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Abstract 

It is essential to the software engineering instructors to monitor the students' performance in their course projects. 

Detecting key measures of software engineering project helps to get a better assessment for students' performance, 

resolve difficulties of low expectation-team's, and consequently improves the overall learning outcomes. Several 

studies attempted to present the important measures of software project but they only captured the early phases of 

the whole project time period. This paper introduces a hybrid approach of classification and feature selection 

techniques, which aims to comprehensively cover all phases of software development through investigating all 

product and process measures of software project. Experiments were conducted using five classifiers and two 

feature selection techniques. The results show the significant process and product measures for the software 

engineering team projects, which primarily improves the students' performance assessment. The performance 

prediction of our proposed assessment model outperforms prediction of the previous models. 
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1. Introduction 

Software engineering (SE) is an important course to study the overall software development life cycle and increase 

the poor-quality of software (Guéhéneuc & Khomh 2019; Möller 2016; Standish Group 2009). Software 

engineering teams shall have specific skills to practice and learn the software process development. Several causes 

lead to software project failure linked to failures in teamwork aspects of software engineering, such as lack of 

experience, schedule surpasses, and globally distributed student teams, as in the studies by (Cuthbertson & Sauer 

2003; Sauer et al. 2007; Daughtrey 2014; Reel 2009; Charette 2005; Duhigg 2016). Many factors primarily affect 

software engineering teams' learning process. So, measuring software engineering students' team activities during 

the classes is very important to assess their performance and eventually achieve better learning outcomes. The 

software engineering process measures involve certain team activities during the adaptation of good practices of 

software development processes like quality and time completeness of non-software deliverables such as website 

design, meetings participation, and documentation. While the software engineering product captures software 

deliverables (i.e., team outputs) issues such as user interface, performance, architecture, database design, code 

quality, and presentation for the project's final delivery to the instructors as described in SETAP project by 

(Lichman 2013). The previous studies only captured early design and implementation phases of software 

development. This study focuses on exploring the most critical measures for software engineering projects by 

assessing the team activities' learning capabilities to the students who participate in such projects.  

Our approach lets the students expect their software engineering course performance and focus more on their 

weaknesses activities during the software project. The proposed method effectively improves the prediction of the 

grades for the software engineering students' projects. The paper makes the following main contributions: 

• Investigating the effectiveness of applying a hybrid assessment model on the all the time intervals of 

software project to improve the prediction performance of software engineering teams. 

• Finding essential product and process measures for each phase for the identification of low-expectation 

teams in software engineering education. 

 

2. Related Work 

Several approaches used several techniques in the educational environment to assess individual student 

performance by exploring the teaching classes' personal and quantitative issues such as grades, dropping frequency, 

teaching effectiveness, and e-learning techniques proposed by (Kotsiantis 2012; Lykourentzou, et al. 2009; Castro, 

et al. 2007; Baker & Yacef 2009; Baker 2002; Macfadyen & Dawson 2010; Delen 2010; Jovanovic et al. 2012; 

Hu et al., 2014; Guo et al. 2015). The research studies were conducted by (Petkovic et al. 2014; Petkovic et al. 

2012; Petkovic et al. 2018) used Random Forest classifier as recommended by (Gomes, et al., 2017) to predict and 

assess software engineering teamwork rather than individual students by collecting the objective and quantitative 

data about team activity measures through a joint project among San Francisco State University (SFSU), Fulda 

University (Fulda) and Florida Atlantic University (FAU). They created a machine learning database that contains 
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team activity measurements, instructor observation, and their grades. Their approach used four primary means: 

time cards, software tools, class data, and instructor observations to collect data about the participating software 

engineering teams. The previous studies (Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) used 

only Random Forest classifiers and considered only a few time intervals such as T2 and T3 to report their results. 

Also, they lack to detect the essential measures across all the time intervals extensively. Also, a study (Naseer et 

al. 2020) introduced a combined approach that employed feature selection and then classification on the same 

dataset. This study considers only five time intervals from T1 to T5 and captures only the product software 

measures. 

