
Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

7

The Impact of Software Team Project Measurements on Students'

Performance in Software Engineering Education

Bilal Al-Ahmad1* Shadi Banitaan2* Rami Alkhawaldeh3

1.Faculty of Information Technology and Systems, The University of Jordan, Aqaba 77110, Jordan

2.College of Engineering & Science, University of Detroit Mercy, 4001McNicholsRd, Detroit, USA

3.Faculty of Information Technology and Systems, The University of Jordan, Aqaba 77110, Jordan

Abstract

It is essential to the software engineering instructors to monitor the students' performance in their course projects.

Detecting key measures of software engineering project helps to get a better assessment for students' performance,

resolve difficulties of low expectation-team's, and consequently improves the overall learning outcomes. Several

studies attempted to present the important measures of software project but they only captured the early phases of

the whole project time period. This paper introduces a hybrid approach of classification and feature selection

techniques, which aims to comprehensively cover all phases of software development through investigating all

product and process measures of software project. Experiments were conducted using five classifiers and two

feature selection techniques. The results show the significant process and product measures for the software

engineering team projects, which primarily improves the students' performance assessment. The performance

prediction of our proposed assessment model outperforms prediction of the previous models.

Keywords: Assessment, Classification, Feature selection, Software engineering education, Software team

DOI: 10.7176/JEP/11-31-02

Publication date: November 30th 2020

1. Introduction

Software engineering (SE) is an important course to study the overall software development life cycle and increase

the poor-quality of software (Guéhéneuc & Khomh 2019; Möller 2016; Standish Group 2009). Software

engineering teams shall have specific skills to practice and learn the software process development. Several causes

lead to software project failure linked to failures in teamwork aspects of software engineering, such as lack of

experience, schedule surpasses, and globally distributed student teams, as in the studies by (Cuthbertson & Sauer

2003; Sauer et al. 2007; Daughtrey 2014; Reel 2009; Charette 2005; Duhigg 2016). Many factors primarily affect

software engineering teams' learning process. So, measuring software engineering students' team activities during

the classes is very important to assess their performance and eventually achieve better learning outcomes. The

software engineering process measures involve certain team activities during the adaptation of good practices of

software development processes like quality and time completeness of non-software deliverables such as website

design, meetings participation, and documentation. While the software engineering product captures software

deliverables (i.e., team outputs) issues such as user interface, performance, architecture, database design, code

quality, and presentation for the project's final delivery to the instructors as described in SETAP project by

(Lichman 2013). The previous studies only captured early design and implementation phases of software

development. This study focuses on exploring the most critical measures for software engineering projects by

assessing the team activities' learning capabilities to the students who participate in such projects.

Our approach lets the students expect their software engineering course performance and focus more on their

weaknesses activities during the software project. The proposed method effectively improves the prediction of the

grades for the software engineering students' projects. The paper makes the following main contributions:

• Investigating the effectiveness of applying a hybrid assessment model on the all the time intervals of

software project to improve the prediction performance of software engineering teams.

• Finding essential product and process measures for each phase for the identification of low-expectation

teams in software engineering education.

2. Related Work

Several approaches used several techniques in the educational environment to assess individual student

performance by exploring the teaching classes' personal and quantitative issues such as grades, dropping frequency,

teaching effectiveness, and e-learning techniques proposed by (Kotsiantis 2012; Lykourentzou, et al. 2009; Castro,

et al. 2007; Baker & Yacef 2009; Baker 2002; Macfadyen & Dawson 2010; Delen 2010; Jovanovic et al. 2012;

Hu et al., 2014; Guo et al. 2015). The research studies were conducted by (Petkovic et al. 2014; Petkovic et al.

2012; Petkovic et al. 2018) used Random Forest classifier as recommended by (Gomes, et al., 2017) to predict and

assess software engineering teamwork rather than individual students by collecting the objective and quantitative

data about team activity measures through a joint project among San Francisco State University (SFSU), Fulda

University (Fulda) and Florida Atlantic University (FAU). They created a machine learning database that contains

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

8

team activity measurements, instructor observation, and their grades. Their approach used four primary means:

time cards, software tools, class data, and instructor observations to collect data about the participating software

engineering teams. The previous studies (Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) used

only Random Forest classifiers and considered only a few time intervals such as T2 and T3 to report their results.

