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Abstract 

In this paper, a Hybrid algorithm based on - Particle Swarm Optimization (PSO) and Differential Evolution (DE) 

is used for solving reactive power dispatch problem. It needs progressing the population to create the individual 

optimal positions by means of the PSO algorithm, and then the algorithm come in DE phase and progresses the 

individual optimal positions by smearing the DE algorithm. In order to comprehend co-evolution of DE and PSO 

algorithm, an information-sharing mechanism is presented, which progresses the capability of the algorithm to 

fence out of the local optimum. Additionally, in optimization procedure, we espouse the hybrid inertia weight 

stratagem, time-varying acceleration coefficients tactic and arbitrary scaling factor stratagem. The proposed 

Hybrid algorithm based on - Particle Swarm Optimization and Differential Evolution (H-PSDE) has been tested 

on standard IEEE 30, 57,118 bus test systems and simulation results show clearly about the better performance of 

the proposed algorithm in reducing the real power loss. 

Keywords:Optimal Reactive Power; Transmission loss; Particle Swarm Optimization; Differential Evolution; 

Global Search; Local Search; Inertia Weight. 

 

1. Introduction 

Optimal reactive power dispatch (ORPD) problem is to diminish the real power loss and bus voltage deviation. 

Various mathematical methods like the gradient method [1-2], Newton method [3] and linear programming [4-7] 

have been implemented to solve the optimal reactive power dispatch problem. Both   the gradient and Newton 

methods have complication in handling inequality constraints. The problem of voltage stability and collapse play 

a key role in power system planning and operation [8].  Evolutionary algorithms such as genetic algorithm have 

been already projected to solve the reactive power flow problem [9-11]. Evolutionary algorithm is a heuristic 

methodology used for minimization problems by utilizing nonlinear and non-differentiable continuous space 

functions. In [12], Hybrid differential evolution algorithm is planned to advance the voltage stability index. In [13] 

Biogeography Based algorithm is proposed to solve the reactive power dispatch problem. In [14], a fuzzy based 

method is used to solve the optimal reactive power scheduling method. In [15], an enhanced evolutionary 

programming is used to solve the optimal reactive power dispatch problem. In [16], the optimal reactive power 

flow problem is solved by incorporating genetic algorithm with a nonlinear interior point method. In [17], a pattern 

algorithm is used to solve ac-dc optimal reactive power flow model with the generator capability limits. In [18], 

F. Capitanescu proposes a two-step approach to calculate Reactive power reserves with respect to operating 

constraints and voltage stability.  In [19], a programming based methodology is used to solve the optimal reactive 

power dispatch problem. In [20], A. Kargarian et al present a probabilistic algorithm for optimal reactive power 

provision in hybrid electricity markets with uncertain loads. This paper proposes hybridization of Particle Swarm 

Optimization and Differential Evolution (HPSODE) for solving reactive power dispatch problem. The particle 

swarm optimization (PSO) algorithm is an evolutionary computation technique, and it was developed by Dr. 

Eberhart and Dr. Kennedy in 1995 [21, 22]. But PSO suffer in the premature problem of convergence, exclusively 

in solving the problems of high-dimensional complex functions. Until now, many researchers have projected 

numerous methodologies to overcome this problem, including improved parameters [23, 24] and hybrid algorithms 

[25, 26]. Differential evolution algorithm which was first planned by Storn and Price [27, 28, 29], and it is an 

efficient global optimizer in the continuous search domain. DE has greater search performance for many 

optimization problems with steady convergence rate at the beginning of the optimization. Yet, DE [30] has some 

inadequacies such as the slow convergence rate and effortlessly trapping in local optimum in the later period of 

evolution. In order to overcome the blemishes of PSO and DE in solving global optimization problems, we propose 

a Hybrid algorithm based on PSO and DE, called H-PSDE. H-PSDE starts with the normal PSO and amalgamated 

DE to grasp to the optimal solution. During optimization procedure, we espouse the hybrid inertia weight stratagem, 

time-varying acceleration coefficients stratagem and arbitrary scaling factor stratagem. The proposed algorithm 

H-PSDE has been evaluated in standard IEEE 30, 57,118 bus test systems. The simulation results show that our 

proposed approach outclasses all the entitled reported algorithms in minimization of real power loss. 

