Experimental-Teaching: ‘Help-sheet’ in Examination of Engineering-students

Diana Starovoytova
School of Engineering, Moi University P. O. Box 3900, Eldoret, Kenya

Abstract
The purpose of this unfunded, miniature-study is to examine the potentials of student-created ‘help-sheets’ and attitudes of undergraduate-students, towards the-sheets, used, at university-examinations, at school of Engineering. A-specified-designed-experiment, a-survey, and a-document-analysis, were used, as main-instruments, for this-study. A-paired t-test was run on a-sample of 24 students, to determine whether there was a statistically-significant mean-difference, between the-student-performances at the-CAT #1 (where ‘help-sheets’ were-used) and: (1) CAT #2, where ‘help-sheets’ were not used; (2) final-exam; and (3) student-average weighted-mean-score, for the-previous-year. Moreover, unpaired t-test was-employed, to compare performance, between the-students, who used ‘help-sheet’ (in CAT #1) and those who did not, assuming unequal-variances. Mean; Standard-Deviation (SD); and Standard-Error of the-Mean (SEM) were calculated via Minitab 17.3.1. This-study revealed vast-diversity, in the-quality and composition, of student-created ‘help-sheets’. Moreover, positive-attitudes towards ‘help-sheets’, were identified, in-particular: 88% of the-class have prepared and used their ‘help-sheets’, identified, in-particular: 88% of the-class have prepared and utilized their ‘help-sheets’ for the-experiment; 76% reported to-be less-nervous, than usual; 95% agreed, that the-use of ‘help-sheet’ was beneficial; and 81% confirmed, that they would-like to-use the-same-approach, in other-subjects. Comparisons of student performance indicated, that the-preparation and use, of student-created ‘help-sheets’ have no impact on student-performance. Academic-performance, however, is just one of the-many variables, potentially influenced, by the-use of ‘help-sheets’. As-such, the-research-findings show students self-reported reduction of test-anxiety; moreover cheating at-examinations, being considered as pervasive-practice, at-the-school, was not observed, during this-experiment. The-main-recommendations, of the-study were: (1) to-use ‘help-sheets’ in-examinations, on the-grounds that they potentially-reduce both test-anxiety, and cheating, at-examinations; (2) to-deal with test-anxiety, lecturers should help students, mastering-it, by self regulation relaxation-techniques; and (3) specific-areas, for future (more-deeper) research, were identified. Moreover, to give a-broader-reflection on the-subject-matter, the-following-topics were also elaborated upon: Traditional examination-modes: ‘closed-book’ vs. ‘open-book’; Alternative-examination-approach: student created reference-material (‘help-sheet’); Cheating, at-exams, at local-context; and Anxiety (concepts, types, mechanism, and consequences; test-anxiety; and self-regulating relaxation-techniques). The-author trusts, findings of this-study, in-conjunction with theoretical-background, given, adds to-the-body of knowledge, on experimental-teaching, particularly, on the-use of student-prepared reference-materials, such as ‘help-sheets’, at university-examinations. The-results of the-experiment can also help university-lecturers decide, whether to-allow their-students to-use ‘help-sheets’.

Keywords: ‘cheat-sheet’, test anxiety, exam type, exam performance.

1. Introduction.
University-examinations have traditionally been categorized, in relation to the freedom, for students, to bring reference-materials, into examinations, as ‘closed-book’ (the most common) and ‘open-book’.

In a ‘closed-book’ examination, students are not permitted to bring any reference-materials, into the examination-venue; they are required to rely only on their memory, to recall the information, needed. The ability of a student to recall information is at the lowest level of Bloom’s Taxonomy of educational-objectives, in the cognitive-domain. Arguably, a student must master this ability, before moving on, to higher levels, and it is ‘closed-book’ examinations, that place a premium on accurate and extensive recall (Gupta, 2007). Heijne-Penninga et al. (2008) found out, that with medical students, a ‘closed-book’ exam, actually encourages more in-depth engagement with the course material.

In contrast, with ‘open-book’ type: ‘the student is allowed to make use of any materials at his disposal, including textbooks, lecture notes and dictionaries, but does not obtain answers directly or indirectly from other students’ (Kalish, 1958).

