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ABSTRACT

Energy recovery from municipal solid wastes (MSWjers economic benefits together with improved
management of wastes. In the literature, attempt@ tbeen made to understand and quantify the paltent
energy benefits of MSW but the implications of gireportion of the elemental constituents on theihgavalue

of the wastes are rarely discussed. In this ingastn, novel linear and nonlinear equations wereetbped
from artificial neural network (ANN) to predict tHagher heating values (HHV) of MSW. The new equasi
perform equally well in comparison with the exigtimodels in the literature for different HHV dateprh
various MSW sources. They also showed consistemsatiisfactory performances for predicting HHV elu
from new data as well as altered elemental compasit Furthermore, it was found that the changé¢ha
proportion of elemental compositions have intenggtielation to the magnitude of the HHV for diffetevastes.
Results show that a change in percent hydrogen (&ttdhges the HHV in some wastes that possess the
thresholds of both HHV magnitude and the carboertergy ratio (C/HHV). For the waste with low HHVtbu
relatively high C/HHV value, increasing the %H daoest significantly alter their HHV value. For thowgth

high HHV value and moderate C/HHV value, HHV in@ea as the %H increases. Wastes with high HHV value
but low C/HHV undergo reverse in the trend of HHY/the %H increases. Typical example of this is tbim
plastic wastes with high percentage carbon (%C) lbwt C/HHV. In this waste, as the %H increases the
corresponding HHV decreases.

Keywords. Municipal solid wastes, linear, nonlinear, adidil neural network, carbon to energy ratio, higher
heating values.

1. INTRODUCTION

Waste to energy is a sustainable and an econougtficéte in waste management. It is particularly ingoat at
the current time where the increasing cost of gngmgses financial challenges to the poor popul&ith
increasing world population, waste generation istba geometric rise. With human activities becoming
diversified, wastes generated are also of variousces and compositions. Across many cities, tltiies and
management of the wastes are posing difficult ehglés. Thus, in the recent time, categories ofesasave
included e-wastes which are the electrical andtreleic wastes that include damaged and obsolet@onents,
sub-assemblies, etc., that are considered unubgbtavners (Qu et al. 2013). This category of wagteses
serious environmental challenges if not adequatedyiaged. However, general solid wastes (e.g., rimahic
solid wastes) are still of considerable concernhindeveloped and the developing countries. Irdtheloping
countries, increasing generation of wastes posedehuon the budget and management while the lack of
understanding over a diversity of factors that ciffthe different stages of waste management anddies
necessary to enable the entire handling systenifunicg are serious issues (Guerrero et al. 2013).

Municipal solid wastes (MSW) are regular categdryastes that come from our cities and towns cosipgi of
both combustible and incombustible materials (Sptep14). They are generated in huge quantity atra¢
urban places around the world. In 2007 alone, Chisated about 152 million tons of MSW (Lai et 2011).
With the huge quantity of MSW and the various cosifions that are regularly gathered from variousitipal
sources, harnessing the derivable energy from thdélinbe of immense benefits (Abila 2014). Advanced
societies have largely replaced the biomass witlsifduels for energy generation. However, the iotpaof
fossil fuels on climate change and the consequlebtagwarming is calling for a rethink (Vargas-Mareet al.
2012). Thermoelectric power can be feasibly geedrfiom low grade fuel such as MSW (de Souza-Satitos
Ceribeli 2013; Cheng & Hu 2010). To achieve maximbemefits, efficient designs of bio-energy systemnd
adequate knowledge of the higher heating values{Hi¢rivable from these wastes are required (Nhenhta
Abdul Salam 2012). Such knowledge will enhancepfa@ning, design and optimization of the wastertergy
projects. HHV indicates the worth of the wastesftml generations (Meraz et al. 2003). It is anaon@nt fuel
property, which represents the overall enthalpyngeawhen a compound is stoichiometrically burnedh at
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reference temperature with the final products a@sthe reference temperature, and any water présehe
liquid state. Aside the generation of energy, wastmbustion also reduces the mass and volume ofvéiste
considerably, making subsequent disposal more neadg Such process usually takes place at high
temperature (e.g., > 1000K) in the presence of dhuoinair to promote oxidation of the organic conmmisi
(Tillman 2012; Walser et al. 2012; Galiano et &12). Different material components of MSW haveialzle
enthalpy of combustion and water content. The watetent decreases the recoverable energy from. theen
incombustible portion of the wastes eventually $farms into clinker after combustion resulting olid residue;
ash, with large metallic content (Meraz et al. 2003

Heating values of MSW can be determined eitherctiyeor by using mathematical models. The direct
determination often comes with some costs whilentiaghematical models are widely available in therditure.
These models rely on elemental, proximal, struttyrhysical and chemical analyses (Vargas-Morenalet
2012). HHV is usually obtained via a mathematieddtion using the reduced chemical compositiorhefftiels

as parameters (Meraz et al. 2003). In this regarndsyy equations have been presented. While marlyest
equations perform quite well, investigators haveasased to research into new and better-perforetgtions
for HHV, especially in relations to MSW. Particuiarthe deficiencies in the HHV estimation from pur
substances, as given by physical chemistry texts, (McQuarrie & Simon 1997) have been overcomén wit
equations with capability for HHV estimation in cplex mixture. These equations use linear combinatiof
the elemental compositions, which are often givenhe percentage of dry basis.

Lloyd & Davenport (1980) established a linear etprafor HHV estimation using multiple regressioragisis
of 138 liquid fossil fuels. The resulting relatienshown in equation (1):

0,
HHV = (1— A’f'ozcj)](— 0.3578%C) ~1.1357%H) + 0.0845%0) — 0.0594%N) - 0.1114%S)) 1)

Similar correlation was presented by Boie (19533kaswvn in equation (2):

0,
- A’Hzooj(— 0.3517%C) - 1.1625%H) + 0.1109%0) - 0.062§%N) - 0.1109%S)) (2)

HHV =(1

%H,0, %C, %H, %0, %N, and %S refer to the percentdgmental composition of water, carbon, hydrogen,
oxygen, nitrogen and sulphur, respectively. In fddj some existing HHV estimations were based fon t
thermochemical concepts. These include equationan@® (4) given by Meraz et al. (2003) and Wils&8712),
respectively:

0,

HHV = (1— A’HzooJ(— 0.3708%C) —1.1124%H) + 0.1391%0) - 0.317§%N) - 0.1391%S)) 3)
0,

HHV = (1— A’Hzooj(— 0.3279%C) —1.5330%H) + 0.166§%0) - 0.0243%N) - 0.0928%S)) (4)

Many other models for predicting the heating valoEMSW exist in the literature. Most of these ¢@nfound
in the review by Vargas-Moreno et al. (2012). Obisgy the above equations, there exist similaritieghe
coefficients for almost all the elemental parangtéiot only that, they are all linear equations.rateet al.
(2003) earlier investigated the performance oftal models and found them to perform well withicegtable
error limits. Thus, one can assume them to bedestd trusted.

However, one assumption is common among the mdidédsl above- that the relationship between eleatent
components of the MSW wastes and the enthalpy bétmon combustion is linear. This is the commomioof
the HHV models in the literature. They are hardbnlmear. Also, an important phenomenon that i®lyar
addressed in the open literature is the sensitofithese models to the change in the elementapositions of
the biomass. How does the HHYV respond to a chaméeH? Also, how does the value of carbon to enegitjp
(C/HHV) affect the sensitivity of these models e tthange in elemental compositions, e.g., %Helation to
HHV and the waste type?

Answering the above questions require systematiestigations of the new and existing models togetbith

further probe into the elemental compositions afouess biomass wastes. This work aims to answelabwe
guestions with new and novel equations as wehagxkisting models. As such, it is hoped that &sailts of this
work will throw light at the relations between tpeoportion of the elemental compositions and thergy
recoverable from the MSW wastes. Furthermores @rivisaged that the results will enhance our wtaleding
of the energy generation from synthetic fuels wredeenental compositions can be manipulated.
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2. Methods

The approach used in this work to address the igmsstaised above involves the design, implemeoriatind
validation of new models. The new models were olet@ifrom the analyses of Artificial Neural Netwd@AdNN)
procedure as well as the Multivariate RegressiowRylusing XLSTAT (Microsoft Excel).

21 ANN

ANN is a powerful modelling tool that approximatksictions between the dependent and the independent
variables. It is a versatile tool to reduce the patational timescales as well as capture integyadifiects
inherent in the complex linear and nonlinear retahips among the variables. Yet, it has simple uget
procedure (Brownlee 2011; Haykin 1999; Graupe 198Rkaya & Demir (2010) earlier demonstrated the ab
ANN in the prediction of HHV for MSW. But, they didot develop any equation from the results. The
procedures followed in the development of the nexdefs from ANN involve data sourcing and pre-preass,
different ANN configurations and network creatio®twork training, validation and testing as wellstetistical
evaluation of performances of the different ANN figarations. Different configurations were testedobtain
optimal performance. For each configuration, tranivalidation, and testing were performed togethigr post-
training regression analysis. Among the well-perfimg ANN model configurations, those with simplewerk
configurations were chosen for analyses to obtemréquired linear and nonlinear models.

2.1.1 Data sources and pre-processing

Data used in this work were obtained from Meraalet(2003). These data pertained to MSW from variou
sources with materials ranging from food, papeasiits, wood, textiles, yard, metals, glass and ki&le the
models discussed under the introduction, five elgalecompositions (%C, %H, %0, %N and %S) were
considered as the independent variables on a diig bathe waste sample. The percentage of therwadsent

in each MSW was subtracted from 100% of the origimaste sample. The output variable remains the HHV
value of each waste sample with unit of MJ/kg. Nibigt the HHV is exothermic and as such, negatige
attached to its magnitude. Table 1 shows the statisf the data. Pre-processing involves the datenalization
using “mapminmax” function in MATLAB. This functioscales the inputs and the output so that theyirfadl

the range of -1 to 1.

Table 1: Statistics of the ultimate analyses detaMSW (Meraz et al. 2003)

. . . . . “HHV
Statistics % C %H %0 %N %S %H,0 (MJ/kg)
Maximum 87.10 14.18 47.84 10.00 4.08 78.70 039
Minimum 0.72 0.80 0.00 0.00 0.00 0.00 45.88

Average 4325 5.63 2584 115 030 14.13 15.89
Stndand 18.73 2.66 15.55 1.77 049 | 21.73 9.66
Deviation

2.1.2  ANN Models Configurations and Network Creation

Various ANN configurations were investigated befot®osing from the simplest of the well-performioiges
that suit the purpose of this work. The configumatprocedure follows the proposal by Jain & Indyr{003).
The network was created using single hidden ldy#ferent number of neurons was tested at the hriddger.
To implement this in MATLAB, program files were ated with lines of code to create, train, validanel test
the network as well as to generate the goodnefisperameters of the data points using correladioefficients
and slope. The program divides the dataset randondy60, 20 and 20% corresponding to the datarésning,
validation and testing, respectively.

Levenberg-Marquardt function was used for the tnginof the network. It is a curve-fitting functiothat
optimizes the parameter of the model curve in tbelinear least squares problems. The function bsek-
propagation algorithm that involves iterative atliusnt of the weights and biases, which were usedhby
transfer function to relate the input layer to tigden layer. The algorithm utilizes a gradientodes algorithm
with such learning rule as described by Widrow @@ he training process continues until the ebetween
the input and the output reduces below the prelyalsfined minimum. Also, the network used in ourrlvis
the feed forward type. It is the commonest netwiorlengineering application (Haykin 2009). ‘Purelamd
‘Tansig’ transfer functions were used to develop timear and nonlinear models, respectively. Tiamsfer
function calculates a layer’s output from its neput. To obtain linear models from ANN structureyrétin
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function was used as the transfer function betvikerinput and the hidden layers as well as betwleemidden
layer and the output layer of the network. Also,ofitain the nonlinear models from ANN structurendig
function was used between the input and the hidalggrs while Purelin function was used betweenhilelen
and the output layers. Mean square error (mse) emgsloyed as the network default performance cateri
relating the calculated output from the model ® dlatual target.

In the training process, the epochs and goals sesuwhe stopping criteria of the number of iterai@and the
error tolerance, respectively. Epoch is the maxinmumber of times all of the training sets are pné=g to the
network while goal refers to the maximum error tatee between the predicted and the actual oufputs, the
training stops if the error goal is satisfactorytbe maximum number of epochs is attained. In wask, an
epoch of 200 and a goal of zero were used. Thearkttrainings thus stopped when the number of tilena
exceeded the stated epochs or if the error tolerenachieved. The weights at various nodes in AféNvork
were randomly assigned leading to different ougmd performance at every training for the sameseatdo
control the randomness, the number of network itrgifior a single ANN configuration was limited t®.1The
result from the training giving the best performamneas then selected. Also, the training processraeées the
network object.

The ANN models configurations in this work diffenlg in the number of neurons at the hidden laygpidal
model configuration was represented as ANN [I-Hafere “I” represents the input layer and its numteéers

to the number of independent variables (5 in thiwki\v"H” represents the hidden layer and its number
represents the number of neurons used at this mildgeer (1 to 4 in this work). “T” represents thetjut layer
and its number represents the number of correspgritipendent variable or target (1 in this workje iumber

of neuron was increased from 1 to 4 in this work.eAch number of neurons, the network was traitesied
and validated ten times for each network configaratThe best performance in this set of trainingterm of
the correlation coefficient, was chosen. This pdoce was followed for all the number of neuronsduse

Criteria for the analyses of the performances ef NN configurations include the coefficient of calation
(R, slope and intercept of the best line of fit.

2.1.3  Equationsfrom ANN Models

Analysis of the ANN procedure was used to obtaingtuations from the ANN structure. Among the seapbf
the well-performing ANN configurations were usedgenerate the linear and nonlinear equations. e
equation was obtained with the Purelin transfecfiom used in the input to hidden as well as atHigelen to
output layers of the network, respectively while tionlinear equation was obtained with Tansig amaIP
transfer functions at the former and latter posgiorespectively. The procedure involved manuainadization
of the independent variable data using the ‘mapraiifunction procedure in MATLAB. This was thenatgd
with the weights and the biases obtained from thmilation of ANN model configuration of choice ugitthe
expressions for the ‘Tansig’ and ‘Purelin’ functsoat the appropriate layers. The expression fopmiamax’ is
shown in equation (5):

y= 2(X Xmm) -1 (5)

(Xmax - Xmin)

where y is the normalized form of the variable max and xmin are the maximum and the minimum ndeedl
values, respectively (typically 1 and -1) for theriable. Tansig function is shown in equation {®)e resulting
relation is a normalized form of the predicted aitpvhich can then be denormalized to get the hpnealicted
output. Thus, the resulting relation, from the abpvocedure, was denormalised to obtain the afyicaodels.

2 6)
(1+ exp(-2n))

2.2 Multivariate Regression (MVR)

tansig(n) =

The MVR model is one of the most widely used of sthtistical methods. Regression techniques such as
principal component regression (PCR) and partiastlsquares regression (PLSR), are based on teesawv
method (Gosasang et al. 2011; Fox et al. 2011)tlzeyd have been widely applied in many fields ofigfe.g.,
anatomy (Schumann et al. 2013) . In this worktf@ purpose of comparisons with the ANN models ather
existing HHV models, multiple linear and nonlineggression models were developed using XLSTAT
(Microsoft Excel). The linear models (MVR-PCR, MVR-SR) and nonlinear model (MVR-nonlinear) are
shown as equations (7), (8) and (9), respectively:

HHV =-0.132- 0.326%C-1.242%H+ 9.148x10°%0 + 0.264%N- 4.07910°%S (7)
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HHV =-0.270- 0.256%C-1.746%H+ 9.364x10°%0 + 0.231%N- 0.203%S (8)

HHV = —0.049- 0.431%C-1.428%H+ 0.295%0- 0.153%N+ 2.509%S+ 4.194x10°%C? +
6.387x10°%H? —1.793x10°%0? + 0.518%N - 8.265%3 — 7.205x10°%C° — 4.096x10°%H
+5.881x10°%0°% — 0.1395%N + 6.611%S + 4.137x10'%C* + 4.139x10°%H* — 6.479x10°

2%0* +1.002x1(%%N* —1.341%¢
9)

2.3 Model Performance Testing Criteria

The performances of all the models were testedgusiia criteria; R-squared R intercept and slope, of the
regression or predicted line of fit to the actuél\Hof the original dataset.

