Effectiveness of e–Learning Investigation Model on Students’ Understanding of Classification of Organisms in School Biology

Joel Kipkemboi Kiboss1* Edward Kiptabut Tanui2
1. Dept of Curriculum Instruction and Educational Management, Egerton University,
P.O Box 536, Egerton, Kenya.
2. Dept of Curriculum and Educational Media, Maasai Mara University, P.O Box 861, Narok, Kenya.
* E-mail of corresponding author: kiboss@yahoo.com.

Abstract
A recent report revealed that students’ understanding in secondary school biology has been generally poor due to inappropriate teaching and learning approaches employed in the instructional process. It indicates that several science teachers in Rift Valley Province ranked the topic of classification of organisms as the second most difficult area that the regular methods are weak in making students understand it. In response, the study reported here investigated the effectiveness of E-Learning Group Investigation Model (ELGIM) intervention on form three students’ biology learning outcomes. ELGIM is a combination of e-Learning (EL) and Collaborative Learning (CL) instructional strategies employed to curb this problem. The study was based on the topic classification of organisms undertaken over a period of 8 weeks with 165 form three pupils from four secondary schools in Nakuru district, Kenya. A Solomon-four quasi-experimental design was carried out to investigate the effects of ELGIM on students’ understanding and attitudes on their pre- and, post-, Achievement Test, Attitudes questionnaire Dependent measures. Two control groups C1 (N=100) that received the pre-test and C2 which did not received conventional instruction whereas two experimental groups E1 (N=111) that was pre-tested and E2 (N=) which did not received their instruction via the mode. All groups were exposed to the same classifications of organisms syllabus except for the instructional methods used. Data was collected using two instruments namely; the Biology Achievement Test (BAT) and Students’ Attitude Questionnaire (SAQ) used to assess the Biology learning outcomes. This study successfully demonstrates that the experimental group students outperformed the conventional group students in the domains of concept construction, conceptual change and scientific reasoning. Moreover, students with a higher level of scientific reasoning were more able to successfully change their alternative conceptions. It concludes that collaborative learning approach has major implications for teaching difficult topics in science and enhancing students’ learning outcomes. Hence, this intervention should be integrated into the existing school science curriculum.

Keywords: Biology instruction, Collaborative learning, e-Learning, School science curriculum, Secondary education

1. Introduction
The importance of Biology in the science curriculum of most countries continues to grow. For instance, Kim, Fisher and Fraser (1999) noted that Biology has increasingly become a mandatory subject during the elementary years in school in most developed countries. Webb (2010) asserts that it is more important that all citizens understand the ways of science and how the actions of society affect living things. Considering this, an understanding of the nature of science and fundamental biological concepts is critical for any person regardless of his/her vocation. School Biology is a demanding science subject to teach and learn not only because living systems are so complex but also because it incorporates concepts from Chemistry, Physics and Mathematics. Moreover it plays an important role and affects many aspects of human life that requires a good grasp of the basic principles of Biology and their application to real life situations. It is also a practical subject meant to equip the learner with skills that are necessary for solving the daily problems in life. Therefore Biology instruction at the secondary level should prepare learners to deal with the contemporary environmental challenges in society by providing them with the necessary knowledge with which to control or change the environment for the benefit of human life (Kenya Institute of Education [KIE] 1999). As such, the teaching of the concept of classification of organisms is critical at the commencement of secondary school Biology.

A recent study revealed that most secondary school teachers still expect their students to accumulate biological knowledge by engaging them in limited activities in the form of illustrative and expository sessions used to prove theories (Kiboss, Wekesa & Ndirangu, 2006). However, this expository teaching that has continued to dominate the instructional practice in the majority of our schools is weak and if left unabated, it will continue to
According this model, individual learning of all group members is assumed to directly affect the cognitive processes by motivating learners to engage in group goals (peer modeling, cognitive elaboration, and practice). Such motivation in group goals also lead to group cohesiveness, increased care and concern among learners,
hence making them feel responsible for one another’s achievement. Finally, learners are motivated to take responsibility for one another independently of the teacher and thereby solve important classroom organization problems and in the process provide increased opportunities for cognitively appropriate learning activities that may in turn lead to enhanced/improved learning.

1.3 The Problem

Globally, there is a new view of science driven partly by the needs of a changing economy and a research on learning and cognitive science calling for the need to help learners develop various skills (e.g. higher-order abilities, problem solving and thinking abilities) necessary for them to construct knowledge wisely, fluently and flexibly in interactions with novel experiences (Kiboss, 2000, 2002). However, this view is opposed to the expository methods commonly seen in our science instruction classrooms; which in itself ineffective and unable to empower the learner to move away from the practice of knowledge production of verbal answers on cue to that of integrating the complex structure of scientific knowledge. This shift is critical in that the learner is required to make use of scientific ideas, compare relationships between the ideas and reasons for these relationships, explore ways to use them to explain and predict other natural phenomena and to eventually apply them in novel situations (Kiboss, 2002; Roth & Roychooudhury, 1992).