Also, they lack to detect the essential measures across all the time intervals extensively. Also, a study (Naseer et

al. 2020) introduced a combined approach that employed feature selection and then classification on the same

dataset. This study considers only five time intervals from T1 to T5 and captures only the product software

measures.

Another study was conducted by (Abidin et al. 2019) to explore students' performance in software engineering

courses using adaboost-multilayer perceptron. This study uses only one classifier and lacks to focus on team

projects of the students. The study conducted by (Le et al. 2017) used text similarity and machine learning to

construct formative evaluation for software engineering team projects. Some approaches also used traditional

methodologies such as genetic programming implemented by (Zafra & Ventura 2019), and task recommendation

systems by the study conducted by (Thai-Nghe et al. 2011). Nevertheless, these approaches used specific attributes

such as quizzes, assignments, attendance, and GPA to evaluate the students' performance. They used individual

assessment and did not take into account the teamwork projects. Unlike the previous studies which only considers

early design and implementation phases, this study captures all the phases of Software Development Life Cycle

(SDLC) and detect the essential measures for each phase. The previous studies make an effort to present the

important measures of software project but they only capture few time intervals of the whole project period and

they lack to broadly present the all-important measures for each particular interval. To overcome the

aforementioned limitations, this paper aims to comprehensively cover all the time intervals of software project

period by investigating all product and process software measures.

This paper uses five classifiers, namely Bayesian Network, Decision Tree, Random Forest, Bagging, and

Boosting, to overcome the limitations above. It considers all the time intervals for both process and product

measures to assess students' learning process effectiveness. Also, it focuses on the team assessment, not into the

individual evaluation. This paper mainly uses the classification and feature selection phases. In the classification

phase, all the software team measures have been studied to observe different machine learning classifiers'

performance. On the other hand, the feature selection phase uses evolutionary and PSO search techniques to

capture the essential team activity measures for each time interval in both the software process and product aspects.

3. Methodology

The proposed assessment model for students' performance contains two phases: classification, and feature selection

as illustrated in Figure 1. Our approach acts as a hybrid approach of classification and feature selection techniques,

which aims to comprehensively cover all phases of software development through investigating all product and

process measures of software project. It investigates all the process and product measures which have been

collected in SETAP project. The classification phase is used to early predict the performance of low expectation-

team's projects. The feature selection phase is employed to detect the most important product and process measures

for low expectation team. Detecting the key product and process measures is very important task since it affects

the learning aspects of educational Software Engineering projects.

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

9

Figure 1. The proposed assessment model

3.1 Classification Phase

This phase includes the use of five machine learning classifiers: Bayesian Network, Decision Tree, Random Forest,

Bagging, and Boosting to explore the effectiveness of all software process and project measures on students’

learning process for each particular time interval. We briefly describe the five classifiers below:

• Bayesian networks are directed acyclic graphs that are used to represent the joint probability distribution

over a set of random variables. Each vertex in the graph represents a random variable, and edges

represent the correlations between variables. The Bayesian network classifier returns the class label that

maximizes the posterior probability as proposed by (Han et al. 2011).

• Decision Trees construct a flowchart-like structure where each internal node represents an attribute, and

each external node holds a class label. For a testing instance, a path is traced from the root to a leaf node

to get the class prediction, as explained by (Thai-Nghe et al. 2011).

• Random Forest classifier is an ensemble classification technique that works by generating many

decision trees from bootstrap samples of the training data. Each tree predicts a class label for each input

vector. The output of the classifier is selected by taking the majority voted class from all the decision

trees in the forest as proposed in the study (Guo et al. 2015).

• Bagging is an ensemble method that uses several training sets generated by a random draw with

replacement. Each data set is used to train a model. The outputs of all models are combined to produce

a single class label such used by (Friedman & Popescu 2003).

• Boosting is the sequential learning of the predictors. The first predictive model learns from the whole

data set, while the next learns from training sets based on the performance of the previous one. The

weights of the misclassified examples increase, so they will have a higher probability of being included

in the next predictor's training set, as concluded by (Friedman & Popescu 2003).