‘Open-book’ examinations are seen as a student-centred approach, to education, by: (1) reducing the anxiety, in the form of ‘fear and emotional blocks’ experienced (Tussing, 1951); (2) a shift, in emphasis, from memorization, to reasoning; by promoting higher-order-thinking-skills and prompting ‘students to exhibit their levels of skill in analyzing, synthesizing and evaluating course material’. Many educators consider the allowance, for reference-materials, enables them to create examination questions, which coincide with more real-world type problems, and favour ‘open reference testing’ to get more comprehensive real-world solutions.
(Brightwell et al., 2004; Baillie & Toohey, 1997). Supporters of the method, also believe, that reference-materials reduce the student’s need to reiterate-knowledge, and to-be-assessed simply on the-skill of rote-memorization (Hubbard, 1997); (3) Students, also-report to have greater-optimism, and more-confidence (student-attitudes towards-a-course do improve) in-their-answers with ‘open-book’ examinations (Theophilides & Koutselini, 2000). Williams & Wong (2009) also-found, that students prefer ‘open-book’ exams, compared to ‘closed-book’ ones; and (4) reduction of temptation to cheat, during-examination (Tussing, 1951). Besides, Schumacher et al. (1978) found-out, on significantly-higher-average-scores, when students had-access to a textbook, during their-examination.

There-are also counter-arguments to-the-use of ‘open-book’ examinations. These include: (1) a-degradation of the-seriousness of examinations, that can-lead to superficial-learning (Kalish, 1958). In-addition, ‘open-book’ exams may-encourage less-studying, particularly among-those-students, who need to-study the-most. Weaker-students seem-to- rely-more on their-notes and texts, than academically stronger-students, and students, that use their-notes most, end-up doing more-poorly, on exams (Boniface, 1985); (2) excessive-time, spent looking-up for answers (Rakes, 2008; Vanderburgh, 2005; Theophilides & Koutselini, 2000), and an-underestimation of time, needed to-search in-references, a-tendency to-learn from the-reference, for the-first-time, during-the-examination (Gupta, 2007). Boniface (1985) also-found-out, that students, who spend more-time than others, referring to-books, tend to-end-up with poorer-marks; (3) less-motivation, for student mental-organization of the-material (Gupta, 2007). According to Feldhusen (1961), students prepare-less, for an ‘open-book’ examination, which-may-ultimately decrease their-overall learning; and (4) a-false-sense of confidence; e.g., Yu et al. (2010) suggest, that ‘open-book’ examinations can-cause students to-be lulled ‘into too much of a sense of security and, if they had not prepared adequately, the book was not very useful anyway’, which results in inadequate-preparation.

Besides, studies by Bacon (1969), and Kalish (1958) found, that average-scores were not affected, when comparing ‘open-book’ and ‘closed-book’ examinations, and concluded that ‘open-book’ examinations may-benefit some-students, more than others.

On-the-other-hand, increasingly, instructors are experimenting with alternatives to the-traditional ‘closed-book’ and ‘open-book’ examination-modes. Between ‘closed’ and ‘opened’ extremes, examiners can constrain students to-access to-reference-materials, to-varying-degrees; this form of examination, can-be-referred-to as a ‘restricted-examination’. One-such-form, of restricted-examination, allows students to-bring their-own-prepared reference-material, or ‘cheat-sheets’, into the-examination-setting (Sanborn et al., 2012).

1.2. Alternative-approach to examination: student-created reference-material

Various-disciplines use different-types of assessment and examinations, and many-disciplines also-assess different-levels of Bloom’s hierarchy (see Bloom, 1956), of educational-objectives, in the-cognitive-domain. The-two-extremes—‘open-book’ and ‘closed-book’ examinations—are widely practiced, with different level of success. At-university-level, however, a-lecturer, should-look for new-ways, to better-teach their-students, in this-modern-age, by using an-intermediary-methods of examination. An-emerging-alternative allows students to-bring self-prepared-reference-material, such-as a ‘cheat-sheet’ of hand-written-notes. This-form of examination has-the-potential to-offer many of the-benefits of an ‘open-book’ examination, while overcoming some of its-limitations.