Apparently, the continued use of such an approach in science instruction cannot inculcate the learner’s active participation in the instructional process. Instead, it may exacerbate the current problem of the teacher’s failure to empower the learners to develop the necessary understanding of scientific knowledge, skills and attitudes especially in the teaching the topic of classification of organisms in school Biology in Kenya. This topic is a foundational and compulsory course in Biology education and was ranked the second difficult area in need of a different approach that the regular one by 19 science teachers from Rift Valley Province in Kenya (Kiboss 1997).

Nevertheless, this problem facing Biology instruction at the secondary level may be arrested by the use of modern powerful e-learning environments capable of enhancing pupils’ understanding of science topics considered difficult to teach using the traditional method (Kiboss 2011, Kiboss 2006; Kiboss, Wekesa & Ndirangu 2005).

The object of this study is to employ the use of Group Investigation Model of collaborative learning and e-learning environments that have been lauded as capable of empowering learners to interactively participate and grow during the learning process as a means to increase their potentials in science instruction, particularly in the teaching of Biology areas that have been identified as in need of different approaches. Thus, the study reported in this paper is an attempt to investigate the effectiveness of ELGIM to enhance pupils’ understanding of classification of organisms and attitudes toward Biology.

1.4 Research Questions

In order to achieve this objective, answers were sought to the following questions:

1) What is the effect of ELGIM in enhancing pupils’ understanding of classification of organisms in school Biology?
2) What is the effect of ELGIM pupils’ attitude towards classification of organisms in school Biology?
3) Is there any significant difference between the understanding of classification of organisms of pupils exposed to ELGIM and those not so exposed?
4) Is there any significant difference between the attitudes towards classification of organisms in school Biology of pupils exposed to ELGIM and those not so exposed?

2. Methodology

2.1 ELGIM Program

The ELGIM program developed consisted of twenty two basic lessons covering eighteen classification of organisms (binomial nomenclature and general principles of classification, division of phycophyta, division of mycophyta, division of bryophyta, division of pteridophyta, the animal kingdom (kingdom animalia), phylum protozoa, phylum porifera, phylum coelenterate, phylum platyhelminthes, phylum nematode, phylum anelida, phylum echinodamaata and mollusca, phylum arthropoda, phylum chordata, and the dichotomous key). These topics were extracted from the primary school syllabus recommended by the Kenya Institute of Education (KIE, 2002) to be taught to learners during the school term.

During the initial stages ELGIM underwent two major reviews. First, three computer–based education (CBE) experts knowledgeable in science education reviewed it. The purpose of this was to assess the overall quality of the first version in terms of language and grammar, surface features, questions and menus. The suggestions for modification were considered and were deemed appropriate. Second, the modified version was again subjected to another review by six educational technology and science education experts (two educational technology lecturers, two secondary science department heads and two secondary school physics teachers) knowledgeable in science education at the secondary level in Kenya. This was meant to solicit comments and feedback on the
quality of ELGIM before it was finally piloted on a group of secondary school student–helpers who did not participate in the actual study. The ELGIM courseware was authored using the Multimedia Builder, object-oriented programming software for microcomputers developed by Roman Voska in 2002. The software was considered appropriate due to its capability to combine text, graphics, and animation display editors during the authoring process (Engler, Jeschke, Ndjeke, Sieler, & Steinmuller 2006, Kanuka, 2007).

2.2 Research Design

The research design adopted for this study is the Solomon–Three Group Quasi–Experimental Design, which is considered sufficiently rigorous and appropriate for experimental and quasi–experimental studies (Fraenkel & Wallen 2006; Oggunniyi, 1992). The design involves a random assignment of participants to three groups with two groups taking the pretest and one not. This design was adopted because the participants of the study had already been constituted and it was not possible to randomly select them individually for experimental purposes. Moreover, Kenyan school authorities do not normally allow a random assignment of individual pupils once they are constituted.

This design was also chosen because it could provide adequate control of the extraneous variables that would have affected the internal and external validity of the study (Cohen, Manion & Morrison 2007). Contamination was addressed by having the treatment and control groups situated in different schools while the statistical regression was taken care of by having another group of participants not taking the pretest.

In this design, two groups served as the experimental group I (E1) and experimental group II (E2) with the former receiving the pretest variable and the latter withheld but both receiving the treatment. Two others served as control groups – one which received the pretest measure to serve as the true control group I (C1) and the other as control group II (C2) because it was not pretested. All groups were exposed to the same course content on classification of organisms with the experimental group using ELGIM and the control group the regular method. They were posttested after the course was terminated.

