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Abstract  

We employed an efficient numerical collocation approximation methods to obtain an approximate solution of linear 

Fredholm integro-differential difference equation with variable coefficients. An assumed approximate solutions for 

both collocation approximation methods are substituted into the problem considered. After simplifications and 

collocations, resulted into system of linear algebraic equations which are then solved using MAPLE 18 modules to 

obtain the unknown constants involved in the assumed solution. The known constants are then substituted back into 

the assumed approximate solution. Numerical examples were solved to illustrate the reliability, accuracy and 

efficiency of these methods on problems considered by comparing the numerical solutions obtained with the exact 

solution and also with some other existing methods. We observed from the results obtained that the methods are 

reliable, accurate, fast, simple to apply and less computational which makes the valid for the classes of problems 

considered. 
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Introduction 
The theory of integral equation is one of the most important branches of Mathematics. Basically, its importance is in 

terms of boundary value problem in equation theories with partial derivatives. Integral equations have many 

applications in Mathematics, chemistry and engineering e.t.c. In recent years, the studies of integro-differential 

difference equations i.e equations containing shifts of unknown functions and its derivatives, are developed very 

rapidly and intensively [see Gulsu and Sezer (2006), Cao and Wang (2004), Bhrawy et al., (2012)]. These equations 

are classified into two types; Fredholm integro-differential-difference equations and Volterra integro-differential-

difference equations, the upper bound of the integral part of Volterra type is variable, while it is a fixed number for 

that of Fredholm type which are often difficult to solve analytically, or to obtain closed form solution, therefore, a 

numerical method is needed. 

 

The study of integro-differential difference equations have great interest in contemporary research work in which 

several numerical methods have been devoloped and applied to obtain their approximate solutions such as Taylor 

and Bernoulli matrix methods [Gulsu and Sezer, 2006, Bhrawy et al., 2012], Chebyshev finite difference method 

[Dehghan and Saadatmandi, 2008], Legendre Tau method [Dehghan and Saadatmandi, 2010], Bessel matrix method 

[Yuzbas et al., 2011], and Variational Iteration Method (VIM) [Biazar and Gholami Porshokouhi, 2010]. Homotopy 

analysis method (HAM) was first introduced by Liao (2004) to obtain series solutions of various linear and 
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nonlinear problems of this type of equation. 

 

In this study, the basic ideas of the above studies motivated the work to apply a numerical collocation approximation 

methods that is reliable, fast, accurate and less computational to obtain an approximate solutions to the mth  order 

linear Fredholm integro-differential difference equation with variable coefficients of the form:  
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 where ),(),(),( * txKxPxP rk  and )(xf  are given continuous smooth functions defined on bxa  . The real 

coefficients ikikik cba ,,  and i  are appropriate constants ,   is refer to as the delay or difference constant (Gulsu 

and Sezer, 2006).  

 

Basic Definitions 
Integro-Differential Equations (IDEs) 

An integro-differential equation is an equation which involves both integral and derivatives of an unknown function. 

A standard integro-differential equation is of the form:  

 dttytxKxfxy
xh
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  (3) 

 where )(),(),( xfxhxg  and   and the kernel ),( txK  are as prescribed in definition (2.2) and n  is the order of 

the IDE. 

 

Equation (3) is called Fredholm Integro-Differential Equation if both the lower and upper bounds of the region of 

the integration are fixed numbers while it is called Volterra Integro-Differential Equation if the lower bound of the 

region of integration is a fixed number and the upper bound is not. 

 

Collocation Method 
This is a method of evaluating a given differential equation at some points in order to nullify the values of a 

differential equation or intgro-differential equation at those points. 

 

Approximate Solution 
This is the expression obtained after the unknown constants have been found and substituted back into the assumed 

solution. It is referred to as an approximate solution since it is a reasonable approximation to the exact solution. It is 

denoted by )(x
N

y , and taken as an inexact representation of the exact solution, where N  is the degree of the 

approximant used in the calculation. Methods of approximate solution are usually adopted because complete 

information needed to arrive at the exact solution may not be given. In this work, approximate solution used are 

given as  

 )(=
0=

)( xay nn
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i

x
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  

 where x  represents the independent variables in the problem, 0)( nan  are the unknown constants to be 

determined and 0)( ),( nxn  is the basis function which is either Chebyshev or Legendre Polynomials. 
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Chebyshev Polynomials 

The Chebyshev polynomials of degree n  of first kind which is valid in the interval 11  x  and is given by  

 )(=)( 1xncoscosxTn


 (4) 

  

 xxTxT =)( 1,=)( 1  

and the recurrence relation is given by  
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and this satisfies the recurrence relation  
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 Equation (5) is the recurrence relation of the Chebyshev polynomials in the interval 1,1][ , thus we have  
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Legendre's Polynomial 
The Legendre's polynomial is defined and denoted by  
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 Discussion of Methods 
Problem Considered 
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We consider the 
thm  order linear Fredholm integro-differential difference equation with variable coefficients of the 

forms: 
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Equation (8) is referred to as Linear Fredholm Integro-differential difference equation with variable coefficients, 

where ),(),(),( * txKxPxP rk  and )(xf  are given continuous smooth functions defined on bxa  . The real 

coefficients ikikik cba ,,  and i  are appropriate constants ,   is refer to as the delay term or difference constant 

(Gulsu and Sezer, 2006). 

 

In this section, standard collocation methods is applied to solve equation of the form (a) using the following bases 

functions: 

(i) Chebyshev Polynomials 

(ii) Legendre Polynomials 

 

Method I: Standard Collocation Method by Chebyshev Polynomial Basis 
In order to solve equations (8)-(9) using the collocation approximation method, we used an approximate solution of 

the form  
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 where N  is the degree of our approximant, 0)( iai  are constants to be determined and 0)( iTi  are the 

Chebyshev Polynomials defined in equation (5). Thus, differentiating equation (10) with respect to x  m -times ( m  

is the order of the given problem), we obtain  
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 and then substituting equation (10) and its derivatives in equation (11) into equation (8), we obtain  
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 Evaluating the integral part of equation (12) and after simplifications, we collocate the resulting equation at the 

point kxx =  to get  
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 where )(xG  is the evaluated integral part and  

 11(1)=;
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 Nk
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 Thus, equation (13) gives rise to 1)( N  system of linear algebraic equations in 1)( N  unknown constants and 

m  extra equations are obtained using the conditions given in equation (9). Altogether, we now have 1)( mN  

system of linear algebraic equations. These equations are then solved using MAPLE software to obtain (N+1) 

unknown constants 0)( iai  which are then substituted back into the approximate solution given by equation (10). 

    

Method II: Standard Collocation Method by Legendre Polynomial Basis 
We consider here also the problem of the form (a) using the collocation approximation method, we used an 

approximate solution of the form  
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 where N  is the degree of our approximant, 0)( iai  are constants to be determined and 0)( iLi  are the 

Legendre Polynomials defined in equation (7). Thus, differentiating equation (15) with respect to x  m -times ( m  

is the order of the given problem), we obtain  
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 and then substituting equation (15) and its derivatives in equation (16) into equation (8), we obtain  
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 Hence, evaluating the integral part of equation (20) and after simplification, we collocate the resulting equation at 

the point kxx =  to get  
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 where )(xG  is the evaluated integral part and  
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 Thus, equation (18) gives rise to 1)( N  system of linear algebraic equations in 1)( N  unknown constants and 

m  extra equations are obtained using the conditions given in equation (9). Altogether, we now have 1)( mN  

system of linear algebraic equations. These equations are then solved using MAPLE software to obtain (N+1) 

unknown constants 0)( iai  which are then substituted back into the approximate solution given by equation (10). 
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Numerical Examples 
 Numerical Example 1 

Consider the Second order linear Fredholm integro-differential difference equation with variable 

coefficients  

 dtttyeexyxyxxyxxyxy x 1)(=1)(1)(1)()()(
0

1
 


 (20) 

 with the initial conditions  

 1=(0) 1,=(0) yy  (21) 

 The exact solution is given as 
xexy =)(  [Gulsu and Sezer, 2006]. 

 Numerical Example 2 

Consider third order linear Fredholm integro-differential-difference equation with variable coefficients  

 ))(cos1)(sin1)((=1)(1)()()( xxxxxyxyxyxxy   

 dtty 1)(12cos
1

1
   (22) 

 with the initial conditions  

 0=(0) 1,=(0) 0,=(0) yyy   (23) 

 The exact solution is given as xxy sin=)(   [Gulsu and Sezer, 2006]. 

 Numerical Example 3 

Consider first order linear Fredholm integro-differential-difference equation with variable coefficients  

 dttytxxxyxyxxyxy 1)()(2=1)(1)()()(
1

1
   (24) 

 with the mixed condition  

 0=(1)(0)21)( yyy   (25) 

 The exact solution is given as 43=)( xxy  [Gulsu and Sezer, 2006]. 

 Remark: We defined absolute error as:  

 1,2,3,=  ,   ,)()(= NbxaxyxyError
N

  

Here, )(xy  is the given exact solution and )(xy
N

 is the approximate solution respectively.  

 

Numerical Results and Eerror for Examples 
Table 1: Results obtained for example 1: Case N=6  

 

 x    EXACT    APPROXIMATE SOLUTIONS  

    

CHEBYSHEV 

 

LEGENDRE  

 

TAYLOR  

.0   

1.0000000000  

 

1.0000000000  

 

1.0000000000  

 

0.00000000000  

-0.1   

1.1051709181  

 

1.1052508587  

 

1.1052508587  

 

1.10530000000 

-0.2   

1.2214027582  

 

1.2216333968  

 

1.2216333968  

 

1.22160000000  

-0.3   

1.3498588076  

 

1.3501660185  

 

1.3501660185  

 

1.35000000000 

-0.4   

1.4918246976  

 

1.4919754149  

 

1.4919754149  

 

1.49190000000 

-0.5      
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1.6487212707  1.6483097916  1.6483097916  1.64850000000 

-0.6   

1.8221188004  

 

1.8205524611  

 

1.8205524611  

 

1.82110000000 

-0.7   

2.0137527075  

 

2.0102358013  

 

2.0102358013  

 

2.01140000000 

-0.8   

2.2255409285  

 

2.2190555779  

 

2.2190555779  

 

2.22100000000 

-0.9   

2.4596031112  

 

2.4488856333  

 

2.4488856334  

 

2.45220000000 

-1.0   

2.7182818285  

 

2.7017929401  

 

2.7017929400  

 

2.70690000000 

 

 

 

 Table 2: Results obtained for example 1: Case N=7  
  

 x    EXACT   APPROXIMATE SOLUTIONS  

    

CHEBYSHEV 

 

LEGENDRE  

 

TAYLOR  

.0   

1.0000000000  

 

1.0000000000  

 

1.0000000000  

 

0.00000000000  

-0.1   

1.1051709181  

 

1.1052038643  

 

1.1052038642  

 

1.10530000000 

-0.2   

1.2214027582  

 

1.2214978470  

 

1.2214978469  

 

1.22160000000  

-0.3   

1.3498588076  

 

1.3499847405  

 

1.3499847404  

 

1.35000000000 

-0.4   

1.4918246976  

 

1.4918832368  

 

1.4918832367  

 

1.49190000000 

-0.5   

1.6487212707  

 

1.6485413049  

 

1.6485413048  

 

1.64850000000 

-0.6   

1.8221188004  

 

1.8214503126  

 

1.8214503126  

 

1.82110000000 

-0.7   

2.0137527075  

 

2.0122500401  

 

2.0122600401  

 

2.01140000000 

-0.8   

2.2255409285  

 

2.2227947307  

 

2.2227947307  

 

2.22100000000 

-0.9   

2.4596031112  

 

2.4550703277  

 

2.4550703277  

 

2.45220000000 

-1.0   

2.7182818285  

 

2.7113130423  

 

2.7113130423  

 

2.70690000000 

 

  

 Table 3: Absolute Errors for Example 1: Case N=6 and 7  

  

 x    

CHEBYSHEV  

 

LEGENDRE  

 

TAYLOR  

 

CHEBYSHEV  

 

LEGENDRE  

 

TAYLOR 

   N=6    N=7  

.0   

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000 
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-0.1   

7.9941E-05  

 

7.9941E-05  

 

0.1000E-03  

 

3.2946E-05  

 

7.9941E-05  

 

0.00000000  

-0.2   

2.3064E-04  

 

2.3064E-04  

 

0.2000E-03  

 

9.5089E-05  

 

2.3064E-04  

 

0.1000E-03  

-0.3   

3.0721E-04  

 

3.0721E-04  

 

1.0000E-03  

 

1.2593E-04  

 

1.2593E-04  

 

0.1000E-03  

-0.4   

1.5072E-04  

 

1.5072E-04  

 

1.5072E-03  

 

5.8539E-05  

 

5.8539E-05  

 

0.00000000  

-0.5   

4.1148E-04  

 

4.1148E-04  

 

0.2000E-03  

 

1.7996E-04  

 

1.7996E-04  

 

0.1000E-03  

-0.6   

1.5663E-03  

 

1.5663E-03  

 

0.1000E-02  

 

6.6849E-04  

 

6.6849E-04  

 

0.8000E-03 

-0.7   

3.1569E-03  

 

3.1569E-03  

 

0.2400E-02  

 

1.4927E-03  

 

1.4927E-03  

 

0.1600E-02 

-0.8   

6.4853E-03  

 

6.4853E-03  

 

0.4500E-02  

 

2.7462E-03  

 

2.7462E-03  

 

0.3100E-02 

-0.9   

1.0717E-02  

 

1.0717E-02  

 

0.7400E-02  

 

4.5328E-03  

 

4.5328E-03  

 

0.5100E-02 

-1.0   

1.6489E-02  

 

1.6489E-02  

 

0.1140E-01  

 

6.9688E-03  

 

6.9688E-03  

 

0.7800E-02 

 

 

 

Table 4: Results and Errors obtained for example 1: Case 15=N   

  

x   Exact  CHEBY

SHEV 

 

LEGENDRE  
 CPE    LPE   

.0   

1.0000000000  

 

1.0000000000  

1.000000

0001  

 

0.0000000  

 

1.0000E-10 

-0.1   

1.1051709181  

 

1.1051709225  

 

1.1051630547  

 4.400E-

09  

 

6.7863E-06 

-0.2   

1.2214027582  

 

1.2214027712  

 

1.2213800716  

 1.300E-

08  

 

2.2687E-05 

-0.3   

1.3498588076  

 

1.3498588248  

 

1.3498286988  

 1.720E-

08  

 

3.0109E-05 

-0.4   

1.4918246976  

 

1.4918247058  

 

1.4918104108  

 8.200E-

09  

 

1.4287E-05 

-0.5   

1.6487212707  

 

1.6487212466  

 

1.6487632901  

 2.410E-

08  

 

4.2019E-05 

-0.6   

1.8221188004  

 

1.8221187100  

 

1.8222762751  

 9.040E-

08  

 

1.5747E-04 

-0.7   

2.0137527075  

 

2.0137525054  

 

2.0141050354  

 2.021E-

07  

 

3.5233E-04 

-0.8   

2.2255409285  

 

2.2255405565  

 

2.2261896364  

 3.720E-

07  

 

6.4871E-04 

-0.9   

2.4596031112  

 

2.4596024968  

 

2.4606741794  

 6.144E-

07  

 

1.0711E-03 

-1.0   

2.7182818285  

 

2.7182808839  

 

2.7199286075  

 9.446E-

07  

 

1.6468E-03 
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Here, we denoted CPE  as the Error of results obtained using Chebyshev polynomials and LPE  as the Error of 

results obtained using Legendre polynomials.  

 

Table 5: Results obtained for example 2: Case 6=N   

  

 x    EXACT    APPROXIMATE SOLUTIONS  

    

CHEBYSHEV 

 

LEGENDRE  

 

TAYLOR  

-1.0   -

0.8414709848  

 -

0.8412178340  

 -

0.8183268604  

 -

0.9273450000  

-0.8   -

0.7173560909  

 -

0.7171927056  

 -

0.7064218929  

 -

0.7567230000 

-0.6   -

0.5646424734  

 -

0.5645686751  

 -

0.5604519509  

 -

0.5797120000 

-0.4   -

0.3894183423  

 -

0.3883086444  

 -

0.3883086444  

 -

0.3935390000 

-0.2   -

0.1986693308  

 -

0.1985475309  

 -

0.1985475310  

 -

0.1991540000 

.0   

0.00000000000  

 

0.0000000000  

 

0.0000000000  

 

0.0000000000 

.2   

0.19866933080  

 

0.1985811922  

 

0.1985811920  

 

0.1991280000 

.4   

0.3894183423  

 

0.3888427347  

 

0.3888427345  

 

0.3931170000 

.6   

0.5646424734  

 

0.5631179243  

 

0.5631179242  

 

0.5774680000 

.8   

0.7173560909  

 

0.7146801750  

 

0.7146801750  

 