For-instance, students can-be allowed, by a-lecturer, to-use some-student-prepared reference-materials, during-examinations, while maintaining academic-integrity. Students, are given-the-opportunity, to-prepare a sheet of notes, ahead of time, to-use-it, on-the-exam. These-reference-materials have various-names (crib sheets, reference-data-cards, formula-sheets, cheat-sheets, summary-sheet, aid-sheet, etc.), but they all serve the-same-purpose—to-shift the-student’s preparation-focus, away-from rote memorization (based on repetition or so-called ‘cramming’), and allow the-student to-focus on course-concepts, and on application of the-provided-information, consequentely enhancing student-learning via meaningful-learning, associative-learning, and active-learning. Ironically, the-most-common-name used, for such-reference-materials, is ‘cheat-sheets’. The-name, however, implies that students might-use the-sheets, without the-course-lecturer’s knowledge, to-cheat, during an-examination. The-author of this-paper used different-terminology—‘help-sheet’, instead of ‘cheat-sheet’, to-intentionally-remove possible-negative perception, associated with the-act of cheating, and consequently, with ‘cheat-sheet’ itself.

The-effect of student-created ‘cheat-sheet’s, has-been less-explored than ‘open-book’, nevertheless, Dickson & Miller (2005) suggested, that ‘cheat-sheets’ did not improve performance, and did not reduce student-anxiety. In-later-study, the-same-authors modified the-study, and the-results showed that students performed-better, when they had-access to their ‘cheat-sheets’ and from-this, they-concluded, that cheat-sheets did not encourage greater-learning, but did assist students, during an-examination (Dickson & Miller, 2008). According to de Raadt Moolde (2012), however, Dickson & Miller failed to-take into account, that cheat-sheets are intended to-relieve students of the-burden of memorization, yet memorization seems-to-be what their-experiment
was measuring.

Moreover, studies by Allen & Leary (2010), and Erbe (2007) suggest, that student-created ‘cheat-sheets’ can, indeed, reduce examination-anxiety, while increasing learning, particularly in-courses, that assess on the first three-levels of Bloom’s taxonomy. The-study of Sanborn et al. (2012) reveals that students, who-create and use ‘cheat-sheets’, performed better, on-average, in an-introductory programming examination. Some-studies find an-improvement, in performance when students use ‘cheat-sheets’ (Skidmore & Aagaard, 2004), while others find no effect (Dickson & Miller, 2005). On-the-other-hand, Gupta (2007), points-out on an-increased student-workload, due to the-responsibility placed on students, to-prepare, and select reference-material.

1.3. Research purpose
Examination is often-linked to student-anxiety; many-researchers have-studied the-link and whether some-anxiety is healthy and productive, or crippling, to-the-student, who-would, otherwise, do well. Use of student-prepared reference-materials, is suggested, as a-method to ‘increase student-learning, and reduce test-anxiety’ (Erbe, 2007). Besides, Busari & Uwakwe (2001), and Moline & Borkivec (1994), have linked, high-level of anxiety, to poor-learning-outcomes, in-school. Students, in-their-study, also-believed, that being-able to-use notes, ‘help-sheets’, and texts, during an-exam, would-improve grades, and decrease their-anxiety.

Moreover, in-a-review of introductory-programming assessment, Daly & Waldron (2004), suggest, allowing ‘students to bring in a handwritten A4 ‘cheat-sheet’ which can contain whatever they want. The process of creating the ‘cheat-sheet’ may also be educational’.

The-purpose of this-unfunded, miniature-study is to-examine the-potentials of student-created ‘help-sheets’ within-the-context of a-compulsory-course -- Industrial Pollution & Control, at the-school of Engineering (SOE).

The-findings of this-study will-add to the-body of knowledge on experimental-teaching, particularly, on use of student-prepared reference-materials, such-as ‘help-sheets’, at examinations. The-results of the-experiment can also-help university-lecturers decide, whether to-allow their-students to-use ‘help sheets’. To-give a-broader-perspective, the-following-issues are also-elanbored-upon: Cheating, at-exams, at local-context, and Anxiety (concepts, types, mechanism and consequences; test-anxiety, and self-regulating relaxation-techniques).

2.1. Approaches used
This-study adopted an ex-post-facto research-design. In-such-design, the-independent-variables have already occurred; the-researcher cannot manipulate them. A-specifically-designed-experiment, a-survey, and a-document-analysis were used, as main-instruments, for this-study.

Besides, analogous to Starovoytova & Namango (2017), in-order to-conduct a-survey and perform a-document-analysis, the-study was-divided into 3-steps, which shown in Figure 1.