2.3 Participants

In this study, provincial mixed secondary schools in Nakuru district, Kenya were selected on the basis of willingness to participate and accessibility by the researcher. A total of 165 participants, 80 girls and 85 boys, took part in the study. All the 165 pupils were exposed to the same 12 lessons content on classification of organisms in school biology over a period of four weeks (KIE 2002). The experimental groups (E1 and E2) received their lessons through the ELGIM program while the control groups (C1 and C2) through the conventional or regular teacher directed methods.

2.4 Instruments

The variables of interest reported are pupils’ understanding and attitudinal change. Understanding was taken to mean the level of learning exhibited by the participants’ achievement on pretests and posttests on classification of organisms measured using the Biology Achievement Test (BAT) instrument, which consisted of 30 test items developed to assess pupils’ understanding on the concept of classification of organisms in school biology. A field test of this instrument yielded a reliability coefficient of 0.864 using the Kuder Richardson 21 (KR–21) formula which is considered acceptable for experimental purposes.

The attitudinal change focused on students’ attitude towards school Biology. This was measured using the Students’ Attitude Questionnaire (SAQ) adopted from Kiboss (1997) and modified to suit the study. The piloting of the instrument yielded a Cronbach alpha coefficient reliability of 0.771 which is considered acceptable for research purposes (Fraenkel & Wallen, 2006).

3. Results and Discussion

In this section, the findings of the effect of the ELGIM program on the students’ (a) understanding of classification of organisms as measured by BAT and (b) attitudinal change towards classification of organisms as measured by SAQ are presented and discussed.

3.1 Effects of ELGIM on Students’ Understanding of classification of organisms

The participants’ comparative results of their performance on the BAT shown in Table 1 indicates that prior to the commencement of the biology course on classification of organisms, the participants were equal because the mean scores ($\bar{M}=25.97$ and $\bar{M}=26.09$) and the standard deviations ($SD=11.03$ and $SD=10.09$) for the E1 and C1 groups that received the pretest were similar. However, after the commencement of the course, the mean gain (21.48) of the participants in the experimental group (E1) was higher than that (15.35) of their counterparts in the control group (C1).

Table 1[Here]

It is also notable from the results in Table 1 that after the commencement of the course, the mean scores
in the area indicating that the use of the new media such as ELGIM has the potential of enhancing communication in the classroom during science learning (Kiboss 2000, 2002, 2011). Similarly, it corroborates Wekesa (2003) and Kiboss et al. (2006) findings which established that the use of e-learning improves the learning of Biology, especially cell theory.

4. Conclusions and Implications
In this paper, an attempt has been made to use the results of the study to corroborate or falsify the hypotheses posited for testing with regard to effects of ELGIM on pupils’ achievement and attitudinal change towards classification of organisms. The idea that an exposure of the pupils to the ELGIM would have no significant effect on their achievement and attitudes towards classification of organisms was rejected. This finding is consistent with several related studies suggesting that use of well–designed electronic learning programs enhances communication in the classroom during science learning (Kiboss 2000, 2002, 2011). Similarly, it corroborates Wekesa (2003) and Kiboss et al. (2006) findings which established that the use of e-learning improves the learning of Biology, especially cell theory.
Apparently, the findings of the study regarding the effects of ELGIM’s capability to enhance the pupils’ understanding and attitudes towards classification of organisms in school Biology were in the affirmative. In other words, the study demonstrated that a well–designed collaborative electronic learning program can be used effectively to improve the pupils’ achievement in the topic of classification of organisms in school Biology and to boost their attitudinal change. In this study, however, only the ELGIM and expository teaching approaches undertaken in Kenyan secondary schools contexts were compared.

However, the results have shown that the ELGIM program was an effective instructional method in the Biology classroom milieu which was not just effective in the attainment of better results than the conventional mode of instruction but can also serve to ameliorate the instructional problems associated with the learning of difficult areas in science instruction. Therefore, the study recommends that ELGIM programs should be made part of classroom instruction to help teachers speed up and improve the delivery of concepts and lesson content in science learning. This is because electronic learning programs when combined with collaborative learning strategies are capable of providing interesting and effective learning environments.

The findings of this study therefore have implications for the teaching of school Biology. For instance:

1) ELGIM adds a new hybrid learning strategy to the instruction of school Biology and can supplement the traditional methods of instruction which are mainly exposition oriented.

2) This study established that the method improves pupils’ achievement when used in collaborative classroom instruction. This is significant considering our need to improve understanding of classification of organisms in school Biology which is considered difficult to teaching using the regular method.

