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Abstract 

This article utilizes the Normalized Sylvester-Hadamard Matrices  of size 2kx2kand their associated  saturated 

orthogonal arrays OA(2k, 2k - 1, 2, 2) topropose analgorithmbased on factor projection (Backward/Forward) for 

the construction of three systematic run-after-run2n-(n-k) fractional factorial designs: (i) minimum cost  trend free 

2n-(n-k)designsof resolution III (2k-1≤n≤2k– 1 – k)by backward factor deletion (ii) minimum cost trend free 2n-(n-k)  

designsof resolution III (k+1≤n≤ 2k-1– 2+k ) by forward factor addition (iii) minimum costtrend free  2n-(n-k) 

designsof resolution IV (2k-2≤n≤2k-1-2) ,where each 2n-(n-k)design is economic minimizing the number of factor 

level changes between the 2ksuccessive runs and allows for the estimation of all factor main effects unbiased by 

the linear time trend,which might be present in the 2ksequentially generated responses. The article gives for each 

2n-(n-k)design: (i) the defining contrast displaying the design’s alias structure(ii) the k independent generators for 

sequencingthe design’s  2n-(n-k) runs  by the Generalized Fold over Scheme and (ii) the minimum total cost of factor 

level changes between the 2n-(n-k) runs of the design. Proposed designs compete well with existing systematic2n-(n-

k)designs (of either resolution) in minimizing the experimental costandin securing factors’ resistance to the non-

negligible time trend.  
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1. Introduction  

Experiments are carried out in all fields:industrial, educational, agricultural, medical, etc.,where experimentation 

has led to many innovations and discoveries. Experiments investigate generally the effect of one or several factors 

on an outcome by manipulating the experimental runs( i.e. humans ,animal, trees, etc.) with these factors, where 

some multi-factor experiments are called factorial experiments allowing the investigation of  the effect of several 

factors andtheir interactions. Factorial experiments are symmetric or asymmetric, where full factorial 2k 

experiments are symmetric and more economical than other full pkfactorial experiments ( p>2). Factorial 2k 

experiments are mainly used at the start of an experimental investigation in order to identify the most significant 

factors without the interest ofcharacterizingthese effect precisely ( linear, quadratic, etc). However, factorial 2k 

experiments grow in size and complexity as the number of factors get larger, where experimentation becomes 

costly and unmanageable.Therefore, fractional factorial 2k-p experiments or orthogonal arrays ( regular or non-

regular ) are substitutes in early stages of factorial experimentation , since theyare  more  economical requiring 

less experimentation effort and are less costly if high order factor-interactions are negligible. 

Full 2k or fractional 2k-pfactorial experiments are often conducted randomly. However, randomization of 

allruns of  full or fractional factorial experiments may result in large number of factor level changes between runs, 

rendering experimentation costly and /or impractical, especially if these experiments involve factors with hard-to-

vary levels, like for instance oven temperature.Therefore, full 2k or fractional  factorial 2k-p   experiments involving  

difficult-to-vary factors should be carried out sequentially run- after- run or block of runs  after block (i.e. not 

randomly but systematically ) . 

The experimental cost when carrying out full 2k or 2k-pfractional  factorial experiments sequentially run-after-

run involve both the cost of changing factor levels between successive runs as well as the measurement cost of 

each experimental run. For more on this cost issue, See [25]. We will however concentrate on minimizing the 

former cost, where we will assume equal cost for changing levels of allthe k the two-level factors (A1 , A2 , A3 , …, 

Ak) of these 2kor2k-pexperiments .We will also aim at achieving factor's resistance to the time trend, which might 

be present  in the sequentially generated 2k or 2k-presponses,which may bias  factor effects.  This time trend effect 

could be smooth of linear /quadratic form or it could be stochastic ofvarying serial correlations. The former time 

trend form (i.e. the polynomial) will be adopted in this research.  

For run-after-run full 2kfactorial experimentation,there are2k! run orders (i.e. permutations ) while for run-

after-run  2k-p  fractional factorial experimentationthere are 2k-p! run orders,  where not all these run 

orders( permutations) of either experimentation scheme are economical with regard to the number of factor level 

changes nor all are resistant to the time trend effect. One of the 2k! run orders of  the full 2k factorial experiment 
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in k  two-level factors (A1 , A2 , A3 , …,Ak)  is the well-known systematic standard order: 

(1), a1, a2 , a1a2 , a3  , a1a3 , a2a3 , a1a2a3 , a4,  a1a4 , a2a4,  a1a2a4 , a3a4, a1a3a4, a2a3a4, a1a2a3a4 ,a5, ….,a1a2a3……ak(1.1 ) 

where the respective  number of level changes for these k  factorsbetween the  2ksuccessive runsare:(2k-1),(2k-1-

1),(2k-2-1) ,(2k-3 -1) ,… ,  (2k-(k-1)-1) ,  giving a total cost of factor  level changes  [(2k-1)+(2k-1-1)+(2k-2-1) +(2k-3-1) 

+… +  (2k-(k-1)-1) ]=(2k+1 – k-2),which is not  minimal (i.e. costly).The minimal total cost is ( 2k- 1) ,where only 

one factor level change is made between any two successive runs of the 2k runs. The standard orderin (1.1)  is not 

only costly [ i.e. being not minimal], it is   also not time trend resistant since none of the k main effects  A i  (i 

=1,2,…,k)is trend free( i.e. orthogonal) under this run order , where the dot product of  each main effect column 

Ai  (i =1,2,…,k) with the column of runs order vector (1 up to  2k ) is not zero. This dot product is often referred in 

the language of this research as the Time Count statistic. For more on this statistic,see [15]. 

 

2. Literature review and description of the  research problem 

Research on sequencing the 2k runs of the full 2k factorial experiment run after run has concentrated on finding 

run orders better than the standard order (1.1) in : (i) minimizing the number of factor level changes between 

successive runs and/or in (ii) securing factors’ resistance to the time trend effect. Similarly, research on sequencing 

the 2k-p runs of the 2k-p fractional factorial experiment has concentrated on these two main objectives, where 

different algorithms exist for sequencing the 2k runs of the full 2k factorial experiment and also different algorithms 

exist for sequencing the 2k-p runs of the 2k-p fractional factorial experiment for achieving either of these two 

optimality criteria . 

Systematic full or fractional factorial experimentation started with the works of [11],[13],[14] and [15],where 

small size full or fractional two-level factorial experiments (in at most 32 experimental runs and in at most 5 two-

level factors)have been sequenced to achieve either or both of the above two optimality criteria. For a brief review 

on run-after-run full 2k factorial experimentation (excluding the one block at a time scheme ), we start with the 

work of [9] who proposed to sequence all 2k runs using an algorithmic approach called the Generalized Foldover 

Scheme (GFS) which employs k independent run generators to sequence all 2kruns, where all the k factor main 

effects (A1 , A2 , A3 , …, Ak) are robust to the polynomial time trend and where the number of factor level changes 

between successive runs is nearly minimum totaling (2k + 11), which isabove the minimal (2k-1) by only twelve . 

Different sets of independent GFS generators sequence all 2kruns differently, where some GFS generator sets 

achieve one of these optimality criteria while other GFS generator sets achieve both.However, [9] did not 

characterize these different sets of generators but employed aparticular GFS generator setto achieve factors’ time 

trend resistance regardless of minimizing factor level changes.It is worth to note that theGFS approach does not 

recover all 2k ! possible run orders of the full 2k factorial experiment but only a subset of them, yet it produces 

good run orders in terms of the above optimality criteria. The GFS approach fixes the first run to be the null run 

(1)=0000…0 and also it fixes the k run generators to be located at 2nd,3rd,5th,9th,….[(k-1)+1]stin the entire sequence 

of the 2k runs. 

Another major contributionis the work of [5],who utilized the layout of the full 2k factorial experiment [under 

the standard order(1.1)]in (2k -1) columns representing all k main effects (A1 , A2 , A3 , …, Ak) and their 

interactions,then applied the Interaction-Main effects Assignmentto assign k independent interaction columns as 

new k main effects,hence generating new run ordersrobust to the polynomial time trend but in extremely large 

number of factor level changes (i.e. large experimentation cost). This assignment approach does not recover all 

possible 2k! run orders of the full 2k factorial experiment but rather a subset of them, where some run orders can 

be generated by the GFS approach. 

The four algorithms of [2], [3], [8] and [12] sequence the 2kruns of the full 2k factorial experiment in minimal 

total of number of factor level changes [i. e.(2k-1) ] maintaining only one factor level change between any two 

successive runs of the entire 2kruns. Hence, minimality of factor level changes is not uniquely achievable,where 

different algorithms may achieve different minimal run orders,yet not all these minimal run orders are time trend 

resistant.Algorithms [2] and [3] can be sequenced by the GFS approach while algorithms [8] and[12]can not. Also, 

algorithms of [2] and[8] have increasing pattern of factor level changes for the k factors Ai (i =1,2,…,k),hence 

assigning hard-to-vary factors to the design’s first factor columns in minimal level changes,whereas algorithms [3] 

and [12] have decreasing patternsassigningthesefactors to the last columns of the design. Reference [18] has 

conducted a comparison among the four runs sequencing algorithms: [8], [12], [5], and [9] for thefull2k factorial 

experiment with regard to the above two optimality criteria as well as regarding the possibility of the usage of the 

GFS to sequencing the 2kruns and also regarding the characterization of the pattern of factor level 

changes(monotonic or not) . 

Now for a brief survey on algorithms for sequencing the 2k-p runs of the more economic2k-p fractional factorial 

experiments run after run( i.e. not block after block), we start with reference [9] who provided three sets of 

independent GFS generators for sequencing runs of three 2k-idesigns ( i=1,2,3) in respective minimum total cost 

of factor level changes:2( 2k-1),( 2k-1-1) and ( 2k-2 +13) but regardless offactors’time trend resistance. The GFS set 

for each 2k-i design has i generators (i=1,2,3).Defining contrasts displaying the design’s alias structure were 
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provided for each 2k-i designbut higher levels of fractionation( i.e. i>3) were not considered and the pattern of 

factor level changes was not characterized.Reference[10] provided a small catalog of GFS sequenced 2k-p 

fractionated experiments [k<16 and p<8], where all factor main effects are robust against the polynomial time 

trend and where the total number of factor level changes arekept minimum . The (k-p) independent run generators 

for each 2k-pdesign and the total cost of factor level changes were provided but neither the resolution nor the 

defining contrast were given nor the pattern of factor level changes was characterized. Reference [6] utilized the 

standard order of the full 2k experiment in (1.1) laying out all main effects Ai (i =1,2,…,k) and their interaction 

columns in increasing number of level changes  [ from 1 up to (2k-1) ] then constructed two types of 2n-(n-

k)designs:minimum cost 2n-(n-k) designs of resolution III (2k-1≤n≤2k-1)and minimum cost 2n-(n-k) designs of resolution 

IV (2k-2≤n≤2k-1)but regardless of factors’ time trend resistance.However, neither the defining relations nor the GFS 

generator sets were reported nor the minimal total cost of factor level changes wascomputed. [19] elaborated on 

the work of [6] and constructed minimum cost trend free 2n-(n-k) designs of resolution IV but without providing the 

GFS generators. 