3.2 Feature Selection Phase

This phase employs two meta-heuristic nature-inspired techniques; evolutionary and PSO (Particle Swarm

Optimization) search as features selection techniques to detect the most important measures. These techniques

search in the space of solutions (or population) to find the optimal solution that represents the optimal features for

student's performance assessment that help in getting better students' performance through the learning in software

engineering classes. This paper uses evolutionary and PSO search techniques. The two techniques described as

below:

• Evolutionary Search is an iterative process in the form of generation to refine the population with fittest

solutions using three main steps as in (De La Iglesia 2003; Namous et al. 2020). These steps include:

(1) initializing a set of random solutions on a form of individual chromosomes, each representing the

set of parameters of a problem. Each chromosome represents an array of features for evaluation in the

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

10

form of binary digits where each position identifies if a feature is selected (one) or not (zero); The

strength of a chromosome is derived from applying an ML classifier as an evaluator on the ones' features

in that chromosome where an ML evaluation metric is used as fitness value for that chromosome. (2)

Two fittest chromosomes with the highest fitness values are selected as the elitism of the population (or

fittest parent) to create new chromosomes (or children). (3) The process of creating the children is

maintained in two main steps derived from nature with a random probability of using either; called

crossover and mutation. The crossover process exchanges parts in the two chromosomes between each

other, while the mutation process flips bits in a random position in the chromosome to generate a new

child. The evolutionary search process then estimates the fitness values for the children and replaces

them with non-relevant solutions.

• PSO Search is used for optimizing constrained and unconstrained tasks described by (Eberhart &

Kennedy 1995). It depends on a set of particles that iteratively change their positions based on some

stochastic process. This identifies the best fittest particle among all particles. Therefore, all particles aim

to reach the location of the fittest particle. Also, each particle considers its best position during the search

found by itself.

4. Results and Discussions

4.1 Dataset

The dataset includes over 115 measures of both process and product metrics which obtained from measuring the

core activities of student teams through their final project in joint software engineering classes which applied at

San Francisco State University, Fulda University and Florida Atlantic University. The software process measures

related to non-software issues such: team participation, students' feedback, delivery of documentation, instructor

intervention, cooperation concerns, and following proper software engineering practices. Also, the software

product measures captured the software issues such: functionality, architectural design, code, database, and final

product demo. The dataset includes 74 student teams with about 380 students. These data are combined into 11

different time intervals, the first five intervals measure requirement gathering (T1), design (T2), development (T3),

testing (T4), and delivery (T5) phases correspondingly of Software Development Life Cycle (SDLC), while the

remaining time intervals (T6-T11) are generated by aggregating various software phases from the main five time

intervals (T1-T5). The semester is divided into five formally managed milestones, Ml through M5. The product

and process measures are individually assigned to final grade as A (high expectation) or F (low expectation). Also,

each software team project is assessed at 11-time intervals. This study focuses on predicting the class labeled F

rather than the class labeled A.

4.2 Experiment Results

To evaluate the predictive models, we use the Recall, where it represents the percentage of positive tuples the

classifier label as positive. There is a diversity in assessing students’ performance during the time interval of SE

activities. These activities come in individual and grouped tasks that result in a sense by merging the values of

evaluation metrics. Figure 2 shows the results of using five machine learning techniques conducted on the product

measures. The x-axis represents the time interval of eleven tasks; individual tasks (or T1-T5) and grouped tasks

(or T6-T11), while the y-axis represents the Recall value for class F (under-estimation). For the product component

and in terms of a block of SDLC, including the first five tasks, the Bayesian Network model (BN) outperforms the

other ML techniques with effect Recall value at task five of 0.844 and average recall values over all other tasks.

The conditional probability in BN effectively ties the relationship between the measures (or features) and the target,

due to the low divergence in the data distribution. The entropy-based techniques manifest plausible results affected

by the random distribution of the data with feasible Recall value to bagging technique using a decision tree as a

base classifier. In contrast to the other time intervals (or grouped-based tasks), the entropy-based techniques

leverage high performance to average Recall. This is because of the random skewness of the data distribution with

a large variance that increases the entropy values and helps the entropy-based techniques to discretize the target

label.