3) ELGIM programs make pupils discussion group during learning easy by presenting information in a manner that is more appealing and easy to comprehend by all community learners. Concepts are visually presented in text and graphical format to ease encoding, processing, storage and retrieval of information, thereby quickening the learning process.

4) ELGIM, apart from introducing a new hybrid mode of instruction that is both interesting and motivating to the learners compared to the expository method prevalent in our regular classroom instruction, improves achievement and offers learners a means through which they can attain higher scores and further their education in science.

References

Kiboss, J. K. (2002) Impact of a CBI in physics on students’ understanding of measurement concepts and skills

Figure 1: Relationships among the six perspectives on collaborative learning

- Group goals
- Group cohesiveness (Social Cohesion)
- Student Responsibility
- Peer modeling discovery (Developmental)
- Enhanced/or Improved
Table 1: Comparison of BAT Pretest and Posttest Mean Scores

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Scale</th>
<th>Overall (n=165)</th>
<th>E1(n=39)</th>
<th>E2(n=41)</th>
<th>C1(n=45)</th>
<th>C2(n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretests mean</td>
<td>26.03</td>
<td>25.97<sup>a</sup></td>
<td>–</td>
<td>26.01<sup>a</sup></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>S.D</td>
<td>10.44</td>
<td>11.03</td>
<td>–</td>
<td>10.85</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Posttests mean</td>
<td>45.53</td>
<td>48.45<sup>b</sup></td>
<td>48.23<sup>b</sup></td>
<td>41.44</td>
<td>43.99</td>
</tr>
<tr>
<td></td>
<td>S.D</td>
<td>16.21</td>
<td>15.43</td>
<td>16.73</td>
<td>12.17</td>
<td>12.94</td>
</tr>
<tr>
<td>Mean Gain</td>
<td>19.50</td>
<td>22.48</td>
<td>–</td>
<td>15.43</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

^a denotes similar mean scores

Table 2: Results of ANOVA on the BAT

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>6067.466</td>
<td>3</td>
<td>2022.489</td>
<td>9.032*</td>
<td>0.000</td>
</tr>
<tr>
<td>Within groups</td>
<td>35157.652</td>
<td>164</td>
<td>223.934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41225.118</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*significant at 0.05 level

Table 3: Least Significant Difference Post Hoc on BAT

<table>
<thead>
<tr>
<th>LSD for Four Groups (I) Group (J) Group</th>
<th>Mean Difference (I–J)</th>
<th>P–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 vs E2</td>
<td>3.630<sup>ab</sup></td>
<td>0.286</td>
</tr>
<tr>
<td>C1 vs E1</td>
<td>12.129<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>C2 vs E1</td>
<td>15.252<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>C1 vs E2</td>
<td>–8.499<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>C2 vs E2</td>
<td>11.621<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>C1 vs C2</td>
<td>3.122<sup>ns</sup></td>
<td>0.343</td>
</tr>
<tr>
<td>C2 vs C1</td>
<td>15.252<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>E1 vs E2</td>
<td>8.499<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>E2 vs E2</td>
<td>3.122<sup>ns</sup></td>
<td>0.343</td>
</tr>
<tr>
<td>C1 vs C2</td>
<td>12.129<sup>*</sup></td>
<td>0.000</td>
</tr>
<tr>
<td>C2 vs C1</td>
<td>11.621<sup>*</sup></td>
<td>0.000</td>
</tr>
</tbody>
</table>

* significant p<0.05; ns not significant

Table 4: Comparison of SAQ Mean Scores, S.Ds and Mean Gains

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Scale</th>
<th>Overall (n=165)</th>
<th>E1(n=39)</th>
<th>E2(n=41)</th>
<th>C1(n=45)</th>
<th>C2(n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretests mean</td>
<td>67.20</td>
<td>67.06<sup>a</sup></td>
<td>–</td>
<td>67.01<sup>a</sup></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>S.D</td>
<td>8.82</td>
<td>8.03</td>
<td>–</td>
<td>8.60</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Posttests mean</td>
<td>76.82</td>
<td>80.54<sup>b</sup></td>
<td>80.63<sup>b</sup></td>
<td>72.69</td>
<td>73.44</td>
</tr>
<tr>
<td>Mean Gains</td>
<td>9.62</td>
<td>13.48</td>
<td>–</td>
<td>5.35</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

^a denotes similar mean scores

Table 5: Results of ANOVA on SAQ Posttest Mean Scores

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p–value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>5028.208</td>
<td>3</td>
<td>2012.467</td>
<td>8.993*</td>
<td>0.000</td>
</tr>
<tr>
<td>Within groups</td>
<td>19640.92</td>
<td>164</td>
<td>221.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41218.111</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*significant at 0.05 level
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar