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Abstract 

This paper presents an estimate of the level of energy efficiency that could be achieved through improvement in 

building envelope. A residential flat in Thimphu, Bhutan was simulated in transient simulation software TRNSYS 

with measured weather data. From the simulation, it was observed that the thermal energy demand of the flat could 

be reduced between 11-64% by insulating the building envelopes under various scenarios. The simulation result 

suggests that attic insulation must be the first method to look into while deciding for retrofitting a poorly 

performing building as it could result in a high reduction of annual heating energy demand. The simulation shows 

that maximum heating energy demand reduction (64%) could be achieved when attic and wall insulation was used. 
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1. Introduction 

The main focus of today’s energy-intensive world is energy conservation and energy efficiency. Energy 

conservation does not necessarily require high-end technology for implementation. However, with the 

advancement in technology, the method of energy conservation has improved. Switching off of an electric lamp 

in an unused room in a home is an act of energy conservation. These days, everything is possible with a mere tap 

on an application on the phone with the help of the concept of IoT (Internet of Things). These scientific 

advancements have facilitated easier conservation of energy and an efficient system that provides improved energy 

output with minimal losses of energy. Therefore, the tradeoffs between the benefits of such technologies are 

required to be assessed. 

Bhutan located in the Himalayas has three climatic zones; alpine, temperate, and subtropical. The climate 

varies according to altitude. The altitude ranges from 300 m.a.s.l in the south to 3500 m.a.s.l in the north. The 

southern foothills have a subtropical humid climate, while it is temperate in the central inner Himalayas and cold 

in northern parts with snow-covered mountains in winter. The building sector in Bhutan contributes 36% of final 

energy consumption globally (IEA, 2019). The energy consumption in the building sector has increased due to 

better access to energy and increase in the use of energy-consuming devices. Further due to advancements in 

technology and rapid growth in building constructions, such consumption is expected to increase. The building 

sector in Bhutan contributed to about 42% of total energy consumption in the country in 2014 with the residential 

sector alone consuming about 79% of total energy in the building sector (DRE, 2015). The study also states that 

Thimphu consumed the highest amount of electricity in the building sector with maximum consumption in the 

urban residential sector. 

A study by Jentsh et al. (2017) concluded building material properties of some common buildings in Thimphu 

that the current houses in the city could be classified as leaky with infiltration rates of about 3.9 to 5.3ACH for 

traditional-style houses and 0.8 to 1.9ACH for modern constructions. The energy losses taking place during the 

heating season could be judged by studying these values. The U-values of the common type of brick infill walls 

were found to be 1.25 to 1.45 W/m2K and that of traditional rammed earth walls as 1.1 to 1.2W/m2K and the 

cement stabilized earth walls at 1.05 to 1.25W/m2K. The same study indicates that most houses in the country 

perform poorly contributing to losses in heating energy.  

It is important to look into the design of construction of building envelope. The methods of a building 

envelope include adequate insulation, window glazing, and airtightness of the rooms. HVAC systems play an 

important role in maintaining a healthy indoor environment in a building. If exhaust fans or forced ventilation is 

used, it would significantly impact the thermal performance of a building by driving the heated air out. However, 

in Bhutan most residential buildings do not have HVAC systems installed. The residents employ natural ventilation 

through permanent openings on the walls in most homes in southern warmer regions and little or no openings in 

cold regions to avoid infiltration of cold air in winter. If ventilations are required, the windows are opened as and 

when required by the occupants. As there are no comprehensive studies on the effectiveness of the insulation on 

the building energy demand, this paper presents the improvement of the thermal performance of a typical urban 

residential building in a cold climate to ascertain energy-efficient alternatives that are financially viable for the 

construction. 
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2. Methodology 

A sample building was selected and a simulation-based analysis from archived data available on a modern 

residential building was used to carry out the study. This selected building is ideal for this case study because it 

represents the majority of the type of urban dwellings in Thimphu as well as other cities in the country. The Bhutan 

Living Standard Survey reported that 36.8% of the households live in houses with cement-bonded brick or stone 

wall (NSB, 2017). Likewise, 95% of households use metal sheets as a roofing material (NSB, 2017). The building 

considered in this case study is a three-storied residential building with two flats per storey. The selected building 

is a privately-owned residential building located in the capital city, Thimphu. Since the measured air temperature 

and humidity data for the study was available for only two rooms of a single unit on the third floor, a single unit 

was modeled.  