[4]employed an algorithm based on the GFS approach to sequence runs of symmetric orthogonal arrays 

OA(N,n,q,3) of resolution III in minimum number of factor level but regardless of factors' time trend resistance, 

where factors have prime number of levels greater than 2 and where the number of factors is constrained to [(N/q-

1)/(q-1) +1 ≤n≤(N-1)/(q-1)] to ensure runs non-duplication. Defining relations were not provided, norprovision 

was made for the total cost of factor level changes. [1] constructed half fractions (i.e. 2(k+1)-1 ) from the full 2k 

factorial experiment having itsk factorsAi (i =1,2,…,k) laid out in minimaltotal number of factor level changes [i.e. 

( 2k -1) ], then incorporated an additional factor Ak+1=A1A2A3…Akrepresented by the interaction of all the k 

factorsAi (i =1,2,…,k),where the total number of level changes for all (k+1) factors is in increasing pattern totaling 

=[1+2+22+23+…+2k-1 +2k-1] =2(2(k-1)-1),yet not all these (k+1) factorsare time trend free. Higher levels of 

fractionation ( i.e. 2(k+i)-i, i>1)  were not considered and the GFS approach can not be applied to recover the run 

order of these 2(k+1)-1half fractions. 

Extending the scope of the interaction main-effect assignment of [1], reference [3] has provided an algorithm 

based on the reverse foldover scheme to generate full 2k factorial experimentin minimal number of factor level 

changes [i.e. ( 2k -1) ]  then applying the interactions-main effects assignment to create additional two-level factors 

for the construction of a small catalog of systematic 2k-pdesigns ( 4 ≤k≤9 and 1≤p≤5 ), where all factor main effects 

are linear trend free but regardless of the minimality of the cost of factor level changes. Defining contrasts were 

given for each systematic2k-pdesign but no provision was made for the total cost of factor level changes.These 

trend free 2k-p designscan not however be sequenced by the GFS approach. 

[24] proposed an algorithm based on parity check matrices of binary linear codes to find the GFS independent 

run generators forsequencing runs of regular orthogonal arrays ( i.e. 2k-p designs) so that their main effects are time 

trend freebut regardless of minimality of factor level changes.No catalog is reported and also no provision is made 

on how to construct these parity check matrices.The algorithmwas however illustrated using some examples from 

special binary linear codes, namely Reed Muller codes, cyclic codes and BCH codes. Finally , [22] represented 

experimental runs of regular 2k-pdesigns as graph vertices then applied Travelling Salesman Algorithm to locate 

graph paths ( i.e. run orders) of minimal distance without regard to factors’ time trend resistance.These 

minimallysequenced 2k-pdesigns( 4 ≤k≤15 and 1 ≤p≤11) cannot however be sequenced by the GFS approach ,since 

many of theserun orders do not start with the null treatment (1)=(000…0000.Defining contrasts were provided but 

neither the factors’pattern of level changes nor the total cost of factor level changes werereported. 

Having completed this literature review and having seen that it is not yet complete especially forfractional 

factorial experimentation ( regular or non-regular),where it lacks systematic 2n-kfractional factorial experiments of 

resolutions III and IV inminimum cost of factor level changes and resistant to the time trendbut without limiting 

either the number of factors nor the fractionation level.Therefore, this article addresses this problem utilizing the 

Normalized Sylvester –Hadamard Matrices of order 2kand their associated saturated orthogonal arrays OA(2k , 2k 

-1, 2, 2 ) to construct by factor projection threetypes of systematic 2n-(n-k) fractional factorial designs: (i) minimum 

cost trend free 2n-(n-k) designsof resolution III (2k-1≤n≤2k -1-k) by backward factor deletion (ii) minimum cost trend 

free 2n-(n-k) designsof resolution III (k+1≤n≤ 2k-1 -2+k ) by forward factor addition (iii) minimum costtrend free 2n-

(n-k) designsof resolution IV [2k-2≤n≤2k-1-2 ],where each 2n−(n−k) design ( of either resolution) is economic in 

minimum number of factor level changes and allows for the estimation of all main effects Ai (i =1,2,…,n) unbiased 

by the linear time trend.Theoretical reference for thisconstruction will be based on results in [18], [20] and [21]. 

The rest of this paper proceeds as follows: Section 3 introduces Hadamard matrices and their subclass the 

Normalized Sylvester-Hadamard matrices of order 2k then the section examines orthogonality of their columns to 

the time trend factor. Section 4 discusses (through factor projection )the relationship between the Normalized 

Sylvester-Hadamard matrices of order 2k and  their associated saturated orthogonal arrays OA(2k,2k-1,2,2) with 

full 2kand fractional 2k-p factorial experiments,where various illustrative factor projections will be given when k=4 . 

Sylvester -Hadamard matrices of order 2k  and their associated saturated OA(2k,2k-1,2,2) are then utilized in 

Section 5 for the construction of the three proposed minimum costtrend free 2n-(n-k) fractional factorial designsbythe 
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factor projection process. Section 6 gives a brief discussion and conclusion about run-after-run fractional 2n-

pfactorialexperimentation. 

 

3. Sylvester-Hadamard matrices of size 2kx2kand time trend resistance of their 2k columns. 

This section introduces Hadamard matrices and their subclass the Normalized Sylvester-Hadamard matrices of 

size 2kx2kthen examines time trend resistance of their 2kcolumns . 

AHadamard matrix Hm of order m is a square matrix with entries +1 and -1 such that Hm'Hm = 

HmHm'=mImwherematrixIm is the identity.That is, all rows (columns) of the HadamardmatrixHm are orthogonal, 

where each row (column) has m/2 +1's and m/2 -1's . Alsoany two rows (columns) of matrix Hmhave equal number 

of the four pairs: (+1,+1) ,(-1,-1),(+1,-1) , (-1,+1), namely m/4. Additional properties of Hadamardmatricesare: 

i. A HadamardmatrixHmcanbe changed into another equivalentHadamardmatrix by permuting its rows (columns) 

and/or by multiplying its rows(columns) by −1. 

ii. TheHadamardmatrixHmwhose all its entries in the first row (column) are+1'sis called Normalized, where any 

Hadamard matrix Hmis equivalent [by property (i)] to a Normalized Hadamard matrix of the same order.All rows 

(columns) of the Normalized Hadamard matrixHm(except the first) arepair-wise orthogonal. 

iii. The order of any Hadamard matrix Hmiseither 1, 2 or m=4n, where n is a positive integer.That is, the order of 

all Hadamard matrices (exceptmatrices H1 and H2) is a multiple of 4,where a subclass of the Hadamardmatrices 

Hmare the matrices of orderpowers of2,which are themain focus in this research. 

iv. TheKroneckerproduct of any two Hadamard matrices Hm Hn=Hmnis Hadamard too. In particular  

H2n =H2 Hn=HnHnWhere H2= 

 

 

 

Hn-Hn1      -1 

 

 

 

 

Hence, H2 H2=H4=         1    1    1     1 

1  - 1     1  -1 

1    1    -1  -1 

                                        1   -1    -1   1  

The Kronecker productof the Hadamardmatrix H2by itself four times is the matrix 

H16 =H2 H2 H2 H2= H2 H8=H4 H4laid out explicitly in Table (3.1) representing the Normalized   Sylvester-

Hadamard matrix H2
4of size 16x16. 

Table(3.1):The  NormalizedSylvester-Hadamard matrix H16 =H2 H2 H2 H2 

Columns of the NormalizedSylvesterHadamard matrix H16 Run 

Order 

(i.e. Row Number ) 
C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 2 

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 3 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 4 

-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 5 

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 6 

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 7 

-1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 8 

-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 9 

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 10 

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 11 

-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 12 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 13 

-1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 14 

-1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 15 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 16 

10 5 13 2 9 6 14 1 11 4 12 3 8 7 15 0 Number of column 

sign changes 

 

1      1 
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A glance at matrix H16 in Table (3.1) revealsthat its 15 columns (except the first) are orthogonal, where the 

pairwise dot product between any two of these 15 columns is zero. The number of +1's and -1's in each such 

columns are balanced ( 8 +1's and 8 -1's) and the number of sign changes in these15 columns range from 1 up to 

15=(24-1 ),but they are not in increasing order. 

Matrix H16 in Table (3.1) has the further property that its four rows {2, 3, 5 and 9} are such that (i) the content of : 

(i) row 2 alternate between 1 and -1 eight times, (ii) row 3 alternates between the double 1,1 and the double -1,-1 

four times, while (iii) row 9 consists of 8 +1’s followed by 8 -1’s. These 4 rows are independent and can generate 

the remaining eleven rows of the matrix H16 by dot products( twice, thrice, four times) . Specifically, row 4 is the 

dot product of rows 2 and 3 while the last row is the dot product of all these four generator rows. Columns of the 

matrix H16 have also this property, where the 4 columns {C2 ,C3,C5,C9} with sign changes {15, 7, 3 and 1} have 

the same respective alternating patterns and are also generators of all other eleven columns of the Matrix 

H16.Columns (rows) of Matrix H16 can however be generated by dot products of other 4 independent generator 

rows(columns). 

Generalizing results of matrix H16  to matrix H2
k  which is the successive k times Kronecker product of the 

Hadamardmatrix H2 by itself 

H2 H2 H2 ... H2= H2 H2
k-1  = H2

k =       H2
k-1        H2

k-1
 

H2
k-1    -H2

k-1 

yields the Normalized Sylvester-Hadamard matrixof order 2k (i.e. power of 2) which is symmetric and of size 2kx2k 

and where the number of sign changes in its rows (columns) range from [0,1,2,…,(2k-1)] but are not in increasing 

order. In addition, matrix H2
k has the property that its k rows numbered {2,3, 22+1 , 23+1, …, 2k-1+1 } are 

independent and can generate the remaining (2k-k-1) rows by dot products (twice, thrice, …, k times). Row 2 

alternates between 1 and -1 2k-1 times , row 3 alternates between the double {1,1} and the double{ -1,-1} 2k-2 times, 

row 5 alternates between the quadruple{ 1,1,1,1} and the quadruple {-1,-1,-1,-1 } 2k-3 times . Row (2k-1+1) consists 

of 2k-1 +1’s followed by 2k-1 -1’s. The k generator columns of the matrix H2
k having the same properties as the k 

generator rows are columns with sign changes {2, 3, 22+1 , 23+1, …, 2k-1+1 }. 

