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Abstract 
Increase in the number of students and staff in the campus has led to increase in the consumption of electricity 
from the gird. It is important to have reliable electricity plan to meet the future needs and to become self-sufficient. 
This paper presents a forecast of the electricity demand of the College of Science and Technology until 2030. The 
historical electricity consumption data from January 2014 until December 2018 was used for the forecast. The 
future electricity consumption was forecasted using Autoregressive Integrated Moving Average (ARIMA) model 
in XLSTAT. ARIMA was specified by three order parameters (p, d, q). To identify the model of ARIMA, the 
autocorrelation function (ACF), and partial autocorrelation function (PACF) were used. The efficiency of the 
model was checked using root mean square error (RMSE), mean square error (MSE), and the sum of square error 
(SSE). The forecast was also validated using the best fit comparison of raw data with the predicted data. The total 
electricity consumption of the college is forecast to increase from 1.09 MWh in 2018 to 5.75 MWh in 2030 with 
an average increase of 14.67 % per year. Similarly, electricity consumption in the staff residential zone is projected 
to increase from 166 MWh in 2018 to 295 MWh in 2030. In the case of student residential zone, the electricity 
consumption is forecast to increase from 273 MWh in 2018 to 361 MWh by 2030. 
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1.  Introduction 
Energy plays a very important role in the present developing human life (Ozturk & Ozturk, 2018). With the growth 
in population, their living standards due to the development in the technologies and industrialization eventually 
leads to an increase in the energy demand (Ozturk & Ozturk, 2018). Over the years, the intake of students at the 
College of Science and Technology (CST) has gradually increased along with the staff number. The increasing 
population in the campus has been accompanied by the construction of academic and residential infrastructure 
thereby increasing the electricity demand too. Between 2014 and 2018, the number of students and staff has 
increased with an annual average rate of 5.46% and 4.03% respectively. CST currently offers undergraduate degree 
programmes in Architecture, Civil, Electrical, Electronics & Communication, Information Technology, 
Engineering Geology, Instrumentation & Control, and Master of Engineering in Renewable Energy. Currently, the 
college has more than 1000 students and staff. In the next ten years, a few more programmes are likely to be 
introduced in the college along with an increased number of students and staff simultaneously. With the launching 
of new programmes, the student number will increase and subsequently electricity demand. Therefore, it is prudent 
for the college to forecast the electricity demand to ensure reliable and sustainable energy security in the future. 
Thus, this paper presents the total historical electricity consumption of CST and forecast its expected alterations 
until 2030. 
 
2.  Forecast 
According to Fattah, Ezzine, Aman, Moussami, & Lachhab (2018), forecasting is the process of making an 
assumption about the future value of studied variables. The forecasting model has been classified into different 
time frames by different authors. Feinberg & Genethliou (2005) has categorized the load forecast into three 
categories: short-term, medium-term, and long-term forecast. The short-term forecast covers the time duration of 
one hour to one week. The medium-term forecast covers a time duration of one week to one year and long-term 
forecasting covers a time duration of more than a year. Forecasting has also been classified as very short term 
forecasting (1-7 days ahead), short-term forecasting (1-4 weeks ahead), medium-term forecasting (1-12 months), 
and long-term forecasting (1-20 years)(Elkarmi & Shikhah, 2016).  

Debnath & Mourshed (2018) have used different methods for forecasting electricity demand, stand-alone 
method, and hybrid method. The stand-alone method consists of a single method whereas the hybrid method 
consists of the combination of more than one stand-alone method. Stand-alone is further classified into statistical, 
computational intelligence, and mathematical programming. McSharry, Menezes & Taylor (2006) compared four 
methods, multiplicative seasonal autoregressive integrated moving average, exponential smoothing, artificial 
neural network, and principal component analysis (PCA) approach for the forecasting electricity demand up to a 
day ahead. The hourly demand of electricity of Rio de Janeiro and half-hourly electricity demand of England and 
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Wales for 30 weeks of data were used. Mean absolute percentage error (MAPE) was used to measure the accuracy 
of the forecasting. The artificial neural network gave relatively poor performance compared to the other three 
methods. For England and Wales data, the PCA method was found to be more accurate but the overall exponential 
smoothing method gave better results for both types of time series (J. W. Taylor et al., 2006). 