Another study was conducted by (Abidin et al. 2019) to explore students' performance in software engineering 

courses using adaboost-multilayer perceptron. This study uses only one classifier and lacks to focus on team 

projects of the students. The study conducted by (Le et al. 2017) used text similarity and machine learning to 

construct formative evaluation for software engineering team projects. Some approaches also used traditional 

methodologies such as genetic programming implemented by (Zafra & Ventura 2019), and task recommendation 

systems by the study conducted by (Thai-Nghe et al. 2011). Nevertheless, these approaches used specific attributes 

such as quizzes, assignments, attendance, and GPA to evaluate the students' performance. They used individual 

assessment and did not take into account the teamwork projects. Unlike the previous studies which only considers 

early design and implementation phases, this study captures all the phases of Software Development Life Cycle 

(SDLC) and detect the essential measures for each phase. The previous studies make an effort to present the 

important measures of software project but they only capture few time intervals of the whole project period and 

they lack to broadly present the all-important measures for each particular interval. To overcome the 

aforementioned limitations, this paper aims to comprehensively cover all the time intervals of software project 

period by investigating all product and process software measures. 

This paper uses five classifiers, namely Bayesian Network, Decision Tree, Random Forest, Bagging, and 

Boosting, to overcome the limitations above. It considers all the time intervals for both process and product 

measures to assess students' learning process effectiveness. Also, it focuses on the team assessment, not into the 

individual evaluation. This paper mainly uses the classification and feature selection phases. In the classification 

phase, all the software team measures have been studied to observe different machine learning classifiers' 

performance. On the other hand, the feature selection phase uses evolutionary and PSO search techniques to 

capture the essential team activity measures for each time interval in both the software process and product aspects. 

 

3. Methodology 

The proposed assessment model for students' performance contains two phases: classification, and feature selection 

as illustrated in Figure 1. Our approach acts as a hybrid approach of classification and feature selection techniques, 

which aims to comprehensively cover all phases of software development through investigating all product and 

process measures of software project. It investigates all the process and product measures which have been 

collected in SETAP project. The classification phase is used to early predict the performance of low expectation-

team's projects. The feature selection phase is employed to detect the most important product and process measures 

for low expectation team.  Detecting the key product and process measures is very important task since it affects 

the learning aspects of educational Software Engineering projects.  
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Figure 1. The proposed assessment model 

 

3.1 Classification Phase   

This phase includes the use of five machine learning classifiers: Bayesian Network, Decision Tree, Random Forest, 

Bagging, and Boosting to explore the effectiveness of all software process and project measures on students’ 

learning process for each particular time interval. We briefly describe the five classifiers below: 

• Bayesian networks are directed acyclic graphs that are used to represent the joint probability distribution 

over a set of random variables. Each vertex in the graph represents a random variable, and edges 

represent the correlations between variables. The Bayesian network classifier returns the class label that 

maximizes the posterior probability as proposed by (Han et al. 2011). 

• Decision Trees construct a flowchart-like structure where each internal node represents an attribute, and 

each external node holds a class label. For a testing instance, a path is traced from the root to a leaf node 

to get the class prediction, as explained by (Thai-Nghe et al. 2011).  

• Random Forest classifier is an ensemble classification technique that works by generating many 

decision trees from bootstrap samples of the training data. Each tree predicts a class label for each input 

vector. The output of the classifier is selected by taking the majority voted class from all the decision 

trees in the forest as proposed in the study (Guo et al. 2015). 

• Bagging is an ensemble method that uses several training sets generated by a random draw with 

replacement. Each data set is used to train a model. The outputs of all models are combined to produce 

a single class label such used by (Friedman & Popescu 2003).  

• Boosting is the sequential learning of the predictors. The first predictive model learns from the whole 

data set, while the next learns from training sets based on the performance of the previous one. The 

weights of the misclassified examples increase, so they will have a higher probability of being included 

in the next predictor's training set, as concluded by (Friedman & Popescu 2003). 