 

2. Problem Formulation  

The optimal power flow problem is a common minimization problem with constraints, and can be mathematically 
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written in the following form: 

Minimize f(x, u)                                                   (1)  

subject to g(x,u)=0                                               (2)  

and h(x, u) ≤ 0                                                           (3) 

where f(x,u) is the objective function. g(x.u) and h(x,u) are respectively the set of equality and inequality 

constraints. x is the vector of state variables, and u is the vector of control variables. 

The state variables are the load buses (PQ buses) voltages, angles, the generator reactive powers and the slack 

active generator power: 

x = 
P�
, θ�, . . , θ�, V�
, . , V���, Q�
, . . , Q�����   (4) 

The control variables are the generator bus voltages, the shunt capacitors/reactors and the transformers tap-settings: 

u = 
V�, T, Q���                                                    (5) 

 

or 

u = 
V�
, … , V��� , T
, . . , T��, Q�
, . . , Q�����        (6) 

Where ng, nt and nc are the number of generators, number of tap transformers and the number of shunt 

compensators respectively. 

 

3. Objective Function 

3.1. Active power loss 

The objective of the reactive power dispatch is to diminish the real power loss in the transmission network, which 

can be designated as follows: 

 

� = �� = ∑  !!∈#$% 
&'� + &)� − 2&'&),-./')�                                                              (7) 

or 

� = �� = ∑ �0' − �1 = �02345! +∑ �0' − �1#0'62345!'∈#0                                                (8) 

 

where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of transmission lines in 

power systems. Pd: is the total active power demand, Pgi: is the generator active power of unit i, and Pgsalck: is the 

generator active power of slack bus. 

 

3.2. Voltage profile improvement 

For diminishing the voltage deviation in PQ buses, the objective function becomes: � = �� + 78 	× &;                                 (9) 

where ωv: is a weighting factor of voltage deviation. 

VD is the voltage deviation given by: 

&; = ∑ |&' − 1|#>?'@
                                  (10) 

 

3.3. Equality Constraint  

The equality constraint g(x,u) of the ORPD problem is represented by the power balance equation, where the total 

power generation must cover the total power demand and the power losses: �A = �B + �C                                        (11) 

 

3.4. Inequality Constraints  

The inequality constraints h(x,u) reflect the limits on components in the power system as well as the limits created 

to ensure system security. Upper and lower bounds on the active power of slack bus, and reactive power of 

generators: 

�02345!D'E ≤ �02345! ≤ �02345!D4F                  (12) 

 

G0'D'E ≤ G0' ≤ G0'D4F 	, H ∈ I0               (13) 

 

Upper and lower bounds on the bus voltage magnitudes:          

 

&'D'E ≤ &' ≤ &'D4F 	, H ∈ I                   (14) 

 

Upper and lower bounds on the transformers tap ratios: 
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J'D'E ≤ J' ≤ J'D4F 	, H ∈ IK                 (15) 

 

Upper and lower bounds on the compensators reactive powers: 

 G5D'E ≤ G5 ≤ GLD4F 	, H ∈ IL               (16) 

 

Where N is the total number of buses, NT is the total number of Transformers; Nc is the total number of shunt 

reactive compensators. 

 

4. Standard particle swarm optimization 

The basic principle of PSO as follows. Let NP symbolizes the population size of the swarm. At t generation, the 

position and velocity of the i-th particle are symbolized as Xi = (xi1, xi2, · · · xiD) and Vi = (vi1, vi2, · · · viD) respectively. 

Let Pi = (pi1, pi2, · · · piD) denotes its personal best position, and Pg = (pg1, pg2, · · · pgD) the global best position from 

the entire swarm. The modernizing rule is as follows: 

M')!N
 = 7M')! + ,
O

P')! − Q')! � + ,�O�
P0)! − Q')! �                                 (17) 

 Q'1!N
 = Q'1! + M'1!N
                                                        (18) 

Where c1 and c2 are positive constants and called acceleration coefficients, parameter r1 and r2are two random 

functions in the interval [0,1].	7 is inertia weight, it is given by 

 

7 = 7D4F − 'RS%
TUV 'RS% (7D4F − 7D'E)    (19) 

 

Where iter is the current iteration number and max iter is the maximum number of allowable iterations, wmax and 

wmin are the initial and final values of the inertia weight, respectively. In general, wmax=0.89 and wmin=0.38. 