Li et al (2020) worked on a fresh strategy to forecast next-day total electricity usage and peak demand of 
group of building using cluster analysis, Cubist regression models and Particle Swarm Optimization method. The 
strategy was validated by using electricity consumption data of 40 buildings inside a university campus. To 
evaluate the difference in the results of measured and predicted, coeffecient of variation of root mean square error 
CVRMSE and mean absolute percentage error (MAPE) were used. For daily electricity consumption, the 
difference between the measured and predicted values was 3.3% in MAPE and 4.7% in CVRMSE and for daily 
peak load the difference between the measured and predicted values was 5.3% in MAPE and 6% in CVRMSE. 

Taylor (2013) used one-year electric load and weather data to predict using a knowledge-based expert 
approach, multiple linear regression, stochastic time series, general exponential smoothing, state-space method, 
and artificial neural network. Among the above-mentioned methods, the artificial neural network was used to 
forecast the short-time electric load (24 hours) of Oak Ridge National Laboratory, United States Department of 
Energy. The mean absolute error of 1% to 3% was considered acceptable since the weather predicted variables 
were considered 100% accurate which would likely cause an error in the final forecast of the load. Bhardwaj & 
Bansal (2011) used a single exponential smoothing method for forecasting the demand of electric power until 2023 
using population data (1991 to 2001) and temperature (2001 to 2008) of Lucknow city, India. An error of +0.08 
was found between the actual and the predicted load (2001 to 2008). It was concluded that there will be a huge 
power demand which was forecast to be about 2143 MVA by 2023. 

Sen, Pal, & Roy (2016) used autoregressive integrated moving average (ARIMA) to forecast energy 
consumption and greenhouse gas emission in pig iron manufacturing organization in India. Monthly data for 
energy consumption and greenhouse gas emission from the year 2002 to 2013 was used for the forecast. This 
forecast was used to propose preventive measures in advance to provide improved environmental performance by 
the organization. The best ARIMA model was selected based on the lowest values of Alkaike Information Criterion, 
and Schwarz Bayesian Information Criterion generated by different competitive ARIMA model. Based on the 
above two criteria ARIMA (1,0,0)×(0,1,1) was selected as the best model for the forecasting of energy 
consumption and ARIMA (0,1,4)×(0,1,1) for the forecasting of greenhouse gas emission. The residue of the 
autocorrelation function and partial autocorrelation of the competing ARIMA model was also accounted for the 
selection of the best model for green-house gas emission (Sen, Roy, & Pal, 2016). 

Chujai, Kerdprasop, & Kerdprasop (2013) used R and R studio to model the ARIMA and Auto-Regressive 
Moving Average (ARMA) for analysing the best model for forecasting household electricity consumption and to 
find the most fitting forecasting period (daily, weekly, monthly, or quarterly). The authors used four years 
individual household consumption data. For the forecasting periods in monthly and quarterly, the ARIMA model 
was found to have higher accuracy and for the forecasting periods in daily and weekly ARMA model was found 
to have higher accuracy (Chujai, Kerdprasop, & Kerdprasop, 2013). 

Ho & Xie discusses a comparative study in forecasting failure of the mechanical system using Duane model 
and ARIMA models. To evaluate the accuracy of models, mean absolute deviation (MAD) was used, the lower 
value the better accuracy. ARIMA model had a MAD of 4.1 compared to the MAD of 53.4 of Duane model. Due 
to valuable information being lost in Duane model, ARIMA model was concluded to be more preferable for 
modeling the failure pattern of any system. Using the ARIMA model the authors could even explore the correlation 
between the failure data and obtain better estimation(Ho & Xie, 1998).  