Figure 3 also shows the Recall for the F class label for the different classifiers in all intervals (T1 to T11) for

all the process measures. The results show that the Decision Tree classifier gives the best Recall in seven-time

intervals while Bagging gives the best Recall in the remaining four intervals. The highest Recall is 0.68 that is

obtained using Bagging for the T2 time interval. The expected reason to achieve the best Recall in the T2 time

interval is that this time interval represents the detailed specifications phase where teams are expected to have a

lot of communication and collaboration to complete this phase. Bayesian Networks gives the worst results in six-

time intervals while the Random Forest gives the worst results in four-time intervals. We also note that none of

the classifiers obtain good results in the prediction of the F class labeled for time intervals T4 and T5 where T4

represents the beta launch milestone while T5 represents the final delivery milestone. The previous studies

(Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) lacked to present the classification on the

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

11

remaining time intervals, focused only on T2 and T3, used only Random Forest classifier, and implemented

stratified sampling in cross validation, since class labeled F is minority while the class labeled A is the majority as

assigned in the dataset. Also, the study (Naseer et al. 2020) investigated only the software product measures for

the first five intervals T1, T2, T3, T4, and T5 by implementing several different classifiers. On the other side, our

proposed assessment model acts as comprehensive approach that covers all the time intervals from T1 until T11

for both of software product and process, and it demonstrates classification and feature selection techniques.

Figure 2. Classification results of software product measures

Figure 3. Classification results of software product measures

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

12

Table 1 summarizes the comparison between previous models and the proposed assessment model. The

results were reported in the prior studies (Petkovic et al. 2014; Petkovic et al. 2012; Petkovic et al. 2018) presented

the important measures for only the time intervals T2 and T3 of the whole project time period and they lack to

cover the key measures for all 11 time intervals of the software project period. For software process measures at

T2 as in the study (Petkovic et al. 2014), the best Recall is 66.7 % in their approach whereas it is 68% in our

approach. Moreover, for software product measures at T3, the best Recall is 60% by using Random Forest classifier

although it is 68.8 %. These significant findings indicate that our assessment model improves the prediction of the

final grades for the low expectation SE teams. Furthermore, our results comprehensively report all process and

product measure's for all the 11 time intervals of software project period. On the other words, the previous studies

only captured early design and implementation phases of SDLC, while our approach captures all the phases of

software development as well as the combination of these phases. This lead to get a better perceiving for the overall

software development.

Besides, the study (Naseer et al. 2020) investigated only the software product measures for the first five

intervals T1, T2, T3, T4, and T5 by implementing several different classifiers. The best Recall in their assessment

model reported as 3.1 %, 15.6 %, 53.1 %, 78.1 %, and 75% for the time intervals T1, T2, T3, T4, and T5

respectively. On the other hand, our proposed assessment model outperforms the performance of their Recall

values as specified in Table 1. The best Recall values in our findings are 65.6 %, 46.9 %, 68.8 %, 59.4 %, and

84.4 % for the time intervals T1, T2, T3, T4, and T5 correspondingly. In comparing with the previous studies

These noteworthy findings indicate that our assessment model improves the prediction of the final grades for the

low expectation SE teams. In addition, our study aims to propose an effective assessment model for predicting low

expectation-teams (F-grade), it uses several machine learning classifiers on all process and product measures for

each software team. Based on the best resulting Recall, evolutionary and PSO search are implemented to identify

the most relevant measures for process and product individually. Knowing such software processes and product

measures allow software engineering instructors to put more effort and attention to overcome the ambiguity and

difficulties of low-expectation teams. Also, our approach lets the students to early expect their performance in

software engineering course as well as they can keep attention to focus more on their weakness activities during

the software project. Our study aims to improve the software projects learning which leads to a better software

engineering education process.

Table 1. Comparing of performance for predicting F-class

Approaches Time

interval

used

Software

measures

type

Employed classifiers Feature

selection

Best recall Sampling

Petkovic et

al. 2014

Only T2 Process Only Random Forest

(RF)

GINI 66.7 % (RF at

T2)

Stratified

sampling

Proposed

approach

T1 until

T11

Process Bayesian Network,

Decision Tree, Random

Forest, Bagging, and

Boosting

Evolutionary

and PSO

search

68 % (Bagging

at T2)

No

sampling

Petkovic et

al. 2014

Only T3 Product Only Random Forest

(RF)

GINI 60 % (RF at T3) Stratified

sampling

Proposed

approach

T1 until

T11

Product Bayesian Network,

Decision Tree, Random

Forest, Bagging, and

Boosting

Evolutionary

and PSO

search

68.8 %

(Decision Trees

at T3)

