose; LIG ꞉  Lignin  
TEPs:  Total Extractable Polyphenols  

 Figure 1. Variation of Compositions (%) of  Hemicellulose and Cellulose of Pernnisetum purpureum at different 
Particle Sizes and  Pretreatment  Methods   

The amounts of cellulose recovered during pretreatment processes follows a reverse order to that of 
hemicelluloses. Figure 1 shows that the amount of total available carbohydrate component (hemicellulose and 
cellulose) increased in the following order with pretreatment methods; DA<AL<SPORL. The regression analysis 
on Table 11, showed that the analyses of the amounts of carbohydrates components were significance at P≤0.05 
and the amounts of cellulose produced was proportional to that of glucose and inversely proportional to 
hemicelluloses and xylose, while the amounts of hemicelluloses produced was directly proportional to xylose; 
these could imply that hexose sugars are the main components of cellulose while pentose sugars are the major 
components of hemicelluloses. 

The pretreatment methods used in this work showed responsive effects to reduction in the amounts of 
lignin when compared to the amount of lignin in the crude grass biomass (LIG-Pp) and the increasing order of 
the effectiveness of this process is as shown on Figure 2; DA< SPORL < AL.   
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Table 3. Measurement of mean, showing comparison of quantities before and after pretreatments 
HEM' 
(P) 

HEM" 
(A) 

CEL' 
(P) 

CEL" 
(A) 

LIG' 
(P) 

LIG" 
(A) 

ASH'   
(P) 

ASH" 
(A) 

TEPs'   
(P) 

TEPs" 
(A) 

39.31 24.99 34.04 53.48 5.62 1.81   6.86 2.34  0.63 1.29 
          ‘   Prior to Pretreatment   
          “   After Pretreatment  

Figure 2. Variation of Compositions (%) of Lignin in Pernnisetum purpureum with Particle Sizes (µm) for 
different Pretreatment methods   

All methods of pretreatment used in this study increased the amounts of total phenolics in the crude 
grass biomass (TEP-Pp), as shown in Figure3 and the increasing order of this substance with the pretreatment 
methods is, AL < SPORL < DA. The variations of lignin and total phenolics so far discussed, buttress the 
findings of other authors (Harmsen et al.,2010) that lignin is the precursor of phenolic compounds in the 
production routes of cellulosic ethanol. From the estimation of the mean amounts of substances in the crude 
biomass and after pretreatment processes(Table 3), substances are increased in their amounts before pretreatment 
process to after pretreatment process are cellulose and total phenolics, while substances that decreased are 
hemicelluloses, lignin and ash contents. The analyses of variance (ANOVA) on Table4, shows that among the 
components analyzed  during pretreatment processes, the amounts of xylose and ash contents were not 
significant to the different sources of combination, that of xylose was supported by the Duncan’s multiple test on 
Figure10; which shows that the amounts of hemicelluloses obtained for alkaline wet oxidation and SPORL 
pretreatment methods were significantly different from that of dilute acid pretreatment, as hemicellulose is the 
major precursor of xylose. Concentrations of ethanol, converted glucose and unconverted glucose were 
significant to grass biomass and not to the combinations with other parameters (time, size, method); these may 
be traced to the effects of side products formed during the stages of production.   
Table 4. Analysis of Variance (ANOVA) for non-significance measurements  
     Source                        Dependent  

                                       Variable 
Type Sum of Square df Mean 

Square 
F Sig. 

 PRETREATMENT     
grass                                          Xyl 0.00 2.00 0.00 0.81 0.46 
size                                         ASH 0.93 2.00 0.47 3.13 0.06 
grass *Size                              ASH 0.93 4.00 0.23 1.56 0.21 
size*method                              Xyl 0.00 4.00 0.00 0.27 0.90 
size*method                            ASH 0.48 4.00 0.12 0.80 0.53 
grass*size*method                    Xyl 0.00 8.00 0.00 0.60 0.77 

 HYDROLYSIS     
grass*size*time                         Glu 6.767 8.00 0.846 1.902 0.071 
size*method*time                     Glu 4.304 8.00 0.538 1.209 0.304 
grass*size*time*method           Glu 4.393 16 0.275 0.617 0.861 