The performance of three different methods, ARIMA, ANN, and multiple linear regression (MLR) was used 
to forecast electricity demand in Thailand (Kandananond, 2011) using historical data from the year 1986 to 2010. 
ANN with a MAPE of 0.996% outperformed ARIMA with a MAPE of 2.81% and MLR with MAPE of 3.26%. 
They further concluded that due to their simple structure and competitive performance, ARIMA and MLR might 
be more preferable than ANN (Kandananond, 2011).  

Oliveira & Oliveira (2018) did a comparative analysis of forecasting of mid and long-term electricity 
consumption up to two years ahead for different developed and developing countries. The authors used monthly 
historical data from 2006 to 2014 as model inputs. By assessing Theil Inequality Coefficient (TIC), symmetrical 
MAPE, RMSE, and MAPE of the predicted data, the authors concluded that ARIMA gave better performance for 
Brazilian and Mexican cases whereas the exponential smoothing method gave a better performance in developed 
countries(de Oliveira & Oliveira, 2018). According to Pai & Chih-Sheng(2004), for forecasting in time series, the 
ARIMA has been the most popularly used method and was used by several authors in the past to forecast electricity 
demand (Chujai et al., 2013; de Oliveira & Oliveira, 2018; Ho & Xie, 1998; Sen et al., 2016; Shilpa & Sheshadri, 
2017). This paper also adopted the ARIMA model to forecast electricity demand of CST until 2030. 

ARIMA model can be performed in different statistical software such as MINITAB (EI Desouky & EI Kateb, 
2000) and R and R studio (Chujai et al., 2013). Minitab takes into consideration two things while fitting a time 
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series model. The first is the past value, which is used in AR models, and secondly, it looks at past prediction error 
which is the MA model. In time-series data modulating using R package three steps are followed: exploratory 
analysis, fit the model, and diagnostic measures. The user has to be familiar with R syntax. The load forecast using 
the ARIMA model in MATLAB, MINITAB, Statistical Analysis System (SAS), and the R package involves 
several coding. Whereas, XLSTAT extends Excel to an efficient and easily accessible statistics that covers most 
of the functions needed for the analysis in the modeling of data. The XLSTAT software automatically integrates 
itself into the Microsoft Excel user interface (STATCON, 2019).  
 
3. Methodology 
ARIMA model was used to forecast the electricity demand of CST which is run in the excel using the XLSTAT 
add-on statistical software. XLSTAT is a statistical add-on software that is integrated as a complement of Microsoft 
Excel as it has more analysis capabilities. ARIMA is one of the subcategories in the XLSTAT which describes the 
phenomena that evolve through time and predict the future value. The electricity consumption data for the last five 
years (2014-2018) was used to predict future demand which was categorized into three zones that is, student and 
staff residential, and academic. The academic zone includes the administration building, laboratories, and the 
library. The student residential zone consists of the hostels and the student mess and the consumption from the 
staff residential buildings categorized as staff zone.  
 
4. Results and Discussion  
The historical electricity consumption data of CST was used to forecast its electricity consumption until 2030. 
 
4.1 Student Residential Zone  
The number of students on the campus is increasing at a rate of 5.46% annually. With the increase in the number 
of students, the number and variety of electrical devices also increase thereby increasing the consumption of 
electricity. However, the actual electricity consumption is also dependent on the efficiency of the appliances being 
used. 

ARIMA model (0, 1, 1) was used to forecast electricity demand in student residential zone as this model 
provides a stable result. Validation is important to check the reliability of the forecasted model and see how the 
model has simulated the actual data(Nyatumame & Agodzo, 2018). The predicted data obtained from the ARIMA 
for the year 2018 was validated with the measured value for the same year in Figure 1. The predicted data series 
doesn’t vary much as compared to the measured data series. The predicted electricity consumption agrees well 
with the measured value with a correlation coefficient of 0.9994, root mean square error of 0.1244kWh, and mean 
bias error of 0.0734 kWh. The dip during the July month is due to the students being on vacation. 