No

sampling

Naseer et

al. 2020

T1 until

T5

Product Naïve Bayes, Artificial

neural network, logistic

regression, RIPPER,

and sequential minimal

optimization

J48 decision

tree

3.1 % (at T1)

15.6 % (at T2)

53.1 % (at T3)

78.1 % (at T4)

75% (at T5)

No

sampling

Proposed

approach

T1 until

T11

Product Bayesian Network,

Decision Tree, Random

Forest, Bagging, and

Boosting

Evolutionary

and PSO

search

65.6 % (at T1)

46.9 % (at T2)

68.8 % (at T3)

59.4 % (at T4)

84.4 % (at T5)

No

sampling

In respect to the feature selection phase, it is very essential to select the most important process and product

measures to help instructors for assessing the final grades of low-expectation teams. Figure 4 and Figure 5 show

the experimental results on selected measures extracted using evolutionary and PSO search compared to entire

measures for the software product and process, respectively. The two techniques derived relevant measures with

remarkable results compared with the overall measures in the product component, especially in tasks (T6 to T11)

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

13

having a measure reduction of approximately 95.7%. This indicates that there are some measures with high impacts

on assessing the performance as shown in Figure 4. These measures are mainly linked to software product

attributes, such as collecting all important activities that are handled by students in the code repository for each

software team.

Figure 4. Recall for software product measures selection

Figure 5 also shows the accuracy for the software process measures where the x-axis represents the time

interval and the y-axis represents the Recall for the F class label (a grade below expectations) for the process

measures. Remarkable, the best results obtained from Figure 1 are used for comparison with both evolutionary

search and PSO search in Figure 3. Similarly, the top results obtained from Figure 2 are used for comparison with

both evolutionary search and PSO search in Figure 4. For example, the Recall for time interval T1 is 50 %, 52.4 %,

and 54.2 % using all measures, measure selected using evolutionary search, and features selected using PSO search

respectively. Building predictive models using features selected by evolutionary search and PSO search improve

the Recall for time interval T1 only while using all measures give the best results for the remaining time intervals.

Figure 5. Recall for software process measures selection

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

14

The results show that using only a small number of measures (1 measure to 27 measures) can give results

almost similar to the results obtained by using all 85 measures. It is noteworthy that the two feature selection

techniques capture the relevant features with good results compared with all measures with an average feature

reduction of 87.6%. Since our goal is to predict how well the team applied the best software engineering practices,

we would like to look deeply into the important measures identified by the feature selection techniques in the first

time interval. The selected measures are related to software process attributes such as the total number of meeting

hours and the total of in-person meeting hours. The results of this phase are described as in Table 2 and Table 3.

Regarding the software product and process measures, the most important measures are related to tools logs, class

data, and weekly time card surveys. The time intervals T4, T6, and T8 have the same product measures semesterId

and helpHoursAverage. This refers to the mutual milestones among these time intervals during the software

engineering team activities measurements.

Table 2. Mutual selected product measures between evolutionary and PSO search

Time

Interval

Product Measures

T1 Standard Deviation Commit Count By Student

T2 semesterId, in Person Meeting Hours Average, average Coding Deliverables Hours Total By Week

T3 Standard Deviation In Person Meeting Hours Average By Week, unique Commit Message Count,

Commit Message Length Total, standard Deviation Unique Commit Message Count ByStudent

T4 Semester Id, help Hours Average

T5 no mutual measures

T6 semesterId, help Hours Average

T7 no mutual measures

T8 semesterId, help Hours Average

T9 Standard Deviation Meeting Hours Total By Week, standard Deviation Help Hours Total By Week,

standard Deviation Non Coding Deliverables Hours Average By Student

T10 Average Responses By Week,standard Deviation Coding Deliverables Hours Total By Student

T11 Standard Deviation Unique Commit Message Percent By Student,

Table 3. Mutual selected process measures between evolutionary and PSO search

Time

Interval

Product Measures

T1 Meeting Hours Total, In Person Meeting Hours Total, average Help Hours Total By Week, standard

Deviation Unique Commit Message Count By Week, standard Deviation Unique Commit Message

Percent By Week

T2 Late Issue Count, issue Count

T3 No mutual measures

T4 No mutual measures

T5 Average Responses By Week

T6 Late Issue Count, coding Deliverables Hours Total, average Non Coding Deliverables Hours