 FERMENTATION     
time                                        ETOH 34.216 2 17.108 0.748 0.490 
size*time                                ETOH 0.480 4 0.120 2.422 0.055 
grass*size*time                        UCG 0.727 8 0.091 1.815 0.086 
 grass*size*time                     ETOH 0.574 8 0/072 1.448 0.190 
size*method*time                  ETOH 0.223 8 0.028 0.562 0.806 
grass*size*time*method        ETOH 1.968 16 0.069 1.382 0.172 
UCG: Unconverted Glucose,  ETOH: Ethanol 

The degrading effects on carbohydrate components by dilute acid pretreatment method was accounted 
for during hydrolysis, as the concentration of glucose that was highest in  pretreatment liquor was lowest in 
hydrolysate (Table5) unlike the cases of SPORL and Alkaline Pretreatment methods. The low Concentration of 
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xylose between 0.19g/L to 0.30g/L from the fourth to twelfth hour of hydrolysis respectively is a clear indication 
that the hydrolysis of xylan was not of interest in this work as the required enzyme for its hydrolysis was not 
used.   
Table 5. Comparison of the Amounts of Reducing Sugars between Pretreatment and Hydrolysis at 
10FPUcellulase/g  
 P/Size(µm)  Pretreatment     GLU (P)               GLU(H)        XYL(P)             XYL(H) 
200 ACID 13.11                 4.36 0.11 0.08 
200 SPORL 1.13                10.19 0.16 0.12 
200 AL 1.08 9.03 0.18 0.08 
350 ACID 10.01                3.86 0.07 0.05 
350 SPORL 1.12 9.12 0.11 0.09 
350 AL 0.92 6.93 0.11 0.05 
450 ACID 9.52 2.60 0.09 0.05 
450 SPORL 0.85 7.04 0.11 0.08 
450 AL 0.64                5.85 0.19 0.03 
 
Table 6. Concentration (g/l) of Reducing Sugar in Pretreatment Liquor   
Particle Size            Dilute Acid                             SPORL                      Alkaline Wet Oxidation 
                            Glucose        Xylose          Glucose            Xylose                Glucose        Xylose   
200µm                 10.32             0.14               1.65                   0.18                      1.64              0.23 
350µm                   9.85             0.06               1.46                   0.08                       0.90             0.12 
450µm                   9.75             0.05                0.93                  0.09                       0.88             0.10 
 

Figure 3. Variation of Amounts (ppm) of Total Extractable Polyphenolics in  Pernnisetum purpureum with  
Particle Sizes (µm) for different Pretreatment methods  
 

 Figure 4. Variation of  Amounts (g/L) of Glucose in Pernnisetum purpureum Pretreated Liquors with different  
Particle Sizes.    

25.43g/L glucose was produced at the end of the 12hours residence time of hydrolysis and 44ml of 
50g/l solution of glucose was used in the preparation of the fermentation medium. The fermentation of 
hydrolysate with 15FPUcellulase/g cellulose gave 8.75g/L, 10.55g/L and 13.88g/L concentrations of ethanol at 
the end of 24hours, 48hours and 72hours respectively. ANOVA on Table 4, showed that the amounts of 
unconverted glucose did not vary significantly with grass type, particle size and residence time of hydrolysis and 
the amount of ethanol formed was also insignificance particularly to sources combined with particle sizes and 
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residence time during fermentation; these could be due to the effects of enzymatic inhibitors, which are 
generated as reactions proceed and as well induced toxic effects to the enzymes.    
Tables 7. Concentration (g/l) of Reducing Sugars during Hydrolysis as well as Ethanol and unconverted Glucose 
during Fermentation. 
                   HYDROLYSIS     
Time                Glucose         Xylose 

                 FERMENTATION      
Time                   Glucose        Ethanol 

 End of 4hrs       14.78            0.19 
 
 End of 8hrs       18.79            0.22 
 
 End of 12hrs     25.43            0.30 

End of 24hrs        16.63             8.75 
 
End of 48hrs         7.51             10.55 
 
End of 72hrs         3.51             13.88 

The difference between the ethanol yield EY1 and EY2  (EY2>EY1) for fermentation at 10FPU/g was 
23.67% while that of 15FPU/g with stirring was 8.8%, these results indicated that  fermentation is efficient  at 
the higher enzyme loading with stirring. Aden et al.,(2002) reported that the higher enzyme loading gives higher 
yield as well as lower production cost. This was also confirmed with the amounts obtained for enzymatic 
convertibility of cellulose (ECC) and enzymatic convertibility of glucose (ECG) 20.88% and 18.72% 
respectively for hydrolysis at15FPU/g, while that of 10FPU/g gave 28.92% and 25.92% respectively.   

 Figure 5. Concentration (g/L) of  Enzymatic Recalcitrance against Time (hour) of Hydrolysis 
Inhibitive effects of the enzymes in this study at the hydrolysis stage could be attributed to the 

presence of 5-hydroxymethylfurfural, total phenolics and acetic acid (Figure5 and Table8). 5-hydroxymethyl 
furfural decreases from the end of 4 hours (0.013g/L) during hydrolysis to an infinitesimal amount during the 
end of fermentation (72hours), unlike the case of TEPs and acetic acid which showed steady increased from 
pretreatment stage through fermentation stage. The inhibition of the enzyme from yeast is most likely due to the 
presence of phenolic compounds, this is because the amount of TEPs analyzed at the end of hydrolysis (12hours) 
was 1.066g/L, which is higher than the recommended amount of <0.1g/L. HMF and acetic acid at the end of 
hydrolysis were 0.009g/L and 0.0054g/L respectively and their maximum allowable concentration for ethanol 
fermentation are <0.25g/L and 3g/L respectively (Klinke and Thomson, 2004). 

Tables 8.  Amounts (g/l) of Recalcitrance during Hydrolysis as well as Fermentation Processes. 
                   HYDROLYSIS     
      Time                 HMF        AA         TEPs 

                 FERMENTATION      
      Time               HMF     AA       TEPs 

 End of 4hrs            0.013       0.023        0.404 
 
 End of 8hrs             0.011      0.027         0.729 
 
 End of 12hrs           0.009      0.054         1.066 

End of 24hrs         0.007     0.198      0.871 
 
End of 48hrs          0.005    0.220       1.181 
 
End of 72hrs            ND      0.330       1.310 

Total extractable phenolics increases from 0.63% in the crude grass biomass to 1.29% after 
pretreatment, during the hydrolysis stage of reaction the amounts of TEPs were 0.40g/L , 0.129g/L and 1.066g/L 
for the end of 4hours, 8hours and 12hours respectively. Further increased was observed during the fermentation 
stage of reaction as the amount at the end of retention time of 72hours was 1.310g/L. The amounts of acetic acid 
formed also followed steady increment from the hydrolysis stage across the fermentation stage as shown on 
Figure5 as well as Table8. Table12 shows a correlation between the amounts of these recalcitrance in both 
hydrolysis and fermentation stages of production; It was observed that in all cases, acetic acid was not correlated 
with the other two recalcitrance, while the amounts of hydroxymethylfurfural and total extractable polyphenolics 
correlated with each other at p≤0.05 and p≤0.01. This could be an indication that Lignin and hemicelluloses are 
the major precursors of organic inhibitors during cellulosic ethanol production.  
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Table 9. Evaluation (%) of Data Generated from Analyses  
                  Evaluated Data                               Amount (%) 

             10FPU/g                      15FPU/g 
         
 Potential Glucose in Pretreated Biomass(PGP) 
 
 Theoretical ethanol yield from initial amount of glucose  (EY1)  
Theoretical ethanol yield from converted amount of glucose (EY2)   
 Enzymatic Convertibility of Cellulose (ECC)  
 
 Enzymatic Convertibility of Glucose    (ECG) 

 
                61.37                            94.13 
 
                65.57                            78.26  
 
                89.24                            87.06  
 
                20.88                            28.92  
 
                18.72                            25.92 

1PGP    =       Amount of ethanol after fermentation                   X      100%   --------------------------------------(7)          
                  Amount of cellulose after pretreatment  
 2EY1        =                           Amount of  experimental ethanol (g/L)           X      100%    ---------------------------(8) 
                 Theoretical ethanol from the amount of glucose before fermentation (g/L)   
 3EY2      =                                Amount of  experimental ethanol (g/L)          X     100%      ------------------------(9) 
                  Theoretical ethanol from the amount of converted glucose during fermentation (g/L) 
 4ECC    =      (Conc. of final ethanol  -  Conc. of initial ethanol) g/L     X   100%   --------------------------------(10) 
                       (Amount of cellulose after pretreatment X 0.57) g/L    
 5ECG   =       (Conc. of final ethanol  -  Conc. of initial ethanol) g/L     X  100%  ----------------------------------(11) 
                       (Amount of glucose after hydrolysis X 0.511) g/L    
 