 

3.2 Feature Selection Phase 

This phase employs two meta-heuristic nature-inspired techniques; evolutionary and PSO (Particle Swarm 

Optimization) search as features selection techniques to detect the most important measures. These techniques 

search in the space of solutions (or population) to find the optimal solution that represents the optimal features for 

student's performance assessment that help in getting better students' performance through the learning in software 

engineering classes. This paper uses evolutionary and PSO search techniques. The two techniques described as 

below: 

• Evolutionary Search is an iterative process in the form of generation to refine the population with fittest 

solutions using three main steps as in (De La Iglesia 2003; Namous et al. 2020). These steps include: 

(1) initializing a set of random solutions on a form of individual chromosomes, each representing the 

set of parameters of a problem. Each chromosome represents an array of features for evaluation in the 
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form of binary digits where each position identifies if a feature is selected (one) or not (zero); The 

strength of a chromosome is derived from applying an ML classifier as an evaluator on the ones' features 

in that chromosome where an ML evaluation metric is used as fitness value for that chromosome. (2) 

Two fittest chromosomes with the highest fitness values are selected as the elitism of the population (or 

fittest parent) to create new chromosomes (or children). (3) The process of creating the children is 

maintained in two main steps derived from nature with a random probability of using either; called 

crossover and mutation. The crossover process exchanges parts in the two chromosomes between each 

other, while the mutation process flips bits in a random position in the chromosome to generate a new 

child. The evolutionary search process then estimates the fitness values for the children and replaces 

them with non-relevant solutions.  

• PSO Search is used for optimizing constrained and unconstrained tasks described by (Eberhart & 

Kennedy 1995). It depends on a set of particles that iteratively change their positions based on some 

stochastic process. This identifies the best fittest particle among all particles. Therefore, all particles aim 

to reach the location of the fittest particle. Also, each particle considers its best position during the search 

found by itself. 

 

4. Results and Discussions 

4.1 Dataset 

The dataset includes over 115 measures of both process and product metrics which obtained from measuring the 

core activities of student teams through their final project in joint software engineering classes which applied at 

San Francisco State University, Fulda University and Florida Atlantic University. The software process measures 

related to non-software issues such: team participation, students' feedback, delivery of documentation, instructor 

intervention, cooperation concerns, and following proper software engineering practices. Also, the software 

product measures captured the software issues such: functionality, architectural design, code, database, and final 

product demo. The dataset includes 74 student teams with about 380 students. These data are combined into 11 

different time intervals, the first five intervals measure requirement gathering (T1), design (T2), development (T3), 

testing (T4), and delivery (T5) phases correspondingly of Software Development Life Cycle (SDLC), while the 

remaining time intervals (T6-T11) are generated by aggregating various software phases from the main five time 

intervals (T1-T5). The semester is divided into five formally managed milestones, Ml through M5. The product 

and process measures are individually assigned to final grade as A (high expectation) or F (low expectation). Also, 

each software team project is assessed at 11-time intervals. This study focuses on predicting the class labeled F 

rather than the class labeled A. 

 

4.2 Experiment Results 

To evaluate the predictive models, we use the Recall, where it represents the percentage of positive tuples the 

classifier label as positive. There is a diversity in assessing students’ performance during the time interval of SE 

activities. These activities come in individual and grouped tasks that result in a sense by merging the values of 

evaluation metrics. Figure 2 shows the results of using five machine learning techniques conducted on the product 

measures. The x-axis represents the time interval of eleven tasks; individual tasks (or T1-T5) and grouped tasks 

(or T6-T11), while the y-axis represents the Recall value for class F (under-estimation). For the product component 

and in terms of a block of SDLC, including the first five tasks, the Bayesian Network model (BN) outperforms the 

other ML techniques with effect Recall value at task five of 0.844 and average recall values over all other tasks. 

The conditional probability in BN effectively ties the relationship between the measures (or features) and the target, 

due to the low divergence in the data distribution. The entropy-based techniques manifest plausible results affected 

by the random distribution of the data with feasible Recall value to bagging technique using a decision tree as a 

base classifier. In contrast to the other time intervals (or grouped-based tasks), the entropy-based techniques 

leverage high performance to average Recall. This is because of the random skewness of the data distribution with 

a large variance that increases the entropy values and helps the entropy-based techniques to discretize the target 

label.  

Figure 3 also shows the Recall for the F class label for the different classifiers in all intervals (T1 to T11) for 

all the process measures. The results show that the Decision Tree classifier gives the best Recall in seven-time 

intervals while Bagging gives the best Recall in the remaining four intervals. The highest Recall is 0.68 that is 

obtained using Bagging for the T2 time interval. The expected reason to achieve the best Recall in the T2 time 

interval is that this time interval represents the detailed specifications phase where teams are expected to have a 

lot of communication and collaboration to complete this phase. Bayesian Networks gives the worst results in six-

time intervals while the Random Forest gives the worst results in four-time intervals. We also note that none of 

the classifiers obtain good results in the prediction of the F class labeled for time intervals T4 and T5 where T4 

represents the beta launch milestone while T5 represents the final delivery milestone. The previous studies 

(Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) lacked to present the classification on the 
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remaining time intervals, focused only on T2 and T3, used only Random Forest classifier, and implemented 

stratified sampling in cross validation, since class labeled F is minority while the class labeled A is the majority as 

assigned in the dataset. Also, the study (Naseer et al. 2020) investigated only the software product measures for 

the first five intervals T1, T2, T3, T4, and T5 by implementing several different classifiers. On the other side, our 

proposed assessment model acts as comprehensive approach that covers all the time intervals from T1 until T11 

for both of software product and process, and it demonstrates classification and feature selection techniques.   

 
Figure 2. Classification results of software product measures 

Figure 3. Classification results of software product measures 
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Table 1 summarizes the comparison between previous models and the proposed assessment model. The 

results were reported in the prior studies (Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) presented 

the important measures for only the time intervals T2 and T3 of the whole project time period and they lack to 

cover the key measures for all 11 time intervals of the software project period. For software process measures at 

T2 as in the study (Petkovic et al. 2014), the best Recall is 66.7 % in their approach whereas it is 68% in our 

approach. Moreover, for software product measures at T3, the best Recall is 60% by using Random Forest classifier 

although it is 68.8 %. These significant findings indicate that our assessment model improves the prediction of the 

final grades for the low expectation SE teams. Furthermore, our results comprehensively report all process and 

product measure's for all the 11 time intervals of software project period. On the other words, the previous studies 

only captured early design and implementation phases of SDLC, while our approach captures all the phases of 

software development as well as the combination of these phases. This lead to get a better perceiving for the overall 

software development. 

Besides, the study (Naseer et al. 2020) investigated only the software product measures for the first five 

intervals T1, T2, T3, T4, and T5 by implementing several different classifiers. The best Recall in their assessment 

model reported as 3.1 %, 15.6 %, 53.1 %, 78.1 %, and 75% for the time intervals T1, T2, T3, T4, and T5 

respectively. On the other hand, our proposed assessment model outperforms the performance of their Recall 

values as specified in Table 1. The best Recall values in our findings are 65.6 %, 46.9 %, 68.8 %, 59.4 %, and 

84.4 % for the time intervals T1, T2, T3, T4, and T5 correspondingly. In comparing with the previous studies 

These noteworthy findings indicate that our assessment model improves the prediction of the final grades for the 

low expectation SE teams. In addition, our study aims to propose an effective assessment model for predicting low 

expectation-teams (F-grade), it uses several machine learning classifiers on all process and product measures for 

each software team. Based on the best resulting Recall, evolutionary and PSO search are implemented to identify 

the most relevant measures for process and product individually. Knowing such software processes and product 

measures allow software engineering instructors to put more effort and attention to overcome the ambiguity and 

difficulties of low-expectation teams. Also, our approach lets the students to early expect their performance in 

software engineering course as well as they can keep attention to focus more on their weakness activities during 

the software project. Our study aims to improve the software projects learning which leads to a better software 

engineering education process.  

Table 1. Comparing of performance for predicting F-class 

Approaches Time 

interval 

used 

Software 

measures 

type 

Employed classifiers Feature 

selection 

Best recall Sampling 

Petkovic et 

al. 2014 

Only T2 Process Only Random Forest 

(RF) 

GINI 66.7 % (RF at 

T2) 

Stratified 

sampling 

Proposed 

approach 

T1 until 

T11 

Process Bayesian Network, 

Decision Tree, Random 

Forest, Bagging, and 

Boosting 

Evolutionary 

and PSO 

search 

68 % (Bagging 

at T2) 

No 

sampling 

Petkovic et 

al. 2014 

Only T3 Product Only Random Forest 

(RF) 

GINI 60 % (RF at T3) Stratified 

sampling 

Proposed 

approach 

T1 until 

T11 

Product Bayesian Network, 

Decision Tree, Random 

Forest, Bagging, and 

Boosting 

Evolutionary 

and PSO 

search 

68.8 % 

(Decision Trees 

at T3) 

No 

sampling 

Naseer et 

al. 2020 

T1 until 

T5 

Product Naïve Bayes, Artificial 

neural network, logistic 

regression, RIPPER, 

and sequential minimal 

optimization 

J48 decision 

tree 

3.1 % (at T1) 

15.6 % (at T2) 

53.1 % (at T3) 

78.1 % (at T4) 

75%  (at T5) 

No 

sampling 

Proposed 

approach 

T1 until 

T11 

Product Bayesian Network, 

Decision Tree, Random 

Forest, Bagging, and 

Boosting 

Evolutionary 

and PSO 

search 

65.6 % (at T1) 

46.9 % (at T2) 

68.8 % (at T3) 

59.4 % (at T4) 

84.4 %  (at T5) 

No 

sampling 

In respect to the feature selection phase, it is very essential to select the most important process and product 

measures to help instructors for assessing the final grades of low-expectation teams. Figure 4 and Figure 5 show 

the experimental results on selected measures extracted using evolutionary and PSO search compared to entire 

measures for the software product and process, respectively. The two techniques derived relevant measures with 

remarkable results compared with the overall measures in the product component, especially in tasks (T6 to T11) 
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having a measure reduction of approximately 95.7%. This indicates that there are some measures with high impacts 

on assessing the performance as shown in Figure 4. These measures are mainly linked to software product 

attributes, such as collecting all important activities that are handled by students in the code repository for each 

software team.  

 
Figure 4. Recall for software product measures selection 

Figure 5 also shows the accuracy for the software process measures where the x-axis represents the time 

interval and the y-axis represents the Recall for the F class label (a grade below expectations) for the process 

measures. Remarkable, the best results obtained from Figure 1 are used for comparison with both evolutionary 

search and PSO search in Figure 3. Similarly, the top results obtained from Figure 2 are used for comparison with 

both evolutionary search and PSO search in Figure 4. For example, the Recall for time interval T1 is 50 %, 52.4 %, 

and 54.2 % using all measures, measure selected using evolutionary search, and features selected using PSO search 

respectively. Building predictive models using features selected by evolutionary search and PSO search improve 

the Recall for time interval T1 only while using all measures give the best results for the remaining time intervals.  

 
Figure 5. Recall for software process measures selection 
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The results show that using only a small number of measures (1 measure to 27 measures) can give results 

almost similar to the results obtained by using all 85 measures. It is noteworthy that the two feature selection 

techniques capture the relevant features with good results compared with all measures with an average feature 

reduction of 87.6%. Since our goal is to predict how well the team applied the best software engineering practices, 

we would like to look deeply into the important measures identified by the feature selection techniques in the first 

time interval. The selected measures are related to software process attributes such as the total number of meeting 

hours and the total of in-person meeting hours. The results of this phase are described as in Table 2 and Table 3. 

Regarding the software product and process measures, the most important measures are related to tools logs, class 

data, and weekly time card surveys. The time intervals T4, T6, and T8 have the same product measures semesterId 

and helpHoursAverage. This refers to the mutual milestones among these time intervals during the software 

engineering team activities measurements. 