Average By Student, non Coding Deliverables Hours Average, issue Count, average Non Coding

Deliverables Hours Average By Week, team Member Response Count, help Hours Total

T7 Issue Count, on Time Issue Count, unique Commit Message Count, team Member Response Count

T8 Team Member Response Count, issue Count, help Hours Total, late Issue Count, on Time Issue

Count, standard Deviation In Person Meeting Hours Total By Student

T9 Issue Count, average Responses By Student, team Member Response Count, on Time Issue Count

T10 In Person Meeting Hours Total, standard Deviation Meeting Hours Total By Week, average

Responses By Week, in Person Meeting Hours Total, standard Deviation Meeting Hours Total By

Week, average Responses By Week, in Person Meeting Hours Total, standard Deviation Meeting

Hours Total By Week, average Responses By Week, in Person Meeting Hours Total, standard

Deviation Meeting Hours Total By Week, average Responses By Week

T11 Team Member Response Count, issue Count, average Meeting Hours Average By Student

The study (Petkovic et al. 2018) used GINI feature ranking to show the top 10 ranked process and product

measures for time interval T2 and T3 respectively. The process measures of T2 were: lateissue Count, issue Count,

standard Deviation Help Hours Total By Week average Help Hourstotal By Week, standard Deviation Help Hours

Average By Week, coding Deliverables Hours Average, help Hours Standard Deviation, and standard Deviation

MeetingHoursAverageByWeek. Furthermore, the study (Naseer et al. 2020) used J48 decision tree in sequential

phases of assessments from T1 to T5 to select the software product features for the classification, they indicated

few product measures as listed in their study. The proposed model detects the mutual measures after implementing

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

15

evolutionary and PSO search as summarized in Table 2 and Table 3.

The common measures selected by our employed feature selection techniques and the feature selection

technique employed by (Naseer et al. 2020) as: Female Team Members Percent, average In Person Meeting Hours

Total by Week, average Meeting Hours Total by Week, average Responses By Week, on Time Issue Count, team

Lead Gender, team Distribution, average Unique Commit Message Count By Student, unique Commit Message

Count, average Responses By student, and.Team Member Response Count.

Our feature selection technique detected many of the essential measures selected by previous work. Also, the

proposed model detects many other important features that undetected by the previous studies (Petkovic, et al.

2018; Naseer et al. 2020). The literature proved that evolutionary and PSO search could select significant features.

Therefore, the chosen measures can guide instructors to monitor low-expectation teams who are at risk and enable

students to perceive the important activities in their projects that will affect their final grade.

4.3 Discussions

Performance prediction conveys major importance in educational software engineering and will lead to better

academic learning outcomes for students and instructors. Software engineering education concentrates on

monitoring the low-expectation teams to improve their skills and activities during the learning process. Many

studies produced outcomes using different machine learning techniques to obtain better academic practices in

educational environment by collecting educational dataset through sequential semesters. Software engineering

education involves project-based learning task. The SE students work in group teams in several time intervals

during the project period to eventually pass the course. Then, different phases of assessments help to monitor the

performance of each team in different time intervals. Nonetheless, the prediction of low-expectation teams includes

the using of machine learning techniques. The SETAP dataset is a rich educational dataset for software engineering

education which enable the SE instructors to observe the performance of SE teams over 11 phases of assessments.

A hybrid assessment model of classification and feature selection techniques was employed to comprehensively

covered all the assessment phases to improve the performance prediction. The results discovered that it is possible

to predict the performance of teams at all stages of evaluation to achieve better software engineering education

with significant accuracy in the prediction of low-expectation teams which enable the SE instructors to identify

their problems and learning difficulties.

Hence, to evaluate the best prediction, the proposed model was applied at the first level of assessment and

sequentially until the eleventh level of assessment for both of product and process software measures. By

considering the similar explored time intervals in the previous studies (Petkovic et al. 2018; Naseer et al. 2020),

the results reveal significant predictions in comparing with the previous assessment models.

The performance prediction of low-expectation teams for software product measures is much better than for

software process measures. This difference might refer to the large number of measures in both types, there are

115 product measures and 84 process measures. The software process measures related to non-software issues

such: team participation, students' feedback, delivery of documentation, instructor intervention, cooperation

concerns, and following proper software engineering practices.

Also, the software product measures captured the software issues such: functionality, architectural design,

code, database, and final product demo. The assessment models (Petkovic et al. 2018; Naseer et al. 2020) are used

to compare the proposed model to check its efficiency for the prediction of low-expectation teams. The proposed

model outperformed other methods at assessment levels two, three, fourth, and five. At level five, the proposed

model achieved the best Recall in predicting the low-expectation teams. The identification of learning difficulties

of low-expectation teams considered as an important concern for software engineering education. The proposed

assessment model helps to achieve the learning objectives by improving the activities for software engineering

teams. The prediction for software product and process development can help instructors detect low-expectation

teams, and allow instructors and students to perceive the final grades expectation. This proposed model improves

the software project assessment and enables for moving toward the success of software engineering courses in

software engineering education.

4.4 Threats to validity

The main challenges for this study are: 1) the dataset has small size since it only contains 74 student teams, 2) the

dataset is unbalanced since the class labeled F occurrences are few comparing with the large number records of

class labeled A since the focus of our study to predict the class labeled F (low-expectation) rather than the class

labeled (high-expectation), and 3) to estimate the Recall in the presence of unbalanced training data, this study

lacks to use any sampling type in cross validation. We believe that our performance prediction results get improved

if we use sampling to increase the occurrences of class labeled F in the dataset.

Conclusion

This paper proposes a hybrid assessment model for evaluating the students' performance in software engineering

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

16

projects. Unlike the previous approaches which studies only design and implementation phases, this study captures

all the phases of software development and detect the essential measures for each phase. It effectively employs

several machine learning classifiers and feature selection techniques to cover all the time intervals of software

project period. Experiments are conducted on a rich academic dataset which has been collected through joint

software engineering classes among three universities. The Recall measure is applied to show the accuracy of low

expectation-teams across over 11 sequential time intervals and based on the predefined criterion, which has been

determined by assigned instructors. The results have shown a significant process and product measures for the

software engineering team projects, which mainly affects the students' performance assessment. The proposed

model helps software engineering instructors to assess the students by highlighting the essential software measures

for each specific time interval of software project duration. It also improves the students' learning capabilities

during software projects to concentrate on their final grades' vital software measurements. Future directions

include applying deep learning techniques to get a new direction in the software engineering education

environment.

References

Abidin, A. F. Z., Darmawan, M. F., Osman, M. Z., Anwar, S., Kasim, S., Yunianta, A., & Sutikno, T. (2019),

“Adaboost-multilayer perceptron to predict the student’s performance in software engineering”, Bulletin of

Electrical Engineering and Informatics 8(4), 1556-1562.

Baker, M. J. (2000), “The roles of models in Artificial Intelligence and Education research: a prospective view”.

Baker, R. S., & Yacef, K. (2009), “The state of educational data mining in 2009: A review and future visions”,

JEDM| Journal of Educational Data Mining 1(1), 3-17.

Castro, F., Vellido, A., Nebot, A., & Mugica, F. (2007), “Applying data mining techniques to e-learning problems”,

In Evolution of teaching and learning paradigms in intelligent environment, Springer, 183-221.

Charette, R. N. (2005), “Why software fails [software failure]”, IEEE spectrum 42(9), 42-49.

Daughtrey, T. (2014), “Software Engineering Best Practices: Lessons from Successful Projects in the Top

Companies”, Software Quality Professional 16(3), 40.

De La Iglesia, B. (2013), “Evolutionary computation for feature selection in classification problems”, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3(6), 381-407.

Delen, D. (2010), “A comparative analysis of machine learning techniques for student retention management”,

Decision Support Systems, 49(4), 498-506.

Duhigg, C. (2016), “What Google learned from its quest to build the perfect team”, The New York Times Magazine

26.

Eberhart, R., & Kennedy, J. (1995), “A new optimizer using particle swarm theory”, In MHS'95. Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, 39-43.

Friedman, J. H., & Popescu, B. E. (2003). “Importance sampled learning ensembles”, Journal of Machine Learning

Research 94(305), 1-32.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., ... & Abdessalem, T. (2017),

“Adaptive random forests for evolving data stream classification”, Machine Learning 106(9-10), 1469-1495.