 

5. Differential evolution 

Differential Evolution (DE) algorithm is based on Darwinian evolution. In DE algorithm, the child population is 

created through the Mutation Operation. Select two individuals at arbitrary, xr1, xr2 , from the existing population. 

A new experimental vector vi is produced using (20), 

 M' = Q$S2R + � ∙ (Q%
 − Q%�)                   (20) 

 

Where F is a scaling factor which controls the augmentation of the differential evolution (xr1-xr2). 

 

5.1. Crossover Operation: Produce offspring ui according to (21) 

X') = YM') 	OZ[\	 ≤ ]^‖` = OZ[\`
Q') 													-aℎcOdH.c										                  (21) 

 

Where CR ∈ [0,1] is the crossover probability and randj is a arbitrarily designated index. 

 

5.2. Selection Operation: The selection operation is an avaricious selection criterion, which determines whether 

the individual endures to the next generations. The selection operation is described as 

 

Q'(a + 1) = YX'(a + 1)e(X'(a + 1)) < e
Q'(a)�Q'(a)																														-aℎcOdH.c					       (22) 

Where f(x) is the fitness value of individual x. 

 

6. Hybridization of Particle Swarm Optimization and Differential Evolution 

The projected H-PSDE algorithm is hybrid of PSO and DE. H-PSDE algorithm starts the PSO algorithm up to the 

point where the individual optimal position Pi of each particle is modernised. And then form the individual optimal 

position Pi of each particle to a new swarm. Afterwards, the algorithm moves in the DE phase. Lastly, to realize 

co-evolution of DE and PSO, information sharing mechanism is familiarised. The method is recurrent iteratively 

till the optimum value is grasped. The key idea of H-PSDE exemplifies in the following three aspects. 

 

6.1. Hybrid inertia weight stratagem 

Inertia weight plays a vital role on the equilibrium between local optimum and global optimum, a larger one 
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enables global exploration and a smaller tends to assist local exploration. Enthused by this, we design hybrid inertia 

weight strategy – the nonlinear changing inertia weight and arbitrary inertia weight in possibilities. 

 

7 = Y7D'E + (7D4F − 7D'E)
1 − g([)�HeOZ[\ > 0.51
0.58 − 0.19	 ∙ OZ[\(	)	-aℎcOdH.c	        (23) 

 

Where [ = ℎD'E + 2ℎD4F 	 ∙ 'RS%l

TUV 'RS%l
Sigmoid function 




NSmn	, hmax and hmin are the maximum and the minimum 

input values of Sigmoid function, respectively. Many experimental studies [31] confirmed the algorithm gives the 

best result when wmax=0.89, wmin=0.38 and hmax =−hmax = 5.8.Thus, it can balance the capability of global and local 

searching of the H-PSDE algorithm and progress the convergence accuracy efficaciously.  

 

6.2. Time-varying acceleration coefficients stratagem 

In the direction of its individual and global best position, Acceleration coefficients c1 and c2 control the movement 

of each particle. Small values limit the movement of the particles, while large numbers will cause the particles to 

move away [32]. In view of those concerns, a time-varying acceleration coefficient is introduced for the PSO 

perception. The objective of this development is to augment the global search in the early period of the optimization 

and to boost the particles to converge toward the global optimal in the final period of the search. 

 

,
 = ,

 + ,
� ∙ ,-. o 'RS%
TUV	 'RS% pq     (24) 

 

,� = ,�
 + ,
� ∙ ,-. o 'RS%
D4F	'RS% pq     (25) 

 

Where c11, c12, c21 and c22 are constants, the empirical findings settles that the algorithm can give the best result 

with c11 = c21 = 1.31, c12 = c22 = 0.51. 

 

6.3. Random scaling factor stratagem 

Scaling factor F is a vital parameter in DE algorithm, which can affect the convergence speed and the exploration 

ability. To prevent premature convergence and to ensure progress stability of HPSODE algorithm, we suggest an 

arbitrary scaling factor stratagem. 

  � = 0.31 + 0.23 ∙ 	OZ[\()                (26) 

 

6.4. Algorithm of H-PSDE 

Step 1: Initialize population. 

Let initialization iterative number be k = 0, initialization population size be NP, the termination iterative number 

be Maxiter. Calculate the fitness function for each particle, and let first generation Pi be initialization particles, and 

pick the particle with the greatest fitness value of all the particles as the Pg. 

Step 2: The H-PSDE algorithm enters PSO phase. 

Step 2.1: Modernize the velocities and positions of all the particles using (17) and (18). 

Step 2.2: For each individual particle, if the fitness value is better than the best fitness value Pi(t) in past, let the 

current particle’s position, Xi, as Pi. Pick the particle with the best fitness value of all particles as the�0>2s. 

Step 3: The H-PSDE algorithm enters DE phase. 

Step 3.1: Form the individual optimal position Pi of each particle to a fresh swarm. Implement mutation, crossover, 

and selection operation above mentioned for the new-fangled swarm. 

Step 3.2: Modernize the global optimal position�0Bt. 

Step 4: Information sharing. Compare the fitness values of,	�0>2s and�0Bt . pick the minimum one between the two. 

Let the corresponding position value as Pg, which are the greatest results of H-PSDE algorithm currently. That is, 

put Pg as �0>2s in subsequent velocity calculation of PSO phase and as xbest in subsequent mutation operation of the 

DE phase. 

Step 5: Repeat steps 2-4 until a stopping criterion is met (or maximum number of iterations). 

 

7. Simulation results  

H-PSDE algorithm has been tested in the IEEE 30-bus, 41 branch system. It has a total of 13 control variables as 

follows: 6 generator-bus voltage magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. 

Bus 1 is the slack bus, 2, 5, 8, 11 and 13 are taken as PV generator buses and the rest are PQ load buses. The 

considered security constraints are the voltage magnitudes of all buses, the reactive power limits of the shunt VAR 

compensators and the transformers tap settings limits. The variables limits are listed in Table 1. 
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Table 1: Initial Variables Limits (PU) 

Control variables 

 

Min. 

value 

Max. 

value 

Type 

Generator: Vg 0.92 1.12 Continuous 

Load Bus: VL 0.94 1.04 Continuous 

T 0.94 1.04 Discrete 

Qc -0.11 0.30 Discrete 

The transformer taps and the reactive power source installation are discrete with the changes step of 0.01.  The 

power limits generators buses are represented in Table 2. Generators buses are: PV buses 2,5,8,11,13 and slack 

bus is 1 and the others are PQ-buses. 

 

Table 2: Generators Power Limits in MW and MVAR 

Bus n° Pg Pgmin Pgmax Qgmin 

1 98.00 51 202 -21 

2 81.00 22 81 -21 

5 53.00 16 53 -16 

8 21.00 11 34 -16 

11 21.00 11 29 -11 

13 21.00 13 41 -16 

 

Table 3: Values of Control Variables after Optimization and Active Power Loss 

Control 

Variables (p.u) 

H-PSDE 

 

V1 1.0651 

V2 1.0528 

V5 1.0320 

V8 1.0449 

V11 1.0861 

V13 1.0660 

T4,12 0.00 

T6,9 0.03 

T6,10 0.90 

T28,27 0.91 

Q10 0.11 

Q24 0.11 

PLOSS 4.5285 

VD 0.9071 

 

Table 3 show that the projected approach succeeds in keeping the dependent variables within their limits.   

Table 4 summarizes the comparison of results and it reveals about the best performance of the proposed HPSODE 

algorithm in reducing the real power loss . 

Table 4: Comparison Results of Different Methods 

METHODS PLOSS (MW) 

SGA (33) 4.98 

PSO  (34) 4.9262 

LP     (35) 5.988 

EP     (35) 4.963 

CGA (35) 4.980 

AGA (35) 4.926 

CLPSO (35) 4.7208 

HSA     (36) 4.7624 

BB-BC (37) 4.690  

H-PSDE 4.5285 

Secondly the proposed Hybrid algorithm H-PSDE is tested in standard IEEE-57 bus power system. The reactive 

power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are PV buses and bus 1 is selected as slack-

bus. The system variable limits are given in Table 5.  

The preliminary conditions for the IEEE-57 bus power system are given as follows: 
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Pload = 12.422 p.u. Qload = 3.339 p.u. 

The total initial generations and power losses are obtained as follows: ∑�A  = 12.7729 p.u. ∑GA  = 3.4559 p.u. 

Ploss = 0.27450 p.u. Qloss = -1.2249 p.u. 