Table 2. Mutual selected product measures between evolutionary and PSO search 

Time 

Interval 

Product Measures  

T1 Standard Deviation Commit Count By Student 

T2 semesterId, in Person Meeting Hours Average, average Coding Deliverables Hours Total By Week 

T3 Standard Deviation In Person Meeting Hours Average By Week, unique Commit Message Count, 

Commit Message Length Total, standard Deviation Unique Commit Message Count ByStudent 

T4 Semester Id, help Hours Average 

T5 no mutual measures  

T6 semesterId, help Hours Average 

T7 no mutual measures 

T8 semesterId, help Hours Average 

T9 Standard Deviation Meeting Hours Total By Week, standard Deviation Help Hours Total By Week, 

standard Deviation Non Coding Deliverables Hours Average By Student 

T10 Average Responses By Week,standard Deviation Coding Deliverables Hours Total By Student 

T11 Standard Deviation Unique Commit Message Percent By Student, 

 

Table 3. Mutual selected process measures between evolutionary and PSO search 

Time 

Interval 

Product Measures  

T1 Meeting Hours Total, In Person Meeting Hours Total, average Help Hours Total By Week, standard 

Deviation Unique Commit Message Count By Week, standard Deviation Unique Commit Message 

Percent By Week 

T2 Late Issue Count, issue Count 

T3 No mutual measures 

T4 No mutual measures 

T5 Average Responses By Week 

T6 Late Issue Count, coding Deliverables Hours Total, average Non Coding Deliverables Hours 

Average By Student, non Coding Deliverables Hours Average, issue Count, average Non Coding 

Deliverables Hours Average By Week, team Member Response Count, help Hours Total 

T7 Issue Count, on Time Issue Count, unique Commit Message Count, team Member Response Count 

T8 Team Member Response Count, issue Count, help Hours Total, late Issue Count, on Time Issue 

Count, standard Deviation In Person Meeting Hours Total By Student 

T9 Issue Count, average Responses By Student, team Member Response Count, on Time Issue Count 

T10 In Person Meeting Hours Total, standard Deviation Meeting Hours Total By Week, average 

Responses By Week, in Person Meeting Hours Total, standard Deviation Meeting Hours Total By 

Week, average Responses By Week, in Person Meeting Hours Total, standard Deviation Meeting 

Hours Total By Week, average Responses By Week, in Person Meeting Hours Total, standard 

Deviation Meeting Hours Total By Week, average Responses By Week 

T11 Team Member Response Count, issue Count, average Meeting Hours Average By Student 

The study (Petkovic et al. 2018) used GINI feature ranking to show the top 10 ranked process and product 

measures for time interval T2 and T3 respectively. The process measures of T2 were: lateissue Count, issue Count, 

standard Deviation Help Hours Total By Week average Help Hourstotal By Week, standard Deviation Help Hours 

Average By Week, coding Deliverables Hours Average, help Hours Standard Deviation, and standard Deviation 

MeetingHoursAverageByWeek. Furthermore, the study (Naseer et al. 2020) used J48 decision tree in sequential 

phases of assessments from T1 to T5 to select the software product features for the classification, they indicated 

few product measures as listed in their study. The proposed model detects the mutual measures after implementing 
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evolutionary and PSO search as summarized in Table 2 and Table 3.  

The common measures selected by our employed feature selection techniques and the feature selection 

technique employed by (Naseer et al. 2020) as: Female Team Members Percent, average In Person Meeting Hours 

Total by Week, average Meeting Hours Total by Week, average Responses By Week, on Time Issue Count, team 

Lead Gender, team Distribution, average Unique Commit Message Count By Student, unique Commit Message 

Count, average Responses By student, and.Team Member Response Count. 

Our feature selection technique detected many of the essential measures selected by previous work. Also, the 

proposed model detects many other important features that undetected by the previous studies (Petkovic, et al. 

2018; Naseer et al. 2020). The literature proved that evolutionary and PSO search could select significant features. 

Therefore, the chosen measures can guide instructors to monitor low-expectation teams who are at risk and enable 

students to perceive the important activities in their projects that will affect their final grade. 

 

4.3 Discussions 

Performance prediction conveys major importance in educational software engineering and will lead to better 

academic learning outcomes for students and instructors. Software engineering education concentrates on 

monitoring the low-expectation teams to improve their skills and activities during the learning process. Many 

studies produced outcomes using different machine learning techniques to obtain better academic practices in 

educational environment by collecting educational dataset through sequential semesters. Software engineering 

education involves project-based learning task. The SE students work in group teams in several time intervals 

during the project period to eventually pass the course. Then, different phases of assessments help to monitor the 

performance of each team in different time intervals. Nonetheless, the prediction of low-expectation teams includes 

the using of machine learning techniques. The SETAP dataset is a rich educational dataset for software engineering 

education which enable the SE instructors to observe the performance of SE teams over 11 phases of assessments. 

A hybrid assessment model of classification and feature selection techniques was employed to comprehensively 

covered all the assessment phases to improve the performance prediction. The results discovered that it is possible 

to predict the performance of teams at all stages of evaluation to achieve better software engineering education 

with significant accuracy in the prediction of low-expectation teams which enable the SE instructors to identify 

their problems and learning difficulties. 

Hence, to evaluate the best prediction, the proposed model was applied at the first level of assessment and 

sequentially until the eleventh level of assessment for both of product and process software measures. By 

considering the similar explored time intervals in the previous studies (Petkovic et al. 2018; Naseer et al. 2020), 

the results reveal significant predictions in comparing with the previous assessment models.  

The performance prediction of low-expectation teams for software product measures is much better than for 

software process measures. This difference might refer to the large number of measures in both types, there are 

115 product measures and 84 process measures. The software process measures related to non-software issues 

such: team participation, students' feedback, delivery of documentation, instructor intervention, cooperation 

concerns, and following proper software engineering practices.  

Also, the software product measures captured the software issues such: functionality, architectural design, 

code, database, and final product demo. The assessment models (Petkovic et al. 2018; Naseer et al. 2020) are used 

to compare the proposed model to check its efficiency for the prediction of low-expectation teams. The proposed 

model outperformed other methods at assessment levels two, three, fourth, and five. At level five, the proposed 

model achieved the best Recall in predicting the low-expectation teams. The identification of learning difficulties 

of low-expectation teams considered as an important concern for software engineering education. The proposed 

assessment model helps to achieve the learning objectives by improving the activities for software engineering 

teams. The prediction for software product and process development can help instructors detect low-expectation 

teams, and allow instructors and students to perceive the final grades expectation. This proposed model improves 

the software project assessment and enables for moving toward the success of software engineering courses in 

software engineering education. 

 

4.4 Threats to validity 

The main challenges for this study are: 1) the dataset has small size since it only contains 74 student teams, 2) the 

dataset is unbalanced since the class labeled F occurrences are few comparing with the large number records of 

class labeled A since the focus of our study to predict the class labeled F (low-expectation) rather than the class 

labeled (high-expectation), and 3) to estimate the Recall in the presence of unbalanced training data, this study 

lacks to use any sampling type in cross validation. We believe that our performance prediction results get improved 

if we use sampling to increase the occurrences of class labeled F in the dataset. 

 

Conclusion 

This paper proposes a hybrid assessment model for evaluating the students' performance in software engineering 
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projects. Unlike the previous approaches which studies only design and implementation phases, this study captures 

all the phases of software development and detect the essential measures for each phase. It effectively employs 

several machine learning classifiers and feature selection techniques to cover all the time intervals of software 

project period. Experiments are conducted on a rich academic dataset which has been collected through joint 

software engineering classes among three universities. The Recall measure is applied to show the accuracy of low 

expectation-teams across over 11 sequential time intervals and based on the predefined criterion, which has been 

determined by assigned instructors.  The results have shown a significant process and product measures for the 

software engineering team projects, which mainly affects the students' performance assessment. The proposed 

model helps software engineering instructors to assess the students by highlighting the essential software measures 

for each specific time interval of software project duration. It also improves the students' learning capabilities 

during software projects to concentrate on their final grades' vital software measurements. Future directions 

include applying deep learning techniques to get a new direction in the software engineering education 

environment. 
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