 

2.1 Location 

The case building is located at 27.50 o N, 89.63 o E, and an elevation of 2384 meters above sea level. The sketch 

of the flat in Figure 1 shows different zones considered in this case study. The different zones are Bedroom (BR), 

Choesham (CH), Master Bedroom (MBR), Master Toilet (MT), Toilet (T), Kitchen (K) and partially above zone 

Living Room (LR). 

 
Figure 1. Orientation of the building with zone location 

 

2.2 Building Envelope 

The case building is constructed with bricks and concrete mortar supported by reinforced cement concrete structure 

and corrugated iron pitched roof. The building has 10 thermal zones as presented in Table 1. 

Table 1. Thermal zones of the building 

Sl. No. Zone Name Zone Volume (m3) Code Name 

1 Living room 102.33 LR 

2 Bedroom 42.99 BR 

3 Choesham (Alter room) 47.12 CH 

4 Master Bedroom 47.12 MBR 

5 Master Toilet 10.65 MT 

6 Toilet 22.77 T 

7 Kitchen 29.47 K 

The floor is constructed of a concrete slab with wood flooring except for bathrooms where tile flooring is 

used. The composition of the floor and the parameters of the floor are presented in Table 2. 

  



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online)  

Vol.11, No.27, 2020 

 

117 

Table 2. Properties of the floor material 

Type Layers 
Conductivity 

(kJ/h.m.K) 

Specific heat capacity 

(kJ/kgK) 

Density 

(kg/m3) 

Thickness 

(mm) 

Bathroom 

Floor 

Tiles 3.02 0.92 1922 6 

Cement mortar 5.04 1 2000 5 

Concrete slab 4.068 1 1400 150 

Room Floor 
Wood 0.36 2.09 506 25.4 

Concrete slab 4.068 1 1400 150 

There are two different types of wall, external and internal. The external wall covers the external envelope 

and is thicker than the internal walls that separate the different zones internally. The composition of walls and the 

calculation parameters of the walls are given in Table 3. 

Table 3. Properties of the wall material 

Type Layers 
Conductivity 

(kJ/(h.m.K)) 

Specific heat 

capacity (kJ/(kg.K)) 

Density 

(kg/m3) 

Thickness 

(mm) 

External wall 
Cement mortar 5.04 1 2000 5 

Bricks 2.92 0.92 1731 250 

Internal wall 

Wood 0.36 2.09 506 25.4 

Cement mortar 5.04 1 2000 5 

Bricks 2.92 0.92 1731 125 

The ceiling is made up of 8 mm thickness plywood. The composition of the ceiling and the calculation 

parameters of the walls are shown in Table 4. 

Table 4. Properties of the ceiling material 

Type Layers 
Conductivity 

(kJ/h.m.K) 

Specific heat 

capacity (kJ/kg.K) 

Density 

(kg/m3) 

Thickness 

(mm) 

Ceiling Ply Plywood 0.54 1.2 800 8 

Ceiling slab Concrete slab 4.068 1 1400 150 

The roof is made out of corrugated iron. It is the same on the entire roof of the building. The properties of the 

roof material are presented in Table 5. 

Table 5. Property of roofing material 

Type Layers 
Conductivity 

(kJ/h.m.K) 

Specific heat 

capacity (kJ/kg.K) 

Density 

(kg/m3) 

Thickness 

(mm) 

Roof Corrugated iron 219 0.5 7850 1.5 

Single glazed type of window with a U-value of 5.8 W/m2K was used from the standard library on all walls of the 

zones. 

 

2.3 Building Operation Characteristics 

2.3.1 Heating, cooling and ventilation 

There is no record of heating element used in the measurement and gain from heating was assumed. The heating 

power for the rooms was assumed since the power rating and operation schedule for the heating system were not 

known. The HVAC system is also not used in the building; therefore, no cooling or ventilation was used in this 

simulation. 

2.3.2 Infiltration 

The airtightness of a building envelope is done using a blower door test. As it was not feasible to conduct this test 

and hence, values were assumed. Infiltration is expected from doors and windows in the living zones. The building 

does not have an artificial ventilation system. Natural ventilation is used for such buildings by opening the 

windows. In this paper, a constant infiltration value of 1.0ACH at normalized value from 50Pa pressure was 

considered for all the zones. 

2.3.3 Internal heat gains 

Internal heat gains from occupants, lighting and room heater were used in this simulation. The gains from 

occupants were selected from the standard table ISO 7730 in the Gains window for the individual zone in 

TRNBuild. The degree of activity for occupants was selected to be ‘seated at rest’ and coupled with the daily 

occupancy schedule of the particular zone. The heating season was coupled with the zone occupancy schedule to 

get the heating schedule of individual zones. Figure 2 shows the living room and annual heating seasons used in 

the simulation. Figure 3(a) shows the actual occupancy of the living room and Figure 3(b) shows the lighting 

schedule for the living room. 
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Figure 2(a) daily heating schedule for living room and (b) annual heating schedule 

 
Figure 3. Living room schedule for (a) occupancy (b) lighting 

 

2.4 Building Modeling in TRNBuild 

TRNBuild is an integrated platform in TRNSYS to model a building upon the building description and other data 

parameters. It offers an interactive platform to input building descriptions from orientation to material thickness. 

The description of the building was input in the TRNBuild platform to generate a building input file (.BUI) for 

simulation which is used by the Type56 component in TRNSYS. 

TRNSYS, transient simulation software is the user interface platform where different components could be 

interconnected to build a simulation. In the simulation studio, the output from building data was fed to the TYPE56 

component. This component takes various parameters such as weather data and other user-defined inputs to 

compute and simulate the building’s operation and provides outputs that the user might have defined earlier in 

TRNBuild. The simulation was run for one year (8760 hours) using measured weather data for the year 2017.  

 

2.5 Energy analysis 

Chimack, Walker & Franconi (2001) suggested that for the whole building simulation, the Normalized Mean Bias 

Error (NMBE) and Coefficient of Variation of the Root Mean Square Error (CVRMSE) were calculated for 

validation of the model along with monthly error (ERRmonth) and yearly error (ERRyear) to compare measured and 

simulated energy consumption. However, in this paper, measured energy data was not available to compare with 

the simulation. Therefore, air temperature data were used to validate the model.  

To calculate the energy demand when the thermal insulation was employed in the existing building, building 

energy demand was used. The reduction in energy demand was calculated from the base case scenario for other 

energy-efficient scenarios. The energy demand per unit area of the building was calculated to compare later with 

the energy cost per unit area of thermal insulation. 

 

2.6 Financial calculation 

The energy demand reduction due to insulation was used to calculate the cost saved on energy by the installation 

of thermal insulation. The cost saved per unit area of the room was determined to compare and calculate the simple 

payback period for such a combination of insulation measures as defined by different insulation schemes created. 

This would give an estimate of the minimum number of years that the return on investment in such measures will 

provide. The cost of installation per unit area including material cost is presented in Table 6.  A simple payback 

method was used to estimate the early recovery from different energy efficiency schemes which is defined below.  

������� =  
	�
��� �
�

������ ���� ��
�
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The payback period is the time required to recover the amount invested in an asset from its net cash flows 

(Accounting Tools, 2019). This method does not include factors of actual economics of the project such as life 

span, additional cash flows, time value of money, etc. and neither it is used in this analysis for reasons explained. 