Guo, B., Zhang, R., Xu, G., Shi, C., & Yang, L. (2015), “Predicting students performance in educational data

mining”, In 2015 International Symposium on Educational Technology (ISET), 125-128.

Han, J., Kamber, M., & Pei, J. (2011), “Data mining concepts and techniques third edition”, The Morgan Kaufmann

Series in Data Management Systems, 83-124.

Hu, Y. H., Lo, C. L., & Shih, S. P. (2014), “Developing early warning systems to predict students’ online learning

performance”, Computers in Human Behavior 36, 469-478.

Jovanovic, M., Vukicevic, M., Milovanovic, M., & Minovic, M. (2012), “Using data mining on student behavior

and cognitive style data for improving e-learning systems: a case study”, International Journal of

Computational Intelligence Systems 5(3), 597-610.

Kotsiantis, S. B. (2012), “Use of machine learning techniques for educational proposes: a decision support system

for forecasting students’ grades”, Artificial Intelligence Review 37(4), 331-344.

Le, K., Chua, C., & Wang, R. (2017), “Mining software engineering team project work logs to generate formative

assessment”, In 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW),78-83.

Lichman, M. (2013), “UC Irvine Machine Learning Repository. University of California, “http://archive. ics. uci.

edu/ml”, Irvine, School of Information and Computer Sciences.

Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009), “Dropout prediction in e-

learning courses through the combination of machine learning techniques”, Computers & Education 53(3),

950-965.

Macfadyen, L. P., & Dawson, S. (2010), “Mining LMS data to develop an early warning system for educators: A

proof of concept”, Computers & education, 54(2), 588-599.

Namous, F., Faris, H., Heidari, A. A., Khalafat, M., Alkhawaldeh, R. S., & Ghatasheh, N. (2020), “Evolutionary

Journal of Education and Practice www.iiste.org

ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)

Vol.11, No.31, 2020

17

and Swarm-Based Feature Selection for Imbalanced Data Classification”, In Evolutionary Machine Learning

Techniques, 231-250.

Naseer, M., Zhang, W., & Zhu, W. (2020), “Early Prediction of a Team Performance in the Initial Assessment

Phases of a Software Project for Sustainable Software Engineering Education”, Sustainability 12(11), 4663.

Pernkopf, F. (2005), “Bayesian network classifiers versus selective k-NN classifier”, Pattern recognition 38(1),

1-10.

Petkovic, D., Barlaskar, S. H., Yang, J., & Todtenhoefer, R. (2018), “From Explaining How Random Forest

Classifier Predicts Learning of Software Engineering Teamwork to Guidance for Educators” In 2018 IEEE

Frontiers in Education Conference (FIE), 1-7.

Petkovic, D., Sosnick-Pérez, M., Huang, S., Todtenhoefer, R., Okada, K., Arora, S., ... & Dubey, S. (2014), “Setap:

Software engineering teamwork assessment and prediction using machine learning”, In 2014 IEEE Frontiers

in Education Conference (FIE) Proceedings, 1-8.

Petkovic, D., Sosnick-Pérez, M., Okada, K., Todtenhoefer, R., Huang, S., Miglani, N., & Vigil, A. (2016), “Using

the random forest classifier to assess and predict student learning of software engineering teamwork”, In 2016

IEEE Frontiers in Education Conference (FIE), 1-7.

Reel, J. S. (1999), “Critical success factors in software projects”, IEEE software 16(3), 18-23.

Sauer, C., & Cuthbertson, C. (2003), “The state of IT project management in the UK 2002-2003”, Computer

Weekly 15, 1-82.

Sauer, C., Gemino, A., & Reich, B. H. (2007), “The impact of size and volatility on IT project performance”,

Communications of the ACM, 50(11), 79-84.

Standish Group. (2009). “Chaos summary 2009. Online report”, Accessed June, 2020.

Thai-Nghe, N., Horváth, T., & Schmidt-Thieme, L. (2011), “Factorization models for forecasting student

performance”, In Educational Data Mining 2011.

Xue, B., Zhang, M., & Browne, W. N. (2012), “Particle swarm optimization for feature selection in classification:

A multi-objective approach”, IEEE transactions on cybernetics 43(6), 1656-1671.

Zafra, A., & Ventura, S. (2009), “Predicting Student Grades in Learning Management Systems with Multiple

Instance Genetic Programming”, International working group on educational data mining.