Now rearranging the 15 columns of matrix H16 ( except the first of +1’s) in increasing order of sign changes ( from 

1 up to 15) yields Table (3.2),where they are renamed Ai (i=1,2,…,15). 

Table (3.2): The Normalized Sylvester-Hadamard Matrix H16 (in increasing columns level changes) along with 

its columns’ time trend resistance 
Columnsof the matrix H16in increasing level changes Run 

Order A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 2 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 3 

-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 4 

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 5 

-1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 6 

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 7 

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 8 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 9 

-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 10 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 11 

-1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 12 

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 13 

-1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 14 

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 15 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 16 

15 41  13 12 11 10 9 8 7 6 5 4 3 2 1 Number of 

column sign changes 

-8 0 0 0 0 0 0 0 -16 0 0 0 -32 0 -64 Time Count(Linear) 

-136 64 0 32 0 0 0 16 -272 128 0 64 -544 256 

 

-1088 Time Count 

(Quadratic) 

Information in the bottom two rows of Table (3.2) summarize the level of orthogonality of the columns of the 

Hadamard Matrix H16( except the first column ) with the first column of the time order ( from 1 up to 24). The 

linear Time Count  Statisticassesses   the  level of orthogonality between  columns  of H16   and the  column of time  

run order  ,whereas   the quadratic  Time Count  Statisticassesses   the  level of orthogonality between  these  15  

columns  and the  squares of the entriesin the  first  column ( from 12 up to 162 ).These two statistics are defined 

as dot products  as follows: 

Linear Time Count for columnAi= Σtj *Aij,                                                                                                                                                 (3.1) 

QuadraticTimeCount for columnAi= Σtj*tj*Aij(3.2) 
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WherecolumnAi (i=1,2,…,15)is any column of Table (3.2)and wheretj is the jthentry of the run order column( j= 

1,2,…,16). Zero value for the statistic in (3.1) ensures linear trend resistance of columnAi (i=1,2,…,15), while zero 

value for the statistic in (3.2) ensures quadratic trend resistance of column Ai (i=1,2,…,15). Hence, a glance at the 

values of these two Time Count statistics in the bottom of Table (3.2) reveals the following: none of the 4 

columns(A1,A3 ,A7 ,A15) of the matrix H16 is linear trend free nor quadratic trend free,while the remaining 11 

columns (A2 ,A4,A5 ,A6 , A8 ,A9 ,A10 ,A11 , A12 ,A13,A14 ) are linear trend free but only a subset of them are both linear 

as well as quadratic trend free,namely the 5 columns (A5 ,A9 ,A10 ,A11 ,A13). 

Similar results as those in Tables(3.1)and (3.2) were generated inductively with the help of a statistical package 

for the larger size Normalized Sylvester-Hadamard matrices H32, H64, H128, H256, H512andH1024,where we state the 

following conclusions forNormalized Sylvester –Hadamard matrices H2
kof size 2kx2kand about their columns’ 

time trend resistance:  

(i) MatricesH2
khave their (2k -1) columns (except the first) pairwise orthogonal and each of these columns is 

balanced containing2k-1 +1's and 2k-1 -1's.This fact is true whether columns are arranged in increasing sign changes 

or not. 

(ii) the number of sign changes in these (2k -1) columnsrange from 1 up to(2k-1) , where these columns can be 

rearranged in increasing order,as illustrated in Table (3.2) for k =4. Hence, the (2k -1) columns of the matrixH2
k 

(except the first)can be identified in two equivalent ways : either by the number of column sign changes or by their 

column number,whereeach identification ranges from 1 up to(2k -1). 

(iii)the(2k -1) columns of the matrixH2
k(except the first) have the following properties about linear/quadratic time 

trend resistance ,whether these columns are arranged in increasing order of sign changesor not: 

(a)only the n columns having the respective number of level changes{(2k-1),(2k--11), (2k-2-1) , (2k-3-1) ,… , (2k-(k-1)-

1) }are not orthogonal to the linear time trend, where their Linear Time Countsare not zeros. 

(b)all remaining ( 2k-k- 1) columns of thematrixH2
k(except the first)are orthogonal to the linear time trend, where 

their linear Time Counts are zeros.A subset of these( 2k-k- 1) columns are at least quadratic trend free besides 

being linear trend free. The exactsize of this subset is [2k-k- 1 – k(k-1)/2] columns. 

Inductive results in (i) , (ii) and (iii) aboutthe Normalized Sylvester –Hadamardmatrices of size 2kx2kand their 

columns’ time trend resistance will be utilized in Sections 4 and 5 for the construction of thethree proposed 

systematic minimum cost/trend resolution III and IV 2n-(n-k) designs. 

 

4. Normalized Sylvester-Hadamard matrices of size 2k x2kand their relationship with 2n-k  fractional 

designs through factor projections 

This section discusses the relationship between the Normalized Sylvester-Hadamard matrices H2
k ofsize 

2kx2k(introduced in Section 3) and the full 2k and fractional 2n-k factorial experiments, where it is documented in 

[20]that deleting the first column of+1's in this matrix results in a saturated orthogonal array OA(2k, 2k -1,2,2) in 

maximum number of two-level factors N=(2k-1) having level changes from 1 up to N, but not arranged in 

increasing order. That is, these orthogonal arrays are saturated regular2N-(N-k) designs of resolution III in N= (2k-1) 

factors and in only 2k=(N+1)experimental runs. However, these saturated 2N-(N-k) designs are not time trend 

resistant, where k of their columns (i.e. factors) are not orthogonal to the time effect, as shown in the conclusion 

at the end of Section 3 and as can be seen from the bottom two rows of Table (3.2), for k=4. Therefore, removing 

these k non-trend free columns {1,3, 7, 15,31,…,(2k-1)} from all (2k -1) columns of theOA(2k, 2k -1,2,2)result in 

a minimum cost trend free resolution III 2M-(M-k)  designof 2kexperimental runsin maximum number of trend free 

factors,namely M=(2k-1- k). 

Applying factor deletion by deleting columnsof the saturated OA(2k, 2k -1,2,2) with large level changes to 

economize experimentation cost result in a sequence ( or catalog) of unsaturated minimum cost resolution III 2n-

(n-k) fractional factorial designs(2k-1≤n≤2k-1), where factor bounds ensure that runs are not duplicated. Also 

reducing the number of factors by deleting columnsfrom the minimum cost trend free resolution III 2M-(M-k)  

designin maximum number of trend free factorsM=(2k-1- k) result in another sequence of unsaturated minimum 

cost trend free resolution III 2n-(n-k) fractional factorial experiments (2k-1≤n≤2k-1- k) .  

On the other hand applyingnow factor addition on the minimum cost 2n-(n-k)design [from the OA(2k, 2k -1,2,2) ] 

with smallest number of factors (n=k+1) and with the smallest number of factor level changesby adding factors 

sequentially in increasing number of factor level changes produces a sequence of minimum cost resolution III 2n-

(n-k) designs(k+1≤n≤2k-1- 1+k) without getting into run duplication.Similarly, applying factor addition on the 

smallest minimum cost trend free 2m-(m-k)design[from the OA(2k, 2k -1,2,2) where (m=k+1) ] by adding trend free 

factors sequentially in increasing number of factor level changes produces a sequence of minimum cost trend free 

resolution III 2m-(m-k) designs(k+1≤m≤2k-1- 2+k). These two backward and forward factor projectionsof the 

saturated OA(2k, 2k -1,2,2) will be illustrated in the followingsubsections. 

In addition, restricting the number of factors to exactly n=k projects the saturated OA(2k, 2k -1,2,2) into full 

2k factorial design, where the remaining(2k-1- k )  columns become factor interactions of all orders (from 2 up to 

k).When n=k , factor projection of the OA(2k, 2k -1,2,2) may however reduce thisOAinto 2n-(n-k)  fractional factorial 
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designsin duplicated runs if the n=k columns chosen are not linearly independent.Fractional factorial 2n-(n-k) designs 

in duplicated runs can also be generated if projections involve n<k factors.There are many choices for the (n=k ) 

generator columns as factor main effects,  where some selections (i.e. projections) lead to full 2k factorial designs 

in minimum number of factor level changes (i.e. minimum experimentation cost), while other column choices 

produce full 2k factorial designs in maximum number of factor level changes (i.e. maximum experimentation 

cost).Projecting the saturated OA (2k, 2k -1, 2, 2) onto its ( n=k) non-trend free columns{(2k-1),(2k--11), (2k-2-1) , 

(2k-3-1) ,… , (2k-(k-1)-1) } result in the standard order (1.1) of the full 2k factorial experiment. None of these three 

projected full 2kfactorial designsare however time trend resistant,since they involve column factors having non-

zero Time Counts. Of course, there are other projections of the saturated OA (2k, 2k -1, 2, 2) into (n=k) factors 

producing time trend free full 2k factorial designs,where this is achieved by avoiding assigning any of the (n=k) 

non-trend free columns{(2k-1),(2k--11), (2k-2-1) , (2k-3-1) ,… , (2k-(k-1)-1) } as factor main effects and also by avoiding 

selecting any of the dependent columns of the (2k-k -1) trend- free columns of this OA.These full 2k factorial 

projections will also be illustrated in the following subsections. 

It should be noted here that preceding factor projectionsof the saturated OA (2k, 2k -1, 2, 2)into unsaturated 

resolution III 2n-(n-k) fractional factorial designsor into full 2kfactorial designshave been found through an inductive 

analysis of the Normalized Sylvester-Hadamard matrices H2
k  and their associated OA (2k, 2k -1, 2, 2) for 

k=4,5,6,7,8,9,10.The following three subsections will illustrate these factor projections( Backward/Forward) 

utilizing the Normalized Sylvester-Hadamard matrix H16 in Table (3.1) and its associated OA (24, 24 -1, 2, 2) in 

Table (3.2) when (i) time trend is negligible /non- negligibleand when (ii) the projected 2n-(n-k) design is of 

resolution III or IV, where Subsection 4.3 will discuss the problem of raising the design’s resolution from III into 

IV while securing minimum factor level and/or factors’ time trend resistance. 