To compare the net cash flow and investment, cost savings in energy per year is used with investment in insulation 

measured for every scenario.  

The formula for calculating the payback period was thus used as below: 

������� =  
���������� ���� ��  ��!"#� �� ��ℎ��� %�& !� � #&�# ��  ��!"#� ��

'��!#" �#� �(�  � ����� %�& !� � #&�# �� &���
 

Zhivov, et al. (2015) conclude that retrofitting techniques individually is economically not desirable as 

compared to when done in combination with major building renovation technology. Straube, et al. (2012) states 

that the benefit from insulation diminishes with increasing thickness in insulation and it is usually related to 

insulation cost and climate condition. 

Table 6. Cost per unit area of installing insulation (India Mart, 2019) (India Mart, 2019) 

Material Unit Per unit cost Cost of installation (Nu/m2) 

Rock wool m2 180 180 

XPS m2 450 450 

Gypsum board m2 325 325 

Gypsum plaster kg 5.8 162.4 

 

3. Results and Discussion 

3.1 Model Validation 

The living room air temperature was used to validate the model. To compare them, the output of TRNSYS was 

matched with the measured data. The error margins were calculated as below to check the acceptance level as 

suggested in ASHRAE 14-2014. The calculated Nominal Mean Bias Error and Coefficient of Variation of Root 

Mean Square Error are presented in Table 7. 

Table 7. Calibration result of building simulation 

Error Living room 

NMBE 8.29 % 

CVRMSE 20.79 % 

Correlation coefficient 88.83 % 

As suggested the accepted level or error is NMBE: < 10% and CVRMSE < 30% for hourly data. In Table 7, 

it is evident that both the CVRMSE values are within the limits. The model could be calibrated further to obtain 

the best plot of resemblance but the parameters could be varied only so much after which it loses the sense of 

practicality. In this case, increasing the zone thermal capacitance reduced the graph peaks and match the measured 

plot.  However, the value of zone thermal capacitance could not be increased beyond a certain value. Increasing 

the thermal capacitance value beyond the point did not make practical sense. 

 

3.2 Energy Analysis 

In the base case scenario (without insulation), the calibrated model was simulated to generate the monthly energy 

demand for the building to maintain a livable room air temperature of 18C. The total annual energy demand for 

the building was 12,491 kWh without any insulation on the building envelope. Figure 4 shows the hourly variation 

in room temperature of the living room when heating was used to maintain a minimum temperature of 18C for 

one year. The living room air temperature does not go below 18C throughout the heating season. When the room 

temperature decreases, the heating demand increases to maintain the set temperature.  



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online)  

Vol.11, No.27, 2020 

 

120 

 
Figure 4. Energy demand and room temperature for the base case scenario 

The energy demand for the entire heating season for different insulation schemes is summarized in Figure 5. 

It is worth noting that insulation was applied to external walls of the heated rooms only for assuming easy and 

cheap practical application of retrofitting. Besides, the internal walls or adjacent walls were not insulated to use 

the walls as thermal storage. Table 8 shows the summary of energy demand variation and consequent energy 

demand reduction with different scenarios simulated.  

Table 8. Energy demand and percentage reduction in energy demand for all scenarios 

Scenario Insulation method 
Energy demand 

(kWh) 

Energy reduction 

(%) 

Base case No insulation 12491.55 - 

Scenario-1 Attic 6894.11 45 

Scenario-2 Internal side of external wall 11067.73 11 

Scenario-3 External side of external wall 10626.38 15 

Scenario-4 Attic and internal side of external wall 4938.64 60 

Scenario-5 Attic and external side of external wall 4588.56 63 

The heat loss through the attic is significant at 45% reduction in energy demand. Attic insulation would result 

in significant energy saving in terms of space heating. The simulation result suggests that attic insulation must be 

the first method to look into while deciding for retrofitting a poorly performing building. The simulation shows 

that maximum energy demand reduction is obtained when attic and wall insulation was used. When attic insulation 

was used with the internal side of the wall insulation, energy-saving was the highest.  