24 Sensitivity of HHV value to Change in %H and %C

In order to test the predictive ability of the mtsdand estimate how change in the elemental cottiposiffect

the HHYV values in the waste, %H was increased bwrah 50%, respectively. In order to maintain th@%0
total composition of the elements, the marginalngfeain the %H was deducted from the %C. Thus, %H
increases by the same amount with which %C reduadbg original dataset.

3. Resultsand Discussions

The results of the various investigations are priesebased on the applications of all models cemsitlin this
work for the prediction of HHV for MSW. The perfoances of the models were examined for different HHV
data from literature. Also, the sensitivity of tHelV value to change in the elemental compositiotested with
the new and existing models.

31 ANN

Figure 1 shows the training, validation and tessegsions of the network using 1 neuron in thednddyer.

The network uses the transfer functions- Tansidpéninput layer and the Purelin in the output lajtecould be

seen in Figure 1(A) that the network-learning iateery fast resulting in near vertical drop in meauare error
(mse). The best validation performance occurs atle@00 with very low mse. With just one neurortheg

hidden layer, the coefficient of correlation (Ryery close to one (i.e., 0.991) as shown in FidfR). Similarly,

the performance of the network with two neuronthathidden layer is shown in Figure 2. The perforoeaat

the post-regression analysis shows good correlat@efficient (approximately, 0.994). In comparisptise

performances of the above-mentioned ANN configareiare still approximately equal, despite theedéfce in
the number of neurons at their hidden layers. Tedopmances of the other ANN structures with défar
number of neurons are shown in Table 2. In theetahke parameters R and the slope are very closeetdor all

the configurations while the intercept is low. lillwe appreciated that all the models have vergdgparameter
values that are approximately equal for differeNfMconfigurations. For all the

ANN configurations, the slopes and the Rs are cltisé& by at least 98 and 99%, respectively. Tihildates the
strength of all the ANN configurations. Hanspalakt (2013) acknowledges the fact that a well-trdidNN
models, irrespective of the number of layers, céer @ompetitive performance. Thus, simple ANN misd=an
be used to fit complex system, provided that sigffittraining leads to good performance.

Since all the ANN models perform creditably weltespective of the number of neurons in the hiddgar, two
of the simplest ANN structures with both havingeluron at the hidden layer were selected for theldgment
of the equations for the prediction of HHV. These the first two ANN structures in Table 2. ThesfiANN
configuration in the table used Purelin functiorbath the input and the output layers. Thus, lirespration was
obtained from this model. This is shown in equat{@f) and it is henceforth referred to as ANN-lineghe
second model used Tansig function at the inputrlayel the Purelin function at the output layer. Norar
equation was obtained from this model (shown inatiqn (11)) and it is henceforth referred to as ANN
nonlinear. The equations were obtained followingghocedures described in section 2.1.3.

_ %Hzooj(— 0334%C) - L15%H) + Q091%0) + Q285%N) + 0091%S)) - 0.4105 (10)

HHV :[1
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(11)
HHV = ~51L17 +178.464

0,
1+ exp[[l— %J(— 0.00291%C) — 0.00874%H) + 0.00067§%0) + 0.00243%N) + 0.0011%8))]

The performances of the two equations are showiigare 3 in comparison with the target HHV. It isar from
the figure that the new equations, both linear aadlinear provide good matches to the target HHMUST
reliable models can be obtained from ANN structwsiag the approach demonstrated in this work.