 

4.1. Minimum cost /trend free resolution III 2n-(n-4) designs (24-1≤n≤24-1- 4)  

This subsection will illustrate projectionof the saturated OA (24, 24 -1, 2, 2) by factor deletion( i.e. backwardly), 

where we start when time trend is negligible.So,referring to reference [20],the OA(24, 24 -1, 2,2) in Table (3.2) is 

a saturated highly fractionated 215-(15-4 )design of resolution III in 15 two-level factors Ai( i = 1,2,…,15),where the 

total number of factor level changes is 120= ( 1+2+3+…+15).Not allof these 15 factors arehowever time trend 

resistant if this trend is non-negligible,where this can clearly be seen from the bottom two rows of Table(3.2) since 

Time Counts for some columns ( i.e. factors) are not zeros, namely columns (A1,A3,A7 and A15) . If time trend is 

negligible then, the foldover of the 16 runs of this saturated resolution III 215-(15-4 )design can be sequenced by the 

GFS approach using the following 4 independent run generators:  

g1=a8a9a10a11a12a13a14a15,g2=a4a5a6a7a8a9a10a11,g3=a2a3a4a5a10a11a12a13and   g4=a1a2a5a6a9a10a13a14   

(4.1) 

where  starting with  the null treatment  (1)=000…0,thissaturated foldover215-(15-4 )design is sequenced as follows: 

(1),  g1,  g2,  g1g2,  g3,  g1g3,   g2g3,   g1g2g3,   g4 ,   g1g4,  g2g4,  g1g2g4,  g3g4, g1g3g4,  g2g3g4,  g1g2g3g4  (4.2)                        

where, for instance,  the fourth run in (4.2)  is g1g2=a4a5a6a7a12a13a14a15 computed  modulo 2. 

That is, only 4 independent run generators suffice to sequence all 16 runs of this saturated 215-(15-4 )design. These 4 

generator runs are locatedatthe 2nd,3rd,5th and 9th run  of the sequence  (4.2) , which they are exactly the four 

independent runs in (4.1). 

This  run order in (4.2) is only one of  16!=2092278989000 possible run ordersfor this 215-(15-4 )design, where a 

small subset of these run orders can be generated by the GFS approachby employing only 4 independent runs  such 

as the 4 generator runsin (4.1). The alias structure of this  foldover215-(15-4 )design in (4.2) when three- factor and 

higher order interactions are negligible is given in Table  (4.1),showing that the resolution is really III. 
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Table (4.1): The alias structure of the saturated resolution III 215-(15-4)  design in (4.2) 

A-1A2A3-A4A5 - A6A7 - A8A9 - A10A11 - A12A13 - A14A15 

A2- A1A3 - A4A6 - A5A7 - A8A10 - A9A11 - A12A14 - A13A15 

A3 - A1A2 - A5A6- A4A7 - A9A10- A8A11 - A13A14- A12A15 

A4- A1A5- A2A6- A3A7 - A8A12- A9A13- A10A14- A11A15 

A5 - A1A4 - A3A6 - A2A7 - A9A12 - A8A13 - A11A14 - A10A15 

A6- A2A4 - A3A5- A1A7 - A10A12 - A11A13 - A8A14 - A9A15 

A7- A3A4 - A2A5 - A1A6 - A11A12 - A10A13 - A9A14 - A8A15 

A8 - A1A9 - A2A10 - A3A11 - A4A12 - A5A13 - A6A14 - A7A15 

A9- A1A8- A3A10 - A2A11 - A5A12 - A4A13 - A7A14 - A6A15 

A10 - A2A8 - A3A9- A1A11 - A6A12 - A7A13 - A4A14 - A5A15 

A1-1 A3A8 - A2A9 - A1A10- A7A12 - A6A13 - A5A14 - A4A15 

A12- A4A8 - A5A9 - A6A10- A7A1-1 A1A13 - A2A14 - A3A15 

A13- A5A8 - A4A9 - A7A10- A6A1-1 A1A12- A3A14 - A2A15 

A14 - A6A8 - A7A9 - A4A10- A5A1-1 A2A12- A3A13- A1A15 

A15  - A7A8 - A6A9 - A5A10- A4A1-1 A3A12- A2A13- A1A14 

Therefore , to estimate the 15 main effects Ai ( i = 1,2,…,15) we assume all two-factor interactions are 

negligible.Also to make tests of significance on these 15 factor main effects, we need to remove saturation by 

reducing the number of factors ( i.e. by factor projection),since the experimental error cannot be estimated and it 

has zero degrees of freedom. 

To remove saturation and to reduce the fractionation level by deleting factors fromthis saturated 215-(15-4) 

designin (4.2) without getting intorun duplication while maintaining factor level changes minimum, seven 

unsaturated minimum cost resolution III 2n-(n-4)designs( n=8,9,…,14) can be constructed by successively dropping 

the column factors (A15, A14, A13, A12,A11 , A10, A9) ,where the 214-(14-4) design drops column A15 while the 213-(13-4) 

design drops the two columns ( A15 and A14 ), etc. This factor deletion scheme ensures that the total cost of factor 

level changes is kept minimum, where factors deleted are those with the highest level changes. 

The total cost of factor level changes in each of these seven unsaturated minimum cost 2n-(n-4) 

designs( n=8,9,…,14) is 120 reduced successively by 15,(15+14), (15+14+13), (15+14+13+12), 

(15+14+13+12+11), (15+14+13+12+11+10), (15+14+13+12+11+10+9), where the pattern of factor level changes 

in each 2n-(n-4)designis increasing, indicating that factors having hard-to-vary levels are assigned to factor columns 

with minimal level changes and indicating that such factors are introduced later into these2n-(n-4) fractionated 

experiments. The alias structure for each of these seven 2n-(n-4) designs( n=8,9,…,14)  can be read from alias 

structure of the saturated 215-(15-4) design in Table (4.1) by just dropping the deleted factor(s).In addition, the 4 GFS 

run generators for the foldover of each of these seven 2n-(n-4) designs ( n=8,9,…,14) can be obtained from the 4 

GFS run generators in (4.1) by dropping factor levels of the deleted factor(s).  

These seven minimum cost resolution III 2n-(n-4)designs ( n=8,9,…,14) include theminimum cost resolution 

III 28-(8-4) designin the smallest number of factors,factors Ai ( i = 1,2,…,8) and with the lowest fractionation level . 

The 4 independent defining contrast interactions of this 28-(8-4) designare I=A1A2A3=A1A4A5=A2A4A6=A3A4A7, 

where the 4 GFS generatorsare : g1=a8  , g2=a4a5a6a7a8  ,  g3=a2a3a4a5  and  g4=a1a2a5a6, and where the full layout of 

thefoldoverby these 4 GFS generators using (4.2) is: 

(1)  , a8  ,a4a5a6a7a8,a4a5a6a7     ,a2a3a4a5    , a2a3a4a5a8  , a2a3a6a7a8  , a2a3a6a7  , 

a1a2a5a6  ,a1a2a5a6a8,a1a2a4a7a8   ,a1a2a7  , a1a3a4a6  , a1a3a4a6a8  , a1a3a5a7a8 , a1a3a5a7  (4.3) 

where the total cost of factor level changes for its8 factors Ai ( i = 1,2,…,8) is minimal equaling 

36=(1+2+3+4+5+6+7+8). 

All precedingseven unsaturated minimum cost resolution III 2n-(n-4) designs ( n=8,9,10,…,15) are however 

not time trend free, since some of their column factors have non-zero Time Counts. Therefore, to construct 

minimum cost trend free resolution III 2n-(n-4) designs from the saturated OA (2k, 2k -1, 2, 2) by factor projection , 

we first delete the 4 non-trend free columns (A1, A3, A7, A15) of Table (3.2) then the remaining eleven columns 

(A2, A4, A5, A6,A8, A9, A10,A11, A12, A13, A14)constitute an unsaturated minimum cost trend free resolution III 211-

(11-4) designin the largest number of trend free factors (i.e. n=11) with total cost of factor level changes 

94=(2+4+5+6+8+9+10+11+12+13+14) and 4 foldover GFS generators: 

g1=a8a9a10a11a12a13a14,g2=a4a5a6a8a9a10a11,g3=a2a4a5a10a11a12a13and  g4=a2a5a6a9a10a13a14 (4.4) 

These4GFS generators in (4.4) are those 4 generators in (4.1) after deleting levels of the dropped non-trend 

free factors (A1, A3, A7, A15) from each generator run. 

To reduce both the number of factors and the fractionation level from this minimum cost trend free resolution 

III trend free211-(11-4) design in (4.4), three minimum cost resolution III trend free 2n-(n-4) designs( n=8,9,10)can be 

produced. The minimum cost trend free resolution III 28-(8-4) design with the smallest number of trend free factors 

(A2, A4, A5, A6, A8, A9, A10 ,A11) renamed as ( Ci : i=1,2,…8) has the 4 independent defining contrast interactions 

I = C1C2C4= C2C3C5C6= C1C5C7= C1C2C3C5C8. The 4 GFS generators of the foldover of this 28-(8-4) designare : 
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g1=c5c6c7c8  , g2=c2c3c4c5c6c7c8,  g3= c1c2c3c7c8 and  g4=c1c3c4c6c7, where the full layout of this foldover28-(8-4) 

designby these 4 GFS generators using (4.2) is: 

(1) , c5c6c7c8 , c2c3c4c5c6 c7c8 , c2c3c4 , c1c2c3c7c8, c1c2c3c5c6 , c1c4 c5c6 , c1c4 c7c8 ,c1c3c4c6c7, c1c3c4c5c8 ,c1c2c5c8 , c1c2c6 

c7  , c2c4c6 c8 , c2c4c5 c7 ,c3c5 c7 ,  c3c6 c8  (4.5) 

and where the total cost of factor level changes is45=(2+4+5+6+8+9+10+11),which is higher than the total cost 

(i.e. 36) of the minimum cost resolution III 28-(8-4) design in (4.3).That is , factors’ time trend resistance has raised 

the total cost of factor level changes by 9. 

All 8 main effects of this minimum cost trend free resolution IV 28-(8-4) designin (4.5) are free from ( or 

resistant to ) the linear time trend, where all these columns have zero Time Counts. Time trend resistance of this 

28-(8-4) design can also be confirmed if we consider linear modeling its output (Yij) in terms of these8 main 

effects( Ci : i=1,2,…8) including the linear time trend as follows: 

Yij=  µ+C1x1 + C2x2 +C3x3 +C4x4 +C5x5 +C6x6 + C7x7+C8x8+αt +Ɛ  ,t and j= 1,2,3,…,16  ,  xi = -1,=1  , i=1,2,…8(4.6) 

where the design’s matrix will have all eight main effect columns orthogonal to the linear time effect column ( i.e. 

zero Linear Time Counts). 

Above factor deletionsand projections of the saturated OA (24, 24 -1, 2, 2) under resolution III have reduced 

the number of factorsfrom 15 to 8 and the fractionation level from (15-4)=11 into (8-4)=4when time trend is 

negligible, whereas when time trend is non-negligible factor reduction was from 11 into 8 and fractionation 

reduction was from (1-14)=7 into (8-4)=4.Therefore, to reduce the fractionation level further below (8-4)=4 while 

maintaining resolution to be III and avoiding runs duplication, we consider in subsection 4.2 the second approach 

of factor projection of the saturated OA (2k, 2k -1, 2, 2) , which involves factor addition ( not factor deletion)to a 

minimum cost highly unsaturated 2n-(n-k) design derived from this OA (2k, 2k -1, 2, 2) inthe smallest number of 

factors . 