Table 6 shows the various system control variables i.e. generator bus voltages, shunt capacitances and transformer 

tap settings obtained after H-PSDE    based optimization which are within the acceptable limits. In Table 7, shows 

the comparison of optimum results obtained from proposed H-PSDE with other optimization techniques. These 

results indicate the robustness of proposed H-PSDE approach for providing better optimal solution in case of 

IEEE-57 bus system. 

 

Table 5: Variable limits  

Reactive Power Generation Limits  

Bus no  1 2 3 6 8 9 12 

Qgmin -1.4 -.015 -.02 -0.04 -1.3 -0.03 -0.4 

Qgmax 1 0.3 0.4 0.21 1 0.04 1.50 

Voltage And Tap Setting Limits 

vgmin vgmax vpqmin vpqmax tkmin tkmax 

0.5 1.0 0.91 1.01 0.5 1.0 
 

Shunt Capacitor Limits 

Bus no 18 25 53 

Qcmin 0 0 0 

Qcmax 10 5.2 6.1 
 

 

Table 6: control variables obtained after optimization  

Control 

Variables  

 

H-PSDE   

V1 1.1 

V2 1.059 

V3 1.040 

V6 1.018 

V8 1.031 

V9 1.017 

V12 1.025 

Qc18 0.0757 

Qc25 0.231 

Qc53 0.0581 

T4-18 1.011 

T21-20 1.078 

T24-25 0.952 

T24-26 0.939 

T7-29 1.079 

T34-32 0.938 

T11-41 1.011 

T15-45 1.032 

T14-46 0.911 

T10-51 1.021 

T13-49 1.059 

T11-43 0.910 

T40-56 0.900 

T39-57 0.951 

T9-55 0.952 
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Table 7: comparison results  

S.No. Optimization 

Algorithm 

Finest Solution Poorest Solution Normal 

Solution 

1 NLP [38] 0.25902 0.30854 0.27858 

2 CGA [38] 0.25244 0.27507 0.26293 

3 AGA [38] 0.24564 0.26671 0.25127 

4 PSO-w [38] 0.24270 0.26152 0.24725 

5 PSO-cf [38] 0.24280 0.26032 0.24698 

6 CLPSO [38] 0.24515 0.24780 0.24673 

7 SPSO-07 [38] 0.24430 0.25457 0.24752 

8 L-DE [38] 0.27812 0.41909 0.33177 

9 L-SACP-DE [38] 0.27915 0.36978 0.31032 

10 L-SaDE [38] 0.24267 0.24391 0.24311 

11 SOA [38] 0.24265 0.24280 0.24270 

12 LM [39] 0.2484 0.2922 0.2641 

13 MBEP1 [39] 0.2474 0.2848 0.2643 

14 MBEP2 [39] 0.2482 0.283 0.2592 

15 BES100 [39] 0.2438 0.263 0.2541 

16 BES200 [39] 0.3417 0.2486 0.2443 

17 Proposed H-PSDE   0.22252 0.23129 0.23107 

Then H-PSDE    has been tested in standard IEEE 118-bus test system [40] .The system has 54 generator buses, 

64 load buses, 186 branches and 9 of them are with the tap setting transformers. The limits of voltage on generator 

buses are 0.95, -1.1 per-unit., and on load buses are 0.95, -1.05 per-unit. The limit of transformer rate is 0.9, -1.1, 

with the changes step of 0.025. The limitations of reactive power source are listed in Table 8, with the change in 

step of 0.01. 

 

Table 8: Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

The statistical comparison results of 50 trial runs have been list in Table 9 and the results clearly show the better 

performance of proposed algorithm. 

 

Table 9: Comparison results  

Active power loss (p.u) BBO 

[41] 

ILSBBO/ 

strategy1 

[41] 

ILSBBO/ 

strategy1 

[41] 

Proposed 

H-PSDE   

min 128.77 126.98 124.78 118.98 

max 132.64 137.34 132.39 122.95 

Average  130.21 130.37 129.22 119.91 

 

8. Conclusion  

H-PSDE algorithm has been successfully applied for solving Optimal Reactive Power Dispatch problem. H-PSDE 

based optimal power Reactive Power Dispatch problem has been tested in standard IEEE 30, 57,118 bus systems. 

Performance comparisons with well-known population-based algorithms give inspiring results.  H-PSDE emerges 

positively to find good solutions when compared to that of other algorithms. The simulation results presented in 

previous section demonstrate the capability of H-PSDE methodology to arrive at near global optimal solution. 
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