Furthermore, the performances of the linear andimesr MVR equations developed from XLSTAT wereteels
This was done to obtain robust comparisons of thBe mquations with a range of other models. The
performances of the MVR linear models (MVR-PCR afifR-PLSR) and MVR-nonlinear equations also
appear satisfactory. The performances of thesetiegsaare compared to the existing models in litemafor the
prediction of HHV values. The models selected friiterature are expressed in equations (1) to (4y).thRe
purpose of brevity, equations (1) to (4) will, hefarth be referred to, in this work, as; Lloyd, BgiMeraz, and
Wilson models, respectively.

Best Validation Performance is 0.003606 at epoch 200

L\E A

Mean Squared Error (mse)

1 ] 20 40 60 a0 100 120 140 160 180 200

200 Epochs

Oukput <= 088 Target+ 027

20e 25
Target

Figure 1: (A) Error reduction in trained network) (Bost-training regression analysis for ANN [5-1u$]ng
Tansig-Purelin transfer functions.
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Figure 2: (A) Error reduction in trained network) (Bost-training regression analysis for ANN [5-2u$]ng

Tansig-Purelin transfer functions.

Table 2: Performances of the different ANN confajions.

S/N ANN R Slope intercept Transfer functions
Configurations
1 ANN[5-1-1] 0.9913 0.98 0.5 Purelin-Purelin
2 ANN[5-1-1] 0.9915 0.99 0.27 Tansig-Purelin
3 ANN[5-2-1] 0.994 0.98 0.38 Tansig-Purelin
4 ANN][5-3-1] 0.994 0.98 0.23 Tansig-Purelin
5 ANN[5-4-1] 0.9941 0.99 0.15 Tansig-Purclin
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Figure 3: Target and the predicted HHV with newadouns from ANN models.

3.2

Performances of the Models to the Target HHV (Meraz et al. 2003)

The performances of all models in predicting theyega HHV were compared as shown in Figure 4. Ad sai
earlier, the closeness to value 1 of the slopethad® and the closeness to zero of the intercept define
quality of prediction by the model. In the figuad| the models posed very good values for slopeh dwving
approximate value close to 1. Similarly, th&\Rlues for all the models are, at least, 98% cloge 1. MVR-
nonlinear leads with value of 0.985 followed by MVACR with 0.983. These are followed closely by ANN-
linear with value of 0.983 and MVR-nonlinear withlwe of 0.982. In term of the intercept, the Boiedel has
the best value with value 0.086 closest to zeras Thfollowed by the ANN-nonlinear model with valwf
0.272. The performance analyses above show thateéheANN models perform equally well in comparison
with the existing models. The new MVR-PCR and MV&ilinear presented have minimal edges over the ANN
models in term of the Feriterion while they all perform better than theested existing models in the literature
as shown in Figure 4. Predictions by ANN-linear &dR-nonlinear are shown in Figures 5 and 6, respely.
The figures show good predictions by the two modétk the target HHV data points clustering welband the

lines of fit.
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Figure 4: Performances of all models based on t&tg®/ data (Meraz et al. 2003)
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Figure 5: Output of ANN-linear model compared tmé&é HHV data (Meraz et al. 2003)
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Figure 6: Output of MVR-nonlinear model comparedamet HHV data (Meraz et al. 2003)
33 Sensitivity of HHV to changein % H

The sensitivities of the HHV values and models barge in elemental compositions were investigated f
selected wastes. The %H in the data obtained frarakilet al. (2003) was separately increased byn@5a%.
The marginal changes in %H were deducted from ¢imeposition of carbon. Thus, in the data, %H incesadsy

a certain amount while the %C decreases by the sanoent. Figure 7 shows the plot of HHV predictidois
selected wastes at 50% increase in %H. Also, Figudepicts the carbon to energy ratios (C/HHV) thoe
selected wastes in Figure 7. Selected data poiatsised in the figures for the purpose of clatityFigure 7,
with 50% increase in %H, all the models predict thange in HHV values in the same way. Though Wilso
model shows lower value of HHV, compare to otherdeis. For waste with high HHV values, the models
predict increase in HHV values for 50% increas&4H. This is, however different at the last datarto{®)
where all the models predict reduction in HHV vafaeincrease in %H. This point represents the evést the
mixed plastics. Possible reason for this is the fatios of carbon to energy (C/HHV) for this catagof waste.
This is shown in Figure 8 for the selected wastmapdas. Among all the wastes shown in the figurexemi
plastics have the least C/HHV. Thus, in this wasteucing the carbon content drives down the HHWe&a
irrespective of the increase in the %H. Furthermfimesome waste samples in Figure 7 (see, datat @8, 6,