 

4.2. Minimum cost /trend free resolution III 2n-(n-4) designs (4+1≤n≤ 24-1– 2+4 ) 

This subsection will work in the reverse direction of subsection 4.1 ( i.e. forwardly) by adding factorssequentially 

to a minimal cost highly unsaturated 2n-(n-4)design in the smallest number of factors [derivedfrom the OA (24, 24 -

1, 2, 2)]to generate a sequence of minimum cost resolution III 2n-(n-k) designs (4+1≤n≤ 24-1 -1+4 )in increasing 

number of factors and in increasing fractionation level. That is,factor addition approach starts with half and quarter 

fractionsor it may start with full 24 designs then moves upward in the fractionation level.This subsection will 

illustrate this factor addition process under the two situations when the time trend effect is negligible and when 

non-negligible.  

We start with the minimal cost full 24 factorial design derivable from the saturated OA (24, 24 -1, 2, 2) in Table 

( 3.2)  having the four main effect columns (A1 ,A2, A4, A8) renamed as ( F1,F2,F3,F4)with level changes {1,2,4,8}. 

The 4 GFS generators for the foldover of this full 24design are : [ g1=f4  , g2= f3f4  , g3= f2f3  , g4= f1f2],where the 

layout of itsfoldover by GFS is: 

(1), f4 , f3f4 , f1f2f3f4 , f3 ,f2f3 ,f2f3f4 ,f2f4 , f2 ,f1f2, f1f2f4 , f1f2f3f4 , f1f2f3f4 , f1f2f3 , f1f2f3f4 ,f1f3 ,f1f3f4 ,f1f4 , f1 

( 4.7) 

With minimal total cost of factor level changes 15=(1+2+4+8)=(24-1).This column selection(A1 ,A2, A4, A8) in 

minimal cost is unique , otherwise runs will be duplicated or the total cost of factor level changes will be above 

minimal.  
Next weapply factor addition to this minimal cost full 24 factorial design in (4.7)by addingthe seven columns 

(A9,A10, A11, A12 ,A13 ,A14, A15 ) of Table (3.2) sequentially to generate seven new minimum cost resolution III 2n-

(n-4) designs n={5,6,7,8,9,10,11} in 16=24 runs each. Hence, adding column A9to the 4 columns of the minimal cost 

full 24factorial design in ( 4.7) leads to the minimum cost resolution III 25-(5-4)half fraction with defining contrast 

I= F1F4F5, where ( Fi :i=1,2,…,5) are its 5 factors. The 4 GFS generators for its foldover are:[g1=f4f5, g2= f3f4f5 , 

g3= f2f3 , g4= f1f2f5] and total cost 24=(1+2+4+8+9). This minimum cost resolution III 25-(5-4)half fraction is however 

not trend freeif time trend is non-negligible, since factor F1 is not trend free. Error degrees of freedom is 3 provided 

the three two-factor interactions (F1F4, F1F5 ,F4 F5 ) are negligible,hence effects estimation and tests of hypothesis 

can be conducted if time trend effect is negligible. 

We now add the two columns ( A9 and A10) of Table (3.2) to the minimal cost full 24 factorial design in (4.7) or 

equivalently we select the six columns (A1 ,A2, A4, A8 ,A9 ,A10) together as the 6 factors ( Fi :i=1,2,…,6)of the 

minimum cost resolution III 2 6-(6-4) quarter fraction  with defining contrast   I=F1F4F5=F2F4F6=F1F2F5F6and 4 

foldover GFS generators:[ g1=f4f5f6, g2= f3f4f5f6 , g3= f2f3f6 , g4= f1f2f5f6] and with total cost 34 

=(1+2+4+8+9+10).This minimum cost resolution III 26-(6-4)quarterfraction is also not trend free, since factor F1 is 

not trend free. 

Proceeding further adding the three columns ( A9 and A10 , A11) of Table (3.2) to the minimal cost full 24 factorial 

design in (4.7) yields the minimum cost resolution III 2 7-(7-4) design in the 7 factors ( Fi : i=1,2,…,7)with defining 

contrast independent interactions I=F1F4F5=F2F4F6=F1F6F7and with 4 foldover GFS generators :  [ g1=f4f5f6f7   , 

g2= f3f4f5f6f7   ,  g3= f2f3f6f7   ,  g4= f1f2f5f6] yielding a total cost of factor level changes 45=(1+2+4+8+9+10+11).This 
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minimum cost resolution III 27-(7-4)design is also not trend free containing the non-trend free factor F1. 

Finally , adding all seven columns (A9 ,A10,A11  , A12 ,A13 ,A14 ,A15) of Table (3.2) to the minimal cost full 24 

factorial design in (4.7) yields a minimum cost resolution III 2 11-(11-4) design with the eleven factors ( Fi : 

i=1,2,…,11)and alias structure given in Table 4.2 : 

TABLE 4.2: The alias structure of the minimum cost resolution III 211-(11-4) design derived from the full 24 factorial 

design in (4.7)by factor addition 

Main effects alias chains                                                             Two-Factor interactions alias chains 

Intercept 

F1 + F4F5+ F6F7 +F8F9+ F14F15F1F2+F4F7+F5F6+F8F15+F9F14 

F2+F4F6+F5F7+F8F14+F9F15F1F3+F4F9+F5F8+F7F14+F6F15 

F3+F4F8+F5F9+F6F14+F7F15F2F3+F4F14+F5F15+F6F8+F6F15+F7F9 

F4+F1F5+F2F6+F3F8F5F14+F6F9+F7F8+F4F15 

F5+F1F4+F2F7+F3F9 

F6+F1F7+F2F4+F3F14 

F7+F1F6+F2F5+F3F15 

F8+F1F9+F2F14+F3F4 

F9+F1F8+F2F15+F3F5 

F10+F1F15+F2F8+F3F6 

F11+F1F14+F2F9+F3F7 

The 4 foldover GFS generators  of this 2 11-(11-4) design are: [g1=f4f5f6f7f8f9f10f11 , g2= f3f4f5f6f7,    g3= f2f3f6f7f8f9   ,  

g4=  f1f2f5f6f9f10] and the total cost of factor level changes is 99 = ( 1+2+4+8+9+10+11+12+13+14+15 ), which is 

higher than the total cost 66=(1+2+3+4+5+6+7+8+9+10+11) of the unsaturated minimum cost resolution III 2 11-

(11-4) designof subsection 4.1 and also higher than the total cost94 =(2+4+5+6+8+9+10+11+12+13+14) of the 

unsaturated minimum cost trend free resolution III 2 11-(11-4) designof that subsection. 

The seven independent interactions of the defining contrast  of this minimum cost resolution III 211-(11-4)  design of 

total cost 99 are : I= F1F4F5= F2F4F6= F1F2F4F7= F3F4F8= F1F3F4F9= F2F3F4F10= F1F2F3F4F11 

( 4.8) 

Which yield the same alias structure as that of Table (4.2) after deleting all three-factor and higher order 

interactions.This  minimum cost resolution III  211-(11-4) design is however  not time trend free. 

Soif time trend is non-negligible , we consider for factor addition as the initial  minimum cost trend free full 24 

factorial design the 24 design having the 4 time trend free  columns (A2 ,A4, A5, A8) of the OA (24, 24 -1, 2, 2) in 

Table (3.2) with factor level changes {2,4,5,8}) totaling 19=(2+4+5+8) , being above the minimal 24design of (4.7) 

by only 4. Denoting these four factors by ( F1,F2,F3,F4),the 4 foldover GFS  generators are: 

[  g1=f4     , g2= f2f3f4     ,    g3= f1f2f3     ,    g4=  f1f3],where the layout of itsfoldover is:  

(1), f4   , f2f3f4   , f2f3  ,f1f2f3, f1f2f3f4  , f1f4  ,f1  , f1f3, f1f3f4   , f1f2f4   , f1f2   , f2  , f2f4  , f3f4  , f3 ( 4 .9) 

Applying factor addition to this minimum cost trend free full 24 factorial design in (4.9) by adding the six trend 

free columns (A9,A10, A11, A12  ,A13 ,A14 )  of Table (3.2) sequentially to its  columns (A2 ,A4, A5, A8) to generate 

six new minimum cost trend free resolution III 2n-(n-4) designs n={5,6,7,8,9,10} in 16=24 runs each . Hence, adding 

the trend free column A9 to the 4 columns of the 24  design in ( 4.9) leads to the minimum cost trend free resolution 

IV half fraction 25-(5-4)   with defining contrast  I= F2F3F4F5, where ( Fi  i=1,2,…,5)  are its 5 factors. The 4 GFS 

generators for its foldover are :   [  g1=f4f5, g2= f2f3f4f5 ,  g3= f1f2f3  ,  g4=  f1f3f5 ]  with total cost 28=(2+4+5+8+9).  

Adding the two trend free columns  ( A9  and A10) of Table 3.2 to the minimum cost trend free full 24 factorial 

design in (4.9) or equivalently  selecting the six columns (A2,A4, A5, A8  ,A9 ,A10) from Table (3.2) together as the 

6 factors  ( Fi  i=1,2,…,6) lead to  the minimum cost trend free resolution III 2 6-(6-4)  quarter fraction   with defining 

contrast     I = F1F4F6= = F2F3F4F5= F1F2F3F5F6 and the 4 foldover GFS generators :    [ g1=f4f5f6     , g2= f2f3f4f5f6     ,    

g3= f1f2f3f6     ,    g4=  f1f3f5f6 ] having total cost of factor level changes 38 =(2+4+5+8+9+10).  

Proceeding further adding the three trend free columns  ( A9  , A10 , A11) of Table (3.2) to the minimal cost trend 

free  full 24 factorial design in (4.9) yields the minimum  cost trend free resolution III 2 7-(7-4) design in the 7 factors 

( Fi  i=1,2,…,7) with  defining contrast independent interactions  I = F1F4F6= F2F4F8= F1F5F7  and with the 4 foldover 

GFS generators :   [  g1=f4f5f6f7     , g2= f2f3f4f5f6f7     ,    g3= f1f2f3f6f7     ,    g4=  f1f3f5f6 ] having  total cost of factor 

level changes 49=(2+4+5+8+9+10+11).  

Finally, adding all sixtrend free columns (A9 ,A10,A11   , A12  ,A13 ,A14  ) of Table (3.2) to the minimal cost trend 

free  full 24 factorial design in (4.9) yields  a minimum cost trend free resolution III 2 10-(10-4) design in the ten 

factors  ( Fi  i=1,2,…,10) and with the  4 foldover GFS generators :    

[  g1= f4f5f6f7f8f9f10     , g2=f2f3f4f5f6f7   ,    g3= f1f2f3f6f7f8f9   ,    g4=  f1f3f5f6f9f10 ] with total cost of factor level 

changes88 =(2+4+5+8+9+10+11+12+13+14). 