![Figure 1: Sequential-steps of the-study (Starovoytova & Namango, 2016a).](image-url)

To-find informative-synopsis regarding Kenya, and its-educational-system, interested-readers, can-refer to Starovoytova et al. (2015). Besides, study by Starovoytova & Cherotich (2016) provides valuable-particulars, on the-university and the-school of Engineering, where the-study was-conducted.

2.2. Data Collection and Analysis
The-questioner was pre-tested, to-ascertain its-validity and reliability. To-estimate reliability, the-correlation co-efficient was used, according to Kothari (2004). The-Statistical-Package for Social-Sciences (SPSS-17, version 22)-computer software-program was applied, to-compute the Cronbach’s alpha co-efficient. Descriptive-statistics was employed to-analyze both, qualitative and quantitative-data.
A-paired t-test was run on a sample of 24 students, to-determine whether there was a statistically significant mean-difference, between the-student-performances at the-CAT#1 (where ‘help-sheets’ were-used) and: (1) CAT #2, where ‘help-sheets’ were not used; (2) final-exam; and (3) student-average weighted-mean-score, for the-previous-year. Moreover, unpaired-t-test was employed, to-compare performance, between the-students, who used ‘help-sheet’ (in CAT #1) and those who did not, assuming unequal-variances.

Paired t-tests are a-form of blocking, and have-greater-power than unpaired-tests, when the-paired-units are similar with-respect to ‘noise-factors’ that are independent of membership, in the-two-groups, being-compared (Rice, 2006). In a-different-context, paired t-tests can-be-used to-reduce the-effects of confounding-factors, in an-observational-study. To-determine, whether the-mean-scores, were statistically-significant, a 95% confidence-level was-used. Mean; Standard-Deviation (SD); and Standard-Error of the-Mean (SEM) was calculated via Minitab 17.3.1.

The-four ‘assumptions’ was-met, to-qualify for the-paired t-test: (1) The-dependent-variable should-be measured, at-the-interval, or ratio-level (i.e., they are continuous; e.g. in-this-study, test-performance is used (measured from 0 to 100%); (2) independent-variable should-consist of two-categorical, ‘related-groups’ or ‘matched-pairs’, e.g. in-this-study, ‘matched-pairs’ were-used; (3) There should-be no significant-outliers in the-differences, between the-two-groups; and (4) The-distribution of the-differences, in the-dependent variable, between the-two-groups should-be approximately normally distributed (normality was checked via the-Shapiro-Wilk test of normality).

3. Results and analysis.
3.1. Validation of the instrument
Questionnaire-data was-coded, entered into-SPSS and checked for-errors. Cronbach's-alpha-test of internal consistency was performed, and established high-inter item-consistency (Cronbach's $\alpha > 0.83$).

3. 2. Description of the-experiment
Trial, of new-assessment-techniques (such-as student-prepared ‘help-sheets’), in final-exams, at the-school, is not procedural; hence, this-experimentation was-conducted on Continuous Assessment Test (CAT), where a-limited-freedom, on assessment-tools, is acceptable. Normally, there are-at least two-cats, done during a-semester, for every-examinable-course. CAT#1 was the-subject of this-experimentation. The-CAT was conducted, in a-class of 24 students, at the-middle of the-second-semester, at the-department of Manufacturing, Industrial & Textile Engineering, School of Engineering, Moi University.

The-course-lecturer, have explained the-purpose and the-essence of the-experiment, to the-students. This-experiment investigates the-effectiveness of ‘help-sheets’ as study-aids, under typical-test-taking-conditions. She also-instructed the-students, one-week, in-advance, that they are free to-include, in their-‘help-sheet’ any-information, they believe is relevant. Restrictions, however, were put, such-as: (1) ‘help-sheet’ size is A4, double-sided; and (2) the-sheet must be self-hand-written by-pen (and not by-pencil). Forcing students to-hand-write, their ‘help-sheets’, is a-mechanism, to-ensure, that students make some effort to-produce the-sheet, rather than simply printing course-notes, or photocopying another-student’s sheet. At the-very-least, students need to-review the-course-material, in-order to-prepare their ‘help-sheets’.