7) with low values of HHYV, the predictions indicate significant change in HHV values with changéhia %H.
As earlier inferred, since these categories of @mbave high C/HHV but low HHV values they are tezted
by the reduction in carbon composition unlike thixed plastic waste (data count 9) with low C/HHWimgy
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high HHV value. Figure 9 shows the predicted HHVuea at 25 and 50% increase in %H composition using

ANN-nonlinear model. The model shows good perforeaain forecasting HHV values with consistency.
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Figure 7: HHV predictions for 50% change in %H &irmodels (Original Data from Meraz et al. 2003)
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Figure 8: Carbon to energy ratios for randomly ctelg waste samples (Original data from Meraz €2G03)
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Figure 9: HHV predictions for 25 and 50% Chang@6id using ANN-nonlinear (Meraz et al. 2003)
34 Comparison of the performances of models on the new HHV data

New data from the feasibility study of waste torgiyeby Pasek et al. (2013) were obtained for furthst of the
models performances. Figure 10 shows the bar ¢ball models in terms of the criteria earlier aissed.
Clearly, all the models perform well judging frofretview of the slope and thé Rhich are very close to 1 in
all cases. But, the intercept vary for some of iedels. For example, the intercept value of MVR{im@ar
model is very close to 5, which indicates wide dé&woin. Similarly, the intercept for the Lloyd moddso shows
wide deviation from origin with value greater th&inThe ANN models and the linear MVR models shoghhi
value of intercepts, though, they are lesser inesthan the earlier models mentioned. This istals@ase with
Boie and Wilson models. In all, Meraz et al. (20@8)del performs best on new data with intercepaealery
close to zero and the’Rs well as the slope being in the acceptable rdfigares 11 and 12 show the outputs of
the predicted HHV using the ANN-nonlinear and Meedzl. (2003) models, respectively. Both modelswsh
good predictions as indicated with thefr Rlues as well as the fair cluster of the datascaround the lines of
fit. Thus, the new equations from ANN can compeagaadly well with the existing models in predictittHV
values.
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Figure10: Performances of all models based on nketW Hata (Pasek et al. 2013)
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Figure 11: Output of ANN-nonlinear model comparediéw HHV data (Pasek et al. 2013)
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Figure 12: Output of Meraz et al. (2003) model canag to new HHV data (Pasek et al. 2013)
4. Conclusion

Energy recovery from municipal solid wastes (MSWjers economic benefits together with improved
management of wastes. This investigation demomestrdtte ability of novel linear and nonlinear modietam
artificial neural network (ANN) to predict the highheating values (HHV) of the MSW. Investigatiarfsthe
suitable ANN configurations for the developmentioé models show that well-trained simple ANN stoues
give satisfactory performances. As a result, sitdglN structures are utilized to develop the new gisedThe
new equations perform equally well in comparisothvihe existing models in the literature for difat HHV
data on various MSW sources. The new equations siiswed consistency in satisfactory performances in
predicting HHV values with new data as well as d®im elemental compositions. The sensitivitiethefHHV

to change in elemental composition display inténgstcenarios. Results show that change in petogirbgen
(%H) composition change the HHV in some wastes plussess a threshold of both HHV magnitude and the
carbon to energy ratio (C/HHV). For the waste witv HHV and relatively high C/HHV value, increasing
the %H does not significantly alter their HHV val&®r those with high HHV value and moderate C/H¥&lue,

25



Journal of Energy Technologies and Policy www.iiste.org
ISSN 2224-3232 (Paper) ISSN 2225-0573 (Online) miy
Vol4, No.5, 2014 NSTE

HHYV increases as the %H increases. Wastes with HigW and very low C/HHV undergo reverse in the tten
of HHV as the %H increases. Typical example of thifound in plastic waste with high %C but low W In
this waste, as the %H increases the correspondii\g dtecreases.
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