[2and3 Manzanares  et  al., 2003; 1 Stroeve et al.,2009 ; 4and5Gouveia, Soares, and Wanderley, 2014 ] 

Response optimization  was carried out with Mintab Response optimization software and this gave 
results as shown on Tables 13, 14 and 15. On Table 13, both the amounts of glucose degraded during 
pretreatment processes (GlU) and the amounts of glucose hydrolyzed (GlU-H) were considered with other 
parameters by minimizing the former and maximizing the latter, the results obtained showed that the process  is 
optimized with; SPORL pretreatment method, at 450µm particle size and 12hours of hydrolysis. Table 14 which 
excludes the amounts of glucose  degraded (GlU) during hydrolysis, showed similar result for optimization and 
the combination of the data obtained at the final stage of production(fermentation reaction) in Table 15  still 
showed similar results.   
Table 10. Duncan’s Multiple Test  showing the Significance of Lignocellulosic Biomass during Pretreatment.  
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Table 11. Regression Analyses with Equations to Predict the Relationship between variables at the Pretreatment 
Stage.  
Regression Equation:  
CEL= 64.90 -0.4409HEM  

Coefficients  
Term  Coef  SE Coef  T-Value  P-Value  

 
Constant  64.90  1.72  37.70  0.000  
HEM  -0.4409  0.0533  -8.28  0.001  

Regression Equation:  
XYL= 0.0729+0.001533HEM  

Coefficients  
Term  Coef  SE Coef  T-Value  P-Value  

 Constant  0.0729  0.0152  4.81  0.000  
HEM  0.001533  0.000469  3.27  0.002  

Regression Equation:  
GLU= 11.986 -0.2727HEM  

Coefficients  
Term  Coef  SE Coef  T-Value  P-Value  

 Constant  11.986  0.467  25.68  0.000  
HEM  -0.2727  0.0144  -18.88  0.000  

Regression Equation:  
XYL= 0.3427 -0.004320CEL  

Coefficients  
Term  Coef  SE Coef  T-Value  P-Value  

 Constant  0.3427  0.0343  9.99  0.000  
CEL  -0.00432  0.000646  -6.68  0.000  

Regression Equation:  
GLU=-14.20 + 0.3517 CEL  

Coefficients  
Term  Coef  SE Coef  T-Value  P-Value  

 Constant  -14.20  2.61  -5.45  0.000  
CEL  0.3517  0.0491  7.16  0.000  

 
Table 12. Correlations between Composition of Recalcitrance  during Hydrolysis and Fermentation 

Stages at 15FPU/g cellulose.  
 HMF-H  AA-H  TEPs-H  HMF-F  AA-F  TEP-F  
HMF-H  Pearson Correlation  1  -.382  -.971**  .837**  -.417  -.840**  

Sig. (2-tailed)   .311  .000  .005  .264  .005  
AA-H  Pearson Correlation  -.382  1  .427  -.409  .894**  -.004  

Sig. (2-tailed)  .311   .251  .274  .001  .991  
TEPs-H  Pearson Correlation  -.971**  .427  1  -.890**  .452  .827**  

Sig. (2-tailed)  .000  .251   .001  .222  .006  
HMF-F  Pearson Correlation  .837**  -.409  -.890**  1  -.359  -.698*  

Sig. (2-tailed)  .005  .274  .001   .343  .036  
AA-F  Pearson Correlation  -.417  .894**  .452  -.359  1  -.065  

Sig. (2-tailed)  .264  .001  .222  .343   .869  
TEPs-F  Pearson Correlation  -.840**  -.004  .827**  -.698*  -.065  1  

Sig. (2-tailed)  .005  .991  .006  .036  .869   
** Correlation is significant at the 0.01 level (2-tailed).  ; –H During Hydrolysis.  
* Correlation is significant at the 0.05 level (2-tailed).    ;– F   During Fermentation.  
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Table 13. Response Optimization for Pretreatment and Hydrolysis: GLU-H, TEP, ASH, GLU, XYL, CEL, HEM  
 

                       Parameters 
     Response                 Goal                 Lower  Target           Upper        Weight        Importance 

GLU-H           Maximum                    0.97                  27.22               1                 1                  
TEPs               Minimum                     5.50                  21.600            1                 1 
ASH               Minimum                       1.34                   3.940               1               1 
GLU                Minimum                       0.64                  13.110              1               1 
XYL                Minimum                       0.04                  0.230                1               1 
CEL                 Maximum                     34.58                69.48               1                 1 
HEM                Maximum                     4.52                  51.82                1                1 