0.7491370000 

.0   

0.8414709848  

 

0.8379628764  

 

0.8379628762  

 

0.9072650000 

 

Table 6: Results obtained for example 2: Case 7=N   

 x    EXACT    APPROXIMATE SOLUTIONS  

    CHEBYSHEV  LEGENDRE   TAYLOR  

-1.0   -0.8414709848   -0.8459516158   -0.8459531673   -0.9018320000  

-0.8   -0.7173560909   -0.7194740946   -0.7194748278   -0.7401870000 

-0.6   -0.5646424734   -0.5654548269   -0.5654551080   -0.5712780000 

-0.4   -0.3894183423   -0.3896336970   -0.3896337714   -0.3906190000 

-0.2   -0.1986693308   -0.1986930013   -0.1986930094   -0.1987380000 

.0   0.00000000000   0.0000000000   0.0000000000   0.0000000000 

.2   0.19866933080   0.1986865239   0.1986865299   0.19861600000 

.4   0.3894183423   0.3895309176   0.3895309564   0.3886090000 

.6   0.5646424734   0.5649417357   0.5649418384   0.5608220000 

.8   0.7173560909   0.7178844600   0.7178846405   0.7058770000 

.0   0.8414709848   0.8421710782   0.8421713155   0.8140980000 

  

  

Table 7: Errors obtained for example 2: Case N=6 and 7  
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 x    

CHEBYSHEV  

 

LEGENDRE  

 

TAYLOR  

 

CHEBYSHEV  

 

LEGENDRE  

 

TAYLOR 

   N=6    N=7  

-1.0   

2.3144E-02  

 

2.3144E-02  

 

8.5870E-02  

 

4.4806E-03  

 

4.8218E-03  

 

6.0360E-02 

-0.8   

1.0934E-02  

 

1.0934E-02  

 

3.9360E-02  

 

2.1180E-03  

 

2.1187E-03  

 

2.2830E-02  

-0.6   

4.1905E-03  

 

4.1905E-03  

 

1.5070E-02  

 

8.1235E-04  

 

8.1263E-04  

 

6.6360E-03  

-0.4   

1.1097E-03  

 

1.1097E-03  

 

4.1210E-03  

 

2.1535E-04  

 

2.1543E-04  

 

1.2010E-03  

-0.2   

1.2180E-04  

 

1.2180E-04  

 

4.8500E-04  

 

2.3671E-05  

 

2.3679E-05  

 

6.9000E-05  

.0   

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000  

 

0.00000000  

.2   

8.8139E-05  

 

8.8139E-05  

 

4.5900E-04  

 

1.7193E-05  

 

1.7199E-05  

 

5.3000E-05 

.4   

5.7561E-04  

 

5.7560E-04  

 

3.6990E-03  

 

1.1258E-04  

 

1.1261E-04  

 

8.0900E-04 

.6   

1.5245E-03  

 

1.5245E-03  

 

1.2820E-02  

 

2.9926E-04  

 

2.9927E-04  

 

3.8200E-03 

.8   

2.6759E-03  

 

2.6759E-09  

 

3.1780E-02  

 

5.2837E-04  

 

5.2855E-04  

 

1.1470E-02 

.0   

3.5081E-03  

 

3.5081E-03  

 

6.5790E-02  

 

7.0009E-04  

 

7.0033E-04  

 

2.7370E-02 

 

 NOTE: 

On solving this numerical example (3) using the two methods, the same exact solution is obtained. 

 Presentation of Results in Graphical Forms  
   

Conclusion 
We have presented and illustrated the collocation approximation methods using two different bases functions 

namely; Chebyshev and Legendre polynomials to solve linear Fredholm integro-differential difference equations 

with variable coefficients which are very difficult to solve analytically. In many cases, it is required to obtain the 

approximate solutions. One of the advantages of these methods is that the numerical solutions of the problems 

considered is converted into system of linear algebraic equations which are very easy to solve for the constants 

involved. Another considerable advantage of these methods is that if the exact solution is a polynomial function, 

with the methods used, the analytical solution is obtained. 

Moreover, satisfactory results of illustrative examples were obtained when the value of N  increases for both 

methods, the approximate solutions obtained are closer to the exact solution (where the exact solution are known in 

closed form) which are compared with some other existing methods and makes these methods valid for solving 

linear Fredholm Integro-differential difference and Fredholm Integral equations.  
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