The external insulation proved to be marginally better than internal insulation. It could be because external 

insulation covers the building envelope better as the internal part of the walls was used as thermal storage as 

compared to insulation on the internal side of the external walls. While insulating the walls internally, the insulating 

material could not be applied throughout but limited to a single room and the walls could not be used as thermal 

storage. Figure 6(a) shows the variation in energy demand by varying insulation thickness. It was noticed that the 

energy demand changed more rapidly for attic insulation as compared to wall insulation. Figure 6(b) shows a 

change of 1ACH changes the energy demand by more than 3700 kWh. It was noted that demand in energy varies 

linearly when the air infiltration in the building was varied. 
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Figure 6. Parametric study result for (a) insulation thickness and (b) air infiltration 

 

3.3 Financial analysis 

The subsequent cost of energy demand was calculated using the low voltage (LV) consumer energy tariff set by 

the power distribution company, BPC (Bhutan Power Corporation), for 2017. A simple payback period was 

calculated to see the return on different options of insulation.  

 
Figure 7. Cost savings vs. payback period different scenarios 

The relationship between cost savings in Nu/year and payback period in years is depicted in Figure 7. The 

simulation suggests that attic insulation has the lowest payback period. Scenario-2 and 3 have a minimal difference 

in energy savings however, the payback period for Scenario-2 is two times more than that of scenario-3. It could 

be due to the cost of material used for insulation. In Scenario-2 gypsum board was used over the XPS insulation 

which added the cost of insulation. Table 9 summarizes the different scenarios to judge for the amount of savings 

and investment for different insulation intervention.  
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Table 9. Cost of energy and payback period for different scenarios 

Scenario 

Energy 

demand 

(kWh/year) 

Energy 

cost 

(Nu/Year) 

Energy 

savings 

(kWh/year) 

Cost 

savings 

(Nu/year) 

Cost 

savings 

(Nu/m2 per 

year) 

Cost of 

insulation 

(Nu/m2) 

Payback 

period 

(years) 

Base case 12491.55 0.00 40,062.02 - - - - 

1 6894.11 44.81 21,062.06 5,597.44 192.46 193.46 1 

2 11067.73 11.40 35,178.32 1,423.82 43.93 950.86 22 

3 10626.38 14.93 33,664.49 1,865.17 57.55 625.86 11 

4 4938.64 60.46 14,432.18 7,552.91 122.11 1130.86 9 

5 4588.56 63.27 13,303.31 7,902.99 127.49 805.86 6 

The payback period for insulation at different air insulation was also calculated as shown in Figure 8. The 

payback period increases significantly as the air infiltration increases. Air infiltration above 3ACH has high energy 

demand that insulating the house with a given insulation thickness of 150mm of rock wool for attic and 60mm of 

XPS on the wall becomes inconsequential. The base case energy demand was 12,491.55kWh. As the air infiltration 

in the building increases, the energy demand also increases and surpasses the base case energy demand for air 

infiltration rate beyond 3ACH. 
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Figure 8. Payback period at different air infiltration 

The effectiveness of energy efficiency in the building through insulation is studied through building energy 

modeling and simulation. In doing so, it was deduced that the accuracy of a software simulation depends on the 

intricacies of software that it is built upon. The simulation was conducted and validated with temperature for one 

room. The building could have been validated more precisely with other rooms as well if the measurement was 

available. It was also seen during the simulation that infiltration is a determining factor when the thermal 

performance of the building is concerned. It was noticed during the calibration of the building that varying the 

infiltration rate changed the energy demand drastically.  