The-CAT consisted of five-compulsory-questions up to Bloom’s Level III cognitive-skills: knowledge, comprehension, and application. As-mentioned, in-the-next-section, the-course-material was-presented, mainly, at conceptual-level, therefore, it was-logical, that concept-inventory-survey was-used in-selected questions, of the-CAT, to-evaluate retention. Concept-inventories are an-assessment-tool, used to assess students’ understanding of fundamental-concepts and identify common-misconceptions. The-use of concept-inventory surveys has been-well-established, in the-literature (Jacobi, 2003). The-CAT was set on two-major-topics of the-course: Air-pollution, and Water-Pollution. The-marks-allocation (air: water) was 20:10. The-students were-given one hour, to-complete the-CAT, during which, as instructed-earlier, they have-used, prepared by them, ‘help-sheets’.

Students were-required to-submit their ‘help-sheet’ separately and incognito. Students were also explained, prior to-the-experiment, that participation, in it, was voluntary.

Besides, participants were not allowed to-use a-programmed-calculator, a-mobile-phone, or any-other study-aid (besides a ‘help-sheet’). In-order-to-ensure that participants were not using any-unauthorized-aid; they were vigilantly-monitored by two-academic-staff. After taking the-CAT, participants were asked to-complete a-short-survey, about their-experience and attitudes, towards ‘help-sheets’, and related-issues. To-evaluate the-impact of student-preparation-time, a time-survey was used. The-time-survey has-been used and tested, extensively, for-example, in the-United-States Military Academy’s Department of Civil & Mechanical Engineering. The-students were asked to-report how many-hours they-had-spent, to-prepare their ‘help-sheets’. Bias was-eliminated, in-the-survey, since the-data was-collected-anonymously and students were advised, that the-results will-be-used only for the-purpose of the-experiment.
3.3. The-background of the-examined-course
A-senior-level compulsory 3unit-course (offered at the-last--5th year of undergraduate-engineering-study), examined in this-research, Industrial Pollution & Control, combines elements of major-forms of pollution (air, water, solid-waste, radioactive-waste, hazardous-waste, noise-pollution, and vibration-pollution) alongside with their-respective-control-methods. The-course was-designed, specifically, for non environmentalists—engineering-students, hence, numerous-complex-phenomena, were presented only at conceptual-level. The-course is well-established, with several-updates, to-the-organization and content, over the-last ten-years. Continuity of the-course is maintained, from year-to-year, through a-single course-lecturer, who originally, designed the-course. Furthermore, the-course’s assessment-methods vary little, from one-year, to-the-other. The-subject was taught, to-the-students, by-the-same-instructor; all-the-students were given the-same course-package, including: texts-notes, PPTs, relevant-videos, and an-interactive-tutorial, they also-done identical-final-exams.

3.4. Analysis of the questioner.
3.4.1. Analysis of part1: Demographic-Characteristics
Out of the-class of 24, only 3 students (12.5%) were females, while the-rest 87.5% males. The-students were between 24 and 28 years-old.

3.4.2. Responses to the-questioner
The-questions appear below, in the-exact-form, they were given to the-students. The-following-narrative shows responses, question-by-question.

Q1. Have you utilized your ‘help-sheet’ for this CAT? 17(81%) answered affirmative, while the remaining 4 (19%) said ‘NO’. The-majority 9 (43%) spent one-hour, 4(19%) indicated that they use 2 hours; 3(14 %) utilized 30 minutes, while 1 person (4.7 %) indicated that they spent 4 hours, 3 hours, 45 minutes, and 15 minutes, on-the-exercise, respectively.

Wachsman (2002) concluded that, just the-time, spent creating a-cheat-sheet contributed to-better-performance. The-logical-pattern would-be: the-more-time spent on preparation, the-higher the-performance.

Erbe (2007) also-states, that while students spend a-lot of time, preparing their ‘cheat-sheets’, they do not actually refer to-them often, during the-examination: Preparing the cheat sheets proved to be sufficient for learning what was on the test. This was the major difference between handing out information composed by me and having the students find their own. Students tailored the information to their own needs and wrote down information they still needed to learn. The act of writing and organizing the-information, for the ‘cheat sheet’ allowed most-students to-fill-in the-holes, in their-knowledge.

Q2. How much time have you spent, to prepare your ‘help-sheet’?
17(81%) answered affirmative, while the remaining 4 (19%) said ‘NO’.

Q3. Were you less nervous, than usual, about the CAT? Yes, No. 16 students (76%) replied confirmatory, while the-rest 5(24%) said ‘NO’. University-examinations, for-students, are usually-associated with-some-anxiety. Due to-importance of the-issue, it-will-be-discussed, substantively, in the-Discussion-section, of this-paper.