 
Solution 
Grass Size  Method Time Loading  GLU-H   TEPs    ASH    GLU   XYL  CEL   HEM  Composite  
                                                              Fit          Fit        Fit        Fit      Fit       Fit     Fit      Desirable   
  Pp   450  SPORL  Time3 15FPU     25.43     12.4000   1.52      0.85   0.11   54.1  35.76  0.744382   
 
Table 14 . Response Optimization for Pretreatment and Hydrolysis: GLU-H, TEP, ASH, CEL, HEM  
Parameters  
Response            Goal               Lower  Target         Upper          Weight           Importance  
GLU-H          Maximum                  0.97                  27.22                1                      1  
TEP                Minimum                  5.50                  21.600               1                      1  
ASH               Minimum                  1.34                   3.940                1                      1  
CEL               Maximum                 34.58                  69.48                1                      1  
HEM              Maximum                 4.52                    51.82                1                      1  
 
Solution                                                             GLU-H   TEPs     ASH  CEL  HEM  Composite 
Solution  Grass  Size  Method  Time   Loading    Fit           Fit       Fit     Fit       Fit    Desirability 
1                 Pp   450   SPORL Time3  15FU       25.43    12.4000  1.52  54.1    35.76    0.730387 
 
Table15. Response Optimization for Pretreatment, Hydrolysis and Fermentation: TEPs-F, AA-F, HMF-F, ETH,        
U-GLU, TEPs, AA, HMF, GLU-F, TEP, ASH, GLU 
Parameters 
Response             Goal                   Lower Target                 Upper                 Weight                     Importance TEPs-F             Minimum                       0.871                         3.298                       1                                3.0 
AA-F                Minimum                       0.189                         3.000                       1                                3.0 
HMF-F             Minimum                       0.000                         3.000                       1                                3.0 
ETH                 Maximum                       0.731                         15.930                     1                                4.0 
GLU-U            Minimum                        0.781                         19.800                     1                                3.5 
TEPs                Minimum                        0.404                           3.000                     1                                2.0 
AA                   Minimum                        0.018                           3.000                     1                                2.0 
HMF                Minimum                        0.006                           3.000                     1                                2.0 
GLU-H            Maximum                        0.970                         27.220                     1                                3.5 
TEPs                Minimum                        5.500                         21.600                     1                                1.0 
ASH                 Minimum                        1.340                           3.940                     1                                1.0 
GLU                Minimum                          0.640                        13.110                     1                                2.5 
XYL                Minimum                          0.040                          0.230                     1                                2.5 
CEL                 Maximum                        34.580                        69.480                    1                                1.0 
HEM                Maximum                          4.520                        51.820                    1                                1.0 
                                                                                  TEPs-F   AA-F  HMF-F   ETH   GLU-U   TEPs 
Solution   Grass    Size   Method     Time    Loading    Fit         Fit        Fit         Fit         Fit        Fit 
      1             Pp     450   SPORL    Time3    15FPU    1.331    0.33      0.00      13.88     3.51    1.066 
 
                    AA        HMF       GLU-H    TEP        ASH     GLU    XYL     CEL    HEM      Composite 
Solution       Fit            Fit              Fit        Fit           Fit        Fit        Fit         Fit       Fit        Desirability 
       1          0.054      0.009           25.43   12.40       1.52      0.85     0.11      54.1    35.76       0.851801 
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4.0 Conclusion   The dominant inhibitors to enzymatic activities in this study are organic compounds and three of them were 
identified;  5-Hydroxymethylfurfural, phenols and acetic acid. Phenolic compounds are the most challenging 
inhibitors from the use of this biomass for bioethanol production. 

Sulphite pretreatment to overcome the effects of lignocellulose (SPORL) is likely to be most suitable 
for minimizing the formation of these recalcitrance and maximization of carbohydrates for this process.    

Reducing  biomass particle sizes did not have overall positive effect on the production and 
combination of biomass particle sizes with other sources at the hydrolysis and fermentation stages of reactions 
showed no significance difference  to test of variation.  

The evaluated amounts of potential glucose in pretreated Biomass(PGP) and theoretical ethanol yield 
from initial amount of glucose  (EY1); 94.13% and 78.26% respectively for production at enzyme loading of 
15FPU/g and stirring during hydrolysis, showed that an ethanol biorefinery could be established in the study 
area.   
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