The payback period of above 22 years from the insulation of only the external wall on the inside seems long 

for house owners and construction planners compared to one year for only attic insulation. The energy reduction 

and payback period may not be consistent with a different type of buildings. Different buildings might have 

different building operational characteristics and different building material properties. The above-obtained result 

is restricted to multi-flat residential buildings in Thimphu and the type and method of insulation adopted for 

simulation. The measure of the payback period for this arrangement of the scenario presented is also prone to 

variation depending on the availability of materials and the location of the building site which adds cost to the 

project and determines its financial feasibility.  

Energy saving in heating cannot be done by just insulating a part of the building envelope. The knowledge of 

what type of insulation is required and its application is very important. A house owner may invest a significant 

amount of money in such intervention resulting in insignificant returns. The period of return is vastly dependent 
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on the cost and installation of the insulation material. 

There is no limit to the level of insulation to put in a building but a good comparison must be made to balance 

indoor thermal comfort, cost, and local building standards. Simple attic insulation using rock wool insulation 

material was used for the building in this study and the significant result was achieved. The same may not be true 

for all buildings and different types of insulation. Retrofitting a poorly performing building is important in terms 

of the thermal comfort of the occupants and the energy required for heating. This study used energy simulation to 

compare basic types and methods of thermal insulation retrofitting in a residential building in a cold climate on 

Bhutan. 

It is established that thermal insulation provides better thermal comfort in a house. When it comes to 

implementing such measures, the cost of implementation provides the deciding factor in selecting the type of 

energy retrofit. Any retrofit planner needs to consider the factors discussed such as type of insulation, the thickness 

of insulation, method of insulation, and investment. 

Through this study, it was deduced that attic insulation is best out of the tested scenarios discussed earlier. 

The result obtained from the simulation is prone to factors such as insulation thickness and air infiltration. The 

airtightness of the building must be taken care of before opting for insulation. The thickness of the insulation could 

be selected as per the local building standards that would suggest the desired level of comfort in a building. 

When considering the building envelope from weather, moisture transfer has to be considered as it determines 

the lifespan of insulation and related structures to fail if not done properly. Therefore, moisture/ vapour barrier or 

breathable material is recommended wherever appropriate. However, the study on the effect of moisture on 

insulation was not covered in this paper. 

Simulation results show that exterior retrofits have a favorable position over internal retrofit regarding energy 

performance. The energy-efficient retrofit approach to building renovation has many methods based on the 

airtightness and thermal barrier of the envelope. Different studies could be carried out on building energy thermal 

performance concerning, type of insulation material, the thickness of insulation, the method of insulation, the cost 

of insulation, and building airtightness. Hence, understanding these variables makes the retrofitting project 

successful by aiding in making wiser decisions. Therefore, this study was focused on implementing such measures 

with the given knowledge of the concept, however, not focusing on a particular set of above-stated variables. 

 

4. Conclusions 

Retrofitting a poorly performing building is important in terms of the thermal comfort of the occupants and the 

energy required for heating. This study used energy simulation to compare basic types and methods of thermal 

insulation retrofitting in a residential building in a cold climate on Bhutan. It is established that thermal insulation 

provides better thermal comfort in a house. When it comes to implementing such measures, the cost of 

implementation provides the deciding factor in selecting the type of energy retrofit. Any retrofit planner needs to 

consider the factors discussed such as type of insulation, the thickness of insulation, method of insulation, and 

investment. 

It was deduced that attic insulation is best out of the tested scenarios discussed earlier. The result obtained 

from the simulation is prone to factors such as insulation thickness and air infiltration. The airtightness of the 

building must be taken care of before opting for insulation. The thickness of the insulation could be selected as per 

the local building standards that would suggest the desired level of comfort in a building. When considering the 

building envelope from weather, moisture transfer has to be considered as it determines the lifespan of insulation 

and related structures to fail if not done properly. Therefore, moisture/vapour barrier or breathable material is 

recommended wherever appropriate. However, the study on the effect of moisture on insulation was not covered 

in this paper. 
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