  
Figure 1. Measured and predicted electricity consumption of student residential zone 

Figures 2 and 3 show the ARIMA model forecast of electricity demand for the next ten years. The series 
fluctuates within the set boundaries and hence shows the stationarity of the data. The normality of the residual’s 
distribution is essential in producing a reasonable confidence interval for the forecast. A constant variance in a 
residual is said to be homoscedastic. Homoscedasticity refers to a model’s ability to predict variables consistently 
whereas a heteroscedastic residual doesn’t provide reliable predictions. 
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Figure 2. ARIMA forecast of electricity demand for student residential zone 
 

   
Figure 3. ACF and PACF of electricity demand for student residential zone 

 
4.2 Staff Residential Zone  
The population of staff is annually increasing with a rate of 4%. The trend of the measured data shows that there 
is a linear increase though the rise is very few in numbers. The ARIMA model (0, 1, 1) was used for the forecasting 
of staff residential zone. The predicted data obtained from the ARIMA for the year 2018 was validated with the 
measured value for the same year. As shown in Figure 4 the predicted electricity consumption agrees well with 
the measured value with a correlation coefficient of 0.8636, root mean square error of 0.0934 kWh, and mean bias 
error of 0.0544 kWh. 
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Figure 4. Measured and predicted electricity consumption of staff residential zone 

Figure 5 shows the ARIMA forecast of electricity demand and the forecast path indicating a linear slope 
between both of the limiting bounds adds to further validation. The graphs include the measured, validated, and 
predicted data series where the predicted data series lies within the 95% confidence interval. Figure 6 shows the 
ACF and PACF residual of the model for electricity demand. The confidence interval for the forecast is maintained 
by the normal residual distribution illustrated in Figure 6         

 
Figure 5. ARIMA forecast of electricity demand for staff residential zone 

 

   
Figure 6. ACF and PACF of electricity demand for staff residential zone 

 
4.3 Academic Zone  
In the academic zone, the electricity demand depends upon the number of buildings, laboratory facilities and 
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equipment used. Over the past five years, the academic infrastructures have not increased except for the new library 
building. The usage of appliances may vary seasonally due to dynamic climate patterns in the region. The ARIMA 
model (0, 1, 1) was used for the forecasting electricity demand of academic zone. Figure 7 shows the validation 
output graph for the year 2018. 

 

Figure 7. Measured and predicted electricity consumption of academic zone 
The forecast of electricity demand is shown below in Figure 8. The forecasted path is restricted within the 

upper and lower bounds which tells that the forecast model is tethered to the accuracy pole. Figure 9 shows the 
ACF and PACF of electricity demand in the ARIMA model for the academic zone. ACF describes how well the 
present value of the series is related to its past values. PACF helps to find any hidden information in the residual 
which can be modeled by the next lag.  

 

Figure 8. Electricity demand forecast for academic zone 
 

   
Figure 9. ACF and PACF of electricity demand for academic zone 
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5 Conclusions 
Accurate forecasting models are needed for a secure and reliable energy system operation. This paper presented a 
long-term load forecasting using ARIMA time series modeling. To implement this ARIMA approach, monthly 
loads of CST campus for the past five consecutive years was used. ARIMA (0,1,1) was used for forecasting 
electricity demand of all zones which was validated by actual historical demand information of 2018. ACF and 
PACF plots were used to check the authenticity of the ARIMA model. For evaluation of the ARIMA models, MSE, 
SSE, and RMSE were considered for greater accuracy. The total electricity demand of staff residential zone is 
projected to increase from 166 MWh in 2018 to 295 MWh in 2030. In the case of student residential zone, the 
electricity consumption is forecast to increase from 273 MWh in 2018 to 361 MWh by 2030. However, there is 
always a chance of fluctuation in electricity demand that is decreasing due to more energy-efficient appliances 
coming in place or increase due to the addition of more appliances in the household. The forecast can be used to 
develop a reliable energy plan for the campus which can be more renewable and less dependent on the gird, helping 
the campus to become energy self- sufficient. More over similar forecasting can be done for the other areas to 
understand the future need of electricity in that area and to make a reliable future energy plan. 
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