Comparingtotal cost of factor level changes(24)of the minimum cost resolution III 2 5-(5-4) half fraction  with the 

total cost of  the minimum cost trend free resolution III 2 5-(5-4) half fraction(28)shows that time trend resistance 

requires more factor level changes. A similar conclusion  canalso be reached if we  compare the two  2 6-(6-4) quarter 
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fractions of the two types of time trend resistance( i.e. negligible or not). 

Finally,it is worth to note that candidate columnsof this subsectionfrom the OA (24, 24 -1, 2, 2)in Table (3.2) for 

minimum cost trend free resolution III 2n-(n-4)  designs(2k-1≤n≤2k– 1 – k) are different from candidate columns of 

subsection 4.1  for minimum cost trend free resolution III 2n-(n-4)  designs (k+1≤n≤ 2k-1– 2+k ).There is however 

some overlap in the number of candidate columns between these two design categories, but 2n-(n-4)  designs of 

subsection 4.1 have smaller total number of factor level changes than 2n-(n-4)  designs of this subsection for the same 

number of factors. Whereas designs of this subsection produce half and quarter fractions while designs of 

subsection 4.1 do not. 

 

4.3. Minimum cost/trend free  resolution IV 2n-(n-4) designs[24-2≤n≤24-1- 2 ] 

This subsection  raises the resolution in the factor projection of the saturatedOA (24, 24-1,2,2)in Table (3.2) from 

III to IV,where the 15 columns of this OA reduce under resolution IVto only the 8=23candidate column factors 

(A2, A3, A4, A5, A8, A9, A14  ,A15) ,where two of these 8 columns, namely (A3  ,A15) are not time trend free.Hence, 

the largest minimum cost resolution IV  by factor projection of the saturatedOA (24, 24-1,2,2) is theminimum cost 

resolutionIV 28-(8-4)  design having allthese8 column factors, with total cost of factor level changes 60 = ( 2 + 3 +4 

+ 5 + 8 + 9 + 14 + 15). This cost is certainly higher than the total cost 36=( 1+2+3+4+5+6+7+8)of the unsaturated 

minimum cost resolution III 28-(8-4)   fractionin (4.3) of Subsection 4.1.Thus indicating that minimum cost resolution 

IV 2n-(n-k)  designs  require generally larger factor level changes ( i.e. more costly)than minimum cost resolution III  

2n-(n-k)  designs.This is mainly due to the fact that resolution IV has excluded half the columns of the OA (24, 24-

1,2,2) before the factor projection process. 

The 8 factors  of this minimum cost resolution IV 28-(8-4)  designare now renamed as(Bi i=1,2,…,8),  where  the 

defining contrast  is 

 I = B1B2B3B4 = B1B2B5B6 = B3B4B5B6 = B1B3B5B7= B2B4B5B7 = B2B3B6B7 = B1B4B6B7 = B2B3B5B8 = B1B4B5B8  

= B1B3B6B8 = B2B4B6B8 =B1B2B7B8 =B3B4B7B8 =B5B6B7B8 =B1B2B3B4B5B6B7B8                                                          (4.10) 

which confirms that the resolutionis really IV. 

The 4 independent GFS run  generators are  :  

g1=b5b6b7b8  ,g2=b3b4b5b6  ,  g3=b1b2b3 b4     and      g4=b1b4b6b7                                                  ( 4.11) 

where applying the GFS  technique using these GFS 4 run generators in (4.11) yields itsfoldover  as:  

(1),  b5b6b7b8,b3b4b5b6,b3b4b7b8, b1b2b3b4, b1b2b3b4b5b6b7b8,b1b2b5b6 , b1b2b7b8, b1b4b6b7,b1b4b5b8,b1b3b5b7 , b1b3b6b8, 

b2b3b6b7 , b2b3b5b8,b2b4b5b7,b2b4b6b8   (4.12) 

The  detailed alias structure of this minimum cost resolution IV 28-(8-4) design  can be  found from the defining 

contrast in (4.10) ,where this alias structure is given explicitly in Table (4.3), assuming  3-factor and higher order 

interactions are negligible. 

Table (4. 3) : The alias structure for the minimum cost resolution IV 28-(8-4) design in ( 4.12) 

Main effects  ( free from aliasing)                                              Two-Factor interactions Alias chains 

Intercept                                                                                      B1B2±B3B4±B5B6±B7B8 

B1                                                                                                                                                      B1B3± B2B4± B5B7± B6B8 

B2                                                                                                                                                            B1B4± B2B3± B5B8± B6B7 

B3                                                                                                                                                            B1B5± B2B6± B3B7± B4B8 

B4B1B6± B2B5± B3B8± B4B7 

B5B1B7± B2B8± B3B5± B4B6 

B6                                                                                                                                                         B1B8± B2B7± B3B6± B4B5 

B7 

B8                                             

Therefore, factor effects can be estimated unbiased by any interaction effect, while to make tests of significance  

onthese factor main effects we may assume all two-factor interactions negligible,yielding an experimental error 

with 7 degrees of freedom.  

On the other hand,thesmallest minimum cost resolution IV 2n-(n-4)  design from the candidate column factors (A2, 

A3, A4, A5, A8, A9, A14  ,A15)under resolution IV  is the  minimum cost resolution IV 25-(5-4)   half fraction having 

the first 5 column factors (A2, A3, A4, A5, A8) as its 5 factors renamed as ( Fi  i=1,2,…,5), with total cost of factor 

level changes 22 = ( 2 + 3 + 4 + 5 + 8 )  and defining contrast I=F1F2F3F4. This total cost (i.e.22 ) turns out to be 

smaller than the total cost ( i.e. 24)  of the minimum cost resolution III 25-(5-4)  half fraction of subsection 4.2. The 

4 GFS generators[ g1=f5, g2=f3f4f5, g3=f1f2f3f4, g4= f1f4] where applying the GFS  technique using these GFS 4 run 

generators yields the foldover as:  

(1) ,f5, f3f4f5, f3f4, f1f2f3f4, f1f2f3f4f5, f1f2f5, f1f2, f1f4, f1f4f5, f1f3f5, f1f3, f2f3, f2f3f5, f2f4f5, f2f4(4.13) 

Hence, only  four unsaturated minimum cost resolution IV 2n-(n-4)designs(n=5,6,7,8)can be constructed by either 

the forward or the backward factor projection approacheson the 8 candidate column factors (A2, A3, A4, A5, A8, 

A9, A14 ,A15)of the saturatedOA (24, 24-1,2,2) under resolution IV.The  backward approach starts with the minimum 

cost resolution IV  28-(8-4) design  in (4.12) deleting factors successively while the forward approach starts with the 
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minimum cost resolution IV  25-(5-4) design  in (4.13)adding factors successively .This situation is unlike the 

resolution III case,where candidate columns fromthe saturatedOA (24, 24-1,2,2) under the backward approach [i.e. 

subsection 4.1 ]weredifferent from those of subsection 4.2 under factor addition . 

 Allabove four minimum cost resolution IV  fractional 2n-(n-4) designs ( n=5,6,7,8) are not time trend free , since  

referring to Table (3.2) some of their  columns  are not orthogonal to the linear time trend. Therefore, to achieve 

factors’ trend freeness  under resolution IV  the 8 candidate columns (A2, A3, A4, A5, A8, A9, A14  ,A15) reduce  to 

only to the 6 trend free columns (A2, A4, A5, A8, A9, A14  ) with factor level changes (2, 4, 5, 8, 9, 14 ). Hence, only  

two unsaturated minimum cost trend free resolution IV 2n-(n-4)designs(n=5 ,6) can be constructed without run 

duplication ,  the largest  is  the 26-(6-4)  quarter fraction having the 6 column factors (A2,A4, A5, A8, A9, A14  ) 

renamed as factors (Ci  i=1,2,…,6), with total cost of factor level changes 42 = ( 2 + 4+ 5 + 8 + 9 + 14 )  and 

defining contrast I =C2C3C4C5=C1C2C4C6=C1C3C5C6. 

The 4 independent run  generators to sequence the   foldover by the GFS approach are  [g1=c4c5c6,,g2=c2c3c4c5,,  
g3=c1c2c3,g4=c1c3c5c6] where applying the GFS , the foldover  is:  

(1)  ,c4c5c6,  c2c3c4c5, c2c3c6 , c1c2c3,  c1c2c3c4c5c6   ,  c1c4c5  ,  c1c6,c1c3c5c6,  c1c3c4,                           ( 4.14) 

On the other hand , the smallestminimum cost trend free resolution IV fraction is the 25-(5-4)  half fraction having 

the5 column factors (A2, A4, A5, A8, A9) renamed as ( Fi  i=1,2,…,5) , with total cost of factor level changes 28 = 

( 2 + 4 + 5 + 8 + 9) and defining contrast I= F2F3F4F5. This total cost (i.e. 28 ) turns out to be larger than the total 

cost ( i.e. 22)  of the minimum cost resolution IV 25-(5-4)   half fraction in (4.13) due to securing factors’ time trend 

resistance. The 4 GFS generators  are[ g1= f4f5, g2= f2f3f4f5, g3=f1f2f3, g4= f1] ,where applying the GFS  technique 

yields the foldover 25-(5-4)   half fraction as:  

(1) , f4f5 ,f2f3f4f5, f2f3, f1f2f3, f1f2f3f4f5, f1f4f5, f1, f1f3f5, f1f3f4, f1f2f4, f1f2f5, f2f5, f2f4, f3f4, f3f5(4.15) 

Finally, the trend free 24-(4-4)   fractionunder the 4  column factors (A2, A4, A5 and A8)of the saturated OA(24 ,24 ,2,2) 

in Table 3.2 is a minimum cost trend free  full  24 factorial designwith total cost of  factor level changes 

19=(2+4+5+8), where  the remaining  eleven columns (A1, A3, A6, A7, A9, A10, A11, A12,  A13, A14, A15) are the 

interactions of all orders.Renaming these 4 factors (A2, A4, A5 and  A8) as (Di i=1,2..,4), the correspondence 

between  columns of this minimum cost trend free  full  24 factorial design and the columns of  the saturated  

OA(24 ,24 ,2,2) is as follows: 

D1= A2  ,  D2= A4 ,   D3 =A5  ,  D4=A8 ,D1D2=A6 ,D1D3 =A7 , D1D4=A10 ,  D2D3=A1 , D2D4 =A12 , D3D4  

=A13 ,D1D2D3=A3, D1D2D4 =A14 ,  D1D3D4   =A15 ,  D2D3D4   =A9 ,D1D2D3D4=A11   (4.16) 

The foldover of this minimum cost  trend free full  24 factorial design under   the 4 column factors (A2,A4,A5,A8) 

or equivalently under columns (Di i=1,2..,4)  is 

(1),d4 , d2d3d4 ,d2d3  , d1d2d3  ,d1d2d3d4 ,d1d4 ,d1 ,  d1d3,d1d3d4 , d1d2d4 ,d1d2,d2, d2d4 ,d3d4,d3                    .(4.17) 

where the 4  GFS generator runs are:g1=d4, g2 = d2d3d4  ,g3 =d1d2d3   and  g4=d1d3, located at the 2nd,3rd , 5th and 9th 

runs of the foldover sequence ( 4.17) . 

Of course,there are other column selections ( i.e. projections) of the saturated OA(24, 24 -1,2,2)into 4 factors  which 

lead to full 24 factorial designs .For instance , the three selections (A15,A7 ,A3 ,A1 ),    (A1,A2 ,A4 ,A8 )    and     

(A15,A14 ,A13 ,A11) each leads to  full 24  factorial   design with the following properties :  in standard order,  in 

minimum cost and in maximum  cost, respectively . But  unlike the full 24  factorial   design in (4.17) none of these 

three full 24  factorial   designs is   time trend   free. 

Having finally completed all aspects of the factor projection of the OA(24, 24 -1,2,2) , generalizationstoOA(2k, 2k 

-1,2,2) will be considered in Section 5 leading to the  construction of three proposed categories of minimum cost 

/trend free resolution III/IV  2n-(n-k) designs. 

 

5. Catalog of Minimum Cost /trend free 2n-(n-k) Designs of resolution III and IV 

Section 4has illustrated various factor projectionsof the saturated OA(2k, 2k-1, 2,2 ) when k=4 (backward and 

forward)under resolutions III and IV.Similar projectionshave been worked out using a statistical package for 

k=5,6,7,8,9,10  .This extensive computer work has lead to the following generalizationswhich involves the 

proposition of the following threecategories of minimum cost / trend free 2n-(n-k) designsof resolutions III and IV. 

(i) Minimum cost / trend free resolution III 2n-(n-k) designs [2k-1≤n≤(2k-1)-k](Category One 

Designs):Candidate columns for projection of the OA(2k, 2k-1, 2,2 )  by factor deletion under resolution III are all 

its (2k-1) columns {1,2,3,…., (2k-1)} representing  a saturated resolution III 2n-(n-k) designin N=(2k-1) factors  with 

total cost of factor level changes =[1+2+3+…. + (2k-1)]=2k-1(2k-1) ,where its k GFS run generators are located at 

the k runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1}. This saturated OA(2k, 2k-1,2, 2 )of (2k-1) columns  is 

then reduced successively by factor deletion deleting columns of large level changes (to minimize experimentation 

cost ) until reaching the first  2k-1 columns {1,2, 3 ,…., 2k-1}which represent together the smallestminimum cost 

resolution III 2n-(n-k) design in N=2k-1 factors with total cost of factor level changes =[ 1+2+3 + ….+ 2k-1]=2k-2(2k-1 

+1),where its k GFS run generators are also located at the k runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1}. 

More factor deletion involving less than the first 2k-1columnswill however result in runs duplication. Therefore , 

successive factor deletionsof the OA(2k, 2k-1, 2,2 )  starting deletion with factors of highest level changes produce 



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online)  

Vol.11, No.25, 2020 

 

56 

a sequence of (2k-1)-2k-1+1=(2k-2k-1)=2k-1 minimum cost resolution III   2n-(n-k) designs(2k-1≤n≤(2k-1)).On the other 

hand, tThisdesign sequence can equivalently be generated by factor addition starting forwardly with the first 2k-1 

columnsrepresenting the smallest  minimum cost resolution III 2n-(n-k) design in N=2k-1factorsthen adding factor 

columns successively until  exhausting all (2k-1) columns of the OA(2k, 2k-1, 2,2 )  .Experimental runs, the k GFS 

generators ,total cost of factor level changes and the alias structure of these minimum cost resolution III 2n-(n-k) 

designs(2k-1≤n≤(2k-1)) can be found from the saturated resolution III 2n-(n-k) designin N=(2k-1) factors by dropping 

deleted factors. 

To achieve both minimum cost and factors’ time trend resistancewhen projecting the OA(2k, 2k-1, 2,2) by factor 

deletion under resolution III, candidate columns are now all (2k-1) columns  of this OA excluding the k non-trend 

free columns {1,3,7,15,31,….,(2k-1)}, where the remaining [(2k-1)-k] trend free columns represent an unsaturated 

minimum cost trend free resolution III 2n-(n-k) designin the largest N=[(2k-1)-k] trend free factorswith total cost of 

factor level changes =[1+2+3+…. + (2k-1)] –[ 1+3+7+15+31+…+ (2k-1)]= (2k-1-2)(2k-1)-k, where the k GFS run 

generators are located at the k runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1}. Projectionsof theminimum 

cost trend free resolution III 2n-(n-k) designinN=[(2k-1)-k] trend free factors successively by factor deletion deleting 

trend free columns of large level changes (to minimize experimentation cost) until reaching  the first 2k-1trend-free 

columns with the least factor level changes represent the smallest minimum cost trend free resolution III 2n-(n-k) 

design in N=2k-1factors.Therefore, factor deletion of the OA(2k, 2k-1, 2,2 )  produces a sequence of (2k-2k-1–

k  )minimum cost trend free resolution III   2n-(n-k) designs [2k-1≤n≤(2k-1)-k] without getting into run 

duplication.This design sequence can equivalently  begenerated by factor addition starting factor addition with the 

first trend free 2k-1 columns of the OA(2k, 2k-1, 2,2)representing a minimum cost trend free resolution III 2n-(n-k) 

design in the smallest number of trend free factors N=2k-1then adding factor columns successively until  exhausting 

all (2k-2k-1–k  )candidate trend free columns.Experimental runs, the k GFS generators , total cost of factor level 

changes and the alias structure of these minimum cost trend free resolution III 2n-(n-k) designs ( 2k-1≤n≤(2k-1)) can 

be found from the unsaturated minimum cost trend free resolution III 2n-(n-k) designin N=(2k--1k) factors by 

dropping deleted factors.Putting k =4  reducethese general conclusions  into  the illustrative minimum cost /trend 

free resolution III 2n-(n-4) designs[24-1≤n≤(24-1)-4] of subsection 4.1. 

(ii) Minimum cost / trend free resolution III 2n-(n-k) designs[k+1≤n≤(2k—1- 1)+k](category Two Designs): 

Candidate columns for projectionof the OA(2k, 2k-1, 2,2 ) by factor addition under resolution III are the (k+ 2k-1 -

1 ) columns numbered {1,2,4,8,…., 2k-1  , (2k-1 +1),(2k-1 +2) , (2k-1 +3), …, (2k-1)} .These  (k+ 2k-1 -1 )  columns can 

be grouped in two groups : 

Group 1: contains the  k  columnsin the firs 2k-1 columns of the OA(2k, 2k-1, 2,2 ) numbered {20,21 , 22 ,…, 2k-1}, 

where the first column is the only non-linear trend free column having  nonzero Time Count.These k 

columns{20,21 , 22 ,…, 2k-1}represent together the minimal cost full 2k factorial design in minimal total factor level 

changes (1+2+4+8+….+2k-1)=(2k-1), which will be utilized to start the factor addition process. 

Group 2:contains the last(2k--11) columnsof the OA(2k, 2k-1, 2,2),namely columns { (2k-1+1)+ (2k-1+2)+…+ (2k-

1)},where the last column [i.e. (2k-1) ]  is the only non-linear trend free column.These(2k-1 - 1) column factors {(2k-

1 +1),(2k-1 +2) , (2k-1 +3), …, (2k-1)} have increasing number of level changes starting with  (2k-1+1) increasing one 

by one until  (2k-1). 

The (k+ 2k-1 -1 ) columns of groups(1 and 2 )produce  together by factor addition a minimum cost resolution III 2n-

(n-k) design in the largest number of factorsM=(2k-1 -1+k), where its k GFS run generators are located at the k runs 

numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1}.This largest minimum cost resolution III 2M-(M-k) designcan also 

be  used to start the factor deletion process.On the other hand,  the first (k+1) candidate columns of the OA(2k, 2k-

1, 2,2 ) ,namely columns {1,2,4,8,…., 2k-1  , (2k-1 +1)} containing  all group1  and the first column of group 2 

produce together the smallestminimum cost resolution III 2n-(n-k) design,namely the 2(k+1)-(k+-1k)  half fraction with 

total cost of factor level changes =[1+2+4+8….+2k-1   + (2k-1+1)]= 2k-1 + 2k-2, where its k GFS run generators are 

located at the k runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1}.This smallestminimum cost resolution III 

2n-(n-k) designcan be used to start the factor addition process.Both factor addition and factor deletion applied on the 

M=(2k-1 -1+k) candidate columnsof the OA(2k, 2k-1, 2,2) in this design category lead to the same catalog of 

minimum cost resolution III 2n-(n-k) designs (k+1≤n≤k+ 2k-1 -1), one process works backwardly and the other 

forwardlyon these candidate (k+ 2k-1 -1 )  columns .  

The k  GFS run generators   for the foldover of the  largest minimum cost resolution III 2n-(n-k)design of category 

two  in the n=(2k-1 + k – 1)two-level factors(A1 ,A2 ,A3, …,An) are : 

g1=∏ � 
!"#$%&'(
 )&  

g2 =∏ � 
!"#+%&'(
 )&'(  

gk-2= a3a4(∏ � 
(&%!+)% ((!"#("#/))'(

 )(&%!+)% 0(!"#("#/))
)(∏ �1

(&%!+)% 2(!"#("#/))'(

1)(&%!+)%!(!"#("#/))
)… 

…(∏ �3
(&%!+)% (!"#4'()(!"#("#/))'(

3)(&%!+)%(!"#4'!)(!"#("#/))
) 
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gk-1= a2a3(∏ � 
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                                                                                                                                                                  (5.1) 

where the total cost of level changes for thesen=(2k-1 + k – 1)factors is the sum of their  level changes , which is: 

C={20+ 21 + 22 +…+ 2k-1}+ { (2k-1+1)+ (2k-1+2)+…+ (2k-1)}                                                                    (5.2) 

Experimental runs, the k GFS generators , total cost of factor level changes and the alias structure of the minimum 

cost resolution III 2n-(n-k) designs ( k+1≤n≤(2k--11+k)) of category two can be found from the unsaturated minimum 

cost trend free resolution III 2n-(n-k) designin M=(2k—1-1+k) factors by dropping deleted factors. 

It is worth to note that minimum cost resolution III 2n-(n-k) designs (2k-1≤n≤(2k-1)) of category one and minimum 

cost resolution III 2n-(n-k) designs (k+1≤n≤k+ 2k-1 -1) of category two are based on different candidate sets of 

columns from the saturated  OA(2k, 2k-1, 2,2 ), where category one 2n-(n-k) designs do not produce half and  quarter 

2n-(n-k) fractions while  category two 2n-(n-k) designs do. There is also an overlap in the number of factors between 

these two2n-(n-k) design categories but2n-(n-k) designs of category one (in the overlap region) have smaller total factor 

level changes. 

To achieve both minimum cost and factors’ time trend resistance under resolution III while projecting the saturated  

OA(2k, 2k-1, 2,2 ) utilizing the M=(2k-1 + k – 1) candidate columns of groups 1 and 2 of category two, we need to 

delete the two non-trend free columns : column 1 of group1 and column (2k-1) of  group 2. Group 1 is compensated 

by adding the trend free column numbered 5 to keep factor level changes small, hencegroup1 contains nowthe k 

trend free columns {2,4,5,8,16,32,..,2k-1}.On the other hand, group 2 is reduced by 1 for deleting its last 

column.Therefore, candidate trend free columns for factor projection is now reduced into [2k-1 + k – 2] columns , 

which all together produce by either forward factor addition or backward factor deletion a sequence of minimum 

cost trend free resolution III 2n-(n-k) designs (k+1≤ n≤(2k-1 + k – 2)),where their k GFS run generators are located at 

the k runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1  +1}.The k  GFS generators for the foldover of the 

largestminimum cost linear trend free resolution III 2n-(n-k)designin the  n=(2k-1 + k – 2) two-level 

factors(A1 ,A2 ,A3, …,An)for k ≥ 5 are : 

g1=∏  !
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with the total cost of level changes for these n=(2k-1 + k – 2)factors is the sum of their  level changes  in each of 

the two groups,which is: 

C={21 + 22 +(22 +1)+23 +24 +…+ 2k-1}+ { (2k-1+1)+ (2k-1+2)+…+ (2k-2)}                                                           (5.4) 

Experimental runs, the k GFS generators , total cost of factor level changes and the alias structure of these 

minimum cost trend free resolution III 2n-(n-k) designs ( k+1≤n≤(2k-1 - 1 +k)) of  category two can be found from 

the unsaturated minimum cost trend free resolution III 2n-(n-k) designin M=(2k-1- 1 +k) factors by dropping deleted 

factors.Putting k= 4 into these general resultsin ( 5.1), (5.2), (5.3) and (5.4) reduce to  the illustrative minimum 

cost/ trend free resolution IV 2n-(n-4) designs( 4+1≤n≤(24-1-1+k)) of subsection 4.2. 

(iii) Minimum cost / trend free resolution IV 2n-(n-k) designs (2k-2 ≤ n≤(2k-12) (Category Three Designs): 

It is documented in the literature that the maximum number of column factors for projection of  the saturated 

OA(2k, 2k-1, 2,2 )into2n-(n-k)  fractional factorial designs under  resolution IV is 2k-1,where this number is half the 

number of runs,namely = 2-1.2k. These 2k-1candidate column factors under resolution IV were found by extensive 

computer work on Sylvester Hadamard Matrices of size 2kx2k and their associated OA(2k, 2k-1, 2,2) for 
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k=4,5,6,7,8,9,10.These 2k-1 candidate column factorscan however be grouped into three groups of consecutive 

columns each, where: 

Group 1:contains 2k-2columns ,  which  are columns {2k-3, (2k-3+1), (2k-3+2),…, (2k-3+2k-2-1)}, where the single 

column (2k-2-1) is non-linear trend free having  nonzero Time Count.These 2k-2 column factors have increasing 

number of level changes starting with 2k-3 and increase one by one until (2k-3+2k-2-1). 

Group 2: contains 2k-3columns ,  which are the columns  {2k-1, (2k-1+1), (2k-1+2),…,(2k-1+2k-3-1)} ,where  all are 

linear trend free each having  zero Time Count. These 2k-3 column factors have increasing number of level changes 

starting with 2k-1and increase one by one until  (2k-1+2k-3-1). 

Group 3: contains (2k-1- 2k-2 -2k-3) columns, which are the columns {(2k- 2k-3), (2k-2k-3+1), (2k- 2k-3 +2),…, (2k-1)}, 

where the last column  (2k-1) is the only non-linear trend free column.These (2k-1 - 2k-2-2k-3)column factors have 

increasing number of level changes starting with  (2k – 2k-3) and increase one by one until  (2k-1). 

Therefore, the largestminimum cost resolution IV 2n-(n-k) design in N=2k-1factors  that can be constructed from the 

saturated  OA(2k, 2k-1, 2,2 ) is  the2N-(N-k) designhaving the N=2k-1 columns of groups 1,2 and 3,where these n=2k-

1 columns will be denoted by factors  (A1 ,A2 ,A3, …,An).Level changes of these   n=2k-1 two-level factors  are in 

increasing order, the smallest level change is 2k-3 while the largest factor level change is (2k-1).The k   GFS 

generators   for the foldover of this  minimum cost resolution IV 2n-(n-k)designin n=2k-1factors  are located at the k 

runs numbered {1, 2 ,3, 22+1 , 23+1 ,24+1 ,…, 2k-1+1} and they are : 
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(5.5) 

The total cost of level changes for these  n=2k-1factorsis the sum of their  level changes  in each of the three 

groups ,which equals: 

C={2k-3+ (2k-3+1)+ (2k-3+2)+…+ (2k-3+2k-2-1)}+ {2k-1+ (2k-1+1)+ (2k-1+2)+…+(2k-1+2k-3-1)} +{(2k – 2k-3)+ (2k – 2k-

3+1)+ (2k – 2k-3 +2)+…+ (2k-1)} or more compactly  

C =∑ 5!"#+(!"#&2)
 % !"#+  +∑ 5!"#$(!"#+2)

 % !"#$  + ∑ 6!"#$( 72 )
0% !"2!"#+ (5.6) 

Therefore, a total of (2k-1   -2k-2   ) unsaturated  minimum cost resolution IV 2n-(n-k)  designs(2k-2 ≤n≤2k-1) can be 

constructed  from the minimum cost resolution IV 2n-(n-k)  design with the largest number of factors N = 2k-1 by 

either factor addition or deletion . Experimental runs, the k GFS generators , total cost of factor level changes and 

the alias structure of these minimum cost resolution IV 2n-(n-k) designs (2k-2 ≤n≤2k-1)  of category three can be found 

from the unsaturated minimum cost resolution IV  2n-(n-k) designin N=2k-1 factors by dropping deleted factors. 

These minimum cost resolution IV 2n-(n-k) designs( 2k-2 ≤ n≤2k-1) are economic in minimum total number of factor 

level changes but not all their factors are resistant to the time trend ,since some of these factors  have nonzero Time 

Counts.Therefore,to construct minimum cost trend free resolution IV2n-(n-k) designs from the  N=2k-1candidate 

columns under resolution IV in groups ( 1,2 and 3) we need to drop the two non-trend free columns : column (2k-

2-1) in the first group and column( 2k-1) in the third group ,leaving a total of ( 2k—1-2) candidate trend free columns 

for factor projection under resolution IV.These ( 2k—1-2) candidate column factors produce the largest minimum 

cost trend free resolution IV 2n-(n-k)design  in n=(2k—1-2)two-level factors,where factor level changes are in 

increasing order, the smallest factor level change is 2k-3   and the largest is (2k-2).The k  GFS generators for the 

foldover of the largest minimum cost trend free resolution IV 2n-(n-k)  designs  in  n=(2k—1-2)two-level factors 

(A1 ,A2 ,A3, …,An) are: 
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The total cost of level changes for these n=(2k-1 -2)factors is  the sum of  their level changes in each of the three 

groups ,which  equals: 

C={2k-3 + (2k-3+1)+ (2k-3+2)+…+ (2k-2-2)+ 2k-2 +(2k-2 +1)+…+ (2k-3+2k-2-1)} + {2k-1+(2k-1+1)+ (2k-1+ 2) + … + (2k-

1+2k-3-1)} + {(2k – 2k-3)+ (2k – 2k-3+1)+ (2k – 2k-3 +2)+…+ (2k-2)}, or more compactly  

C =∑ :
!(!"#$)%!

0( !"#$  + ∑ ;!"#$� !"#1%&
'( !(!"#$)

 +∑ <� !"#� !$%&
'( � !"  +∑ +� %�

'( � % � !$ (5.8) 

Experimental runs, the k GFS generators , total cost of factor level changes and the alias structure of the minimum 

cost trend free resolution IV  2n-(n-k) designs (2k-2 ≤n≤2k—1-2 ) of category three can be found from the unsaturated 

minimum cost trend free resolution IV  2n-(n-k) designin N=(2k—1-2) factors by dropping deleted factors.Putting k 

=4  into these general resultsin (5.5),(5.6),(5.7) and  (5.8)  reduce to  the illustrative minimum cost/ trend free 

resolution IV 2n-(n-4) designs(24-2 ≤n≤24-1- 2) of subsection 4.3. 

 

6. Discussion and  Conclusion 

Fractional 2n-kfactorial experiments with factors having  levels hard- to- vary  should be carried out sequentially 

( i.e.not randomly) either run after run or block of runs after block in order to economize the cost of varying factor 

levels between successive runs. However,systematic fractional 2n-kfactorial experiments suffer from the problem 

that factor effects may be adversely affected by a time trend which might be present among responses of the 

successive runs. Therefore,2n-k fractional factorial experiments should be sequenced but overcome this time trend 

problem and also economize the experimental cost. There are a total of 2n-k! run orders ( i.e. permutations) to carry 

out fractional 2n-kfactorial experiments run after run but not all these run orders are resistant to the time trend nor 

economic. Also not all these 2n-k! run orders can be sequenced by the GFS technique, yet economic run orders 

resistant to the time trend can be generated by the GFS approach.  

This research has utilized the Normal Sylvester-Hadamard matrices of size 2k x 2kand their associated 

saturated orthogonal arrays OA(2k ,2k -1,2,2) to construct (by factor projection) three systematic 2n-(n-k) fractional 

factorial designsof resolutions III and IV that are economic regarding the cost of factor level changesand/or 

resistant to the non-negligible time trend.Proposed 2n-(n-k) fractional factorial designs have the merit that all their 

2k experimental runs can be sequenced run- after- run by the GFS technique using only k independent run 

generators,where these k independent generator runs aregiven.The other merit is that all factor effects can be 

estimated unbiased by the non-negligible time trend. Comparison with existing counterpart systematic 2n-kdesigns 

shows that the proposed2n-(n-k)designs compete well with and sometimes are better,since they have: (i) smaller cost 

of factor level changes between successive runs and (ii) securedall factor effects to be orthogonal and unbiased by 

the non-negligible time trend. All this is done without fixingan upper limit for either the number of factors or the 

fractionation level, while maintaining resolution III or IV without duplicatingany experimental run. It is however 

worth to conduct a comparison among existing runs sequencing algorithms for the 2n-k fractional factorial 

experiment (run after run or block after block) in terms of thethe following parameters: the total cost of factor level 
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changes,pattern of factor level changes, factors’ time trend resistance, the resolution and the GFS generators. 
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