Q4. Was the exercise beneficial or just a waste of time? Yes, No; and WHY? Vast majority- 20 students (95%) agreed, that the exercise was beneficial, pointing-out, that it gave them chance to summarize the-material; make-them to-read-more, to-figure-out which-material to-include; it also-helped them to-reduce-anxiety; it also-makes it easier, to-obtain higher-grades.

Q5. Would you like to use the-same-approach, in other-subjects? Yes, No. 17 respondents (81%) confirmed, that they would-like, while 4(19 %) replied ‘NO’, explaining that the-exercise can make one lazy in thinking; it also-encourages unproductive and illegitimate study-mode; as-well-as it teaches students to use ‘short-cuts’.

3.5. Analysis of ‘Help-sheets’
Out of the-total number of 24 students, in-the-class, who sat the-CAT#1, 21 ‘help-sheets’ were collected, which indicates that 84% of students chose to-create a ‘help-sheet’, and the-remaining 4 (16%) of students either decided not to-generate a ‘help-sheet’, or they have-missed, the-previous-lecture, where the-brief on the-help-sheet-experiment, was-given, leaving them with no awareness of such-possibility; hence, the-response-rate, in-this-experiment, was 84%.

Two-gauge-aspects were of interest of examination, of ‘help-sheets’: Arrangement aspect of the ‘help-sheet’ were-limited to: (1) density of the-information; (2) structure (organized, with sub-topics); and (3) order of the-presented-information (summary-sheet followed the-sequence of content, presented in the-course-notes and PPTs). Substance-aspect, on-the-other-hand, concentrated on the-following: (1) Abstract-representations (charts, tabulations, and/or diagrams); (2) Formulas; and (3) Examples of Problem (with solution).

The ‘help-sheets’ were analyzed on content (substance-aspect), and revealed, that students perceived very-
different-sub-topics, as-to-be difficult, for them, to-memorize, as-follows: *Air pollution topic*: Problems with solutions were listed by 11 students (52.4%); Formulas (52.4%); Types of plumes and wind dispersion (a-labeled-diagram) - 9 students (42.9%); Health-effects of air-pollution - 8 (38%); Major air-pollutants (names and formulas) – 7 (33%); Inversion concept of atmospheric phenomena (diagram, with explanations) - 5 (23.8%); Branches of meteorology - 4 (19%); Atmospheric-fronts - 3 (14.3%); Major-effects of air-pollution - 2 (9.5%); Chemical composition of dry-air - 2 (9.5%); Coriolis-effect - 2 (9.5%); Ozone - 2 (9.5%); and Concepts of atmospheric-stability-1 (4.8%); *Water pollution topic*: Wastewater treatment steps – 8 (38%); Indicators of water-pollution - 2 (9.5%); BOD calculation - 2 (9.5%); and Water Laws - 1 (4.8%).

The-inclusion of solutions, to-problems, in-‘help-sheets’, revealed a-poor-conceptual-comprehension, by-the-students. Previous-studies also-showed, that students struggled with-problems, different from-what they-had seen in-class, demonstrating a-lack of conceptual-understanding. Students study, by-memorizing procedures, and do not understand, or exhibit the-deeper-comprehension, of the-purpose of the-analysis. This can-be demonstrated by a student’s inability to-correctly-answer a-question, unless it-is posed, in-the-exact-same-way, it was presented in-class. Surface-learning results in-procedures, which are quickly forgotten, because they are not truly-understood (Hubbard, 1997). Besides, most-likely, these students hoped, that problems in the-CAT would-be the-same, as-problems, given in-class, which was not the-case, in-the-experiment.

On-the-other-hand, students, who-included abstract-representations of content, in-their ‘help-sheets’, would-need to-have-reached the-higher SOLO relational or extended-abstract-levels (Biggs & Collis, 1982). Moreover, students were-given a-limited-space, to-write-on, hence, they must summarize (or code) the material, that they are examined on. This-study revealed poor-ability to-summarize and extract the-essence of a-material. Other-studies, however, suggest that, coding helps students, memorize, and understand, more information (see Wickelgren (1975) for-summary).

From the-analysis of presented-data, it can-be-also-observed, that the-absolute-majority of the-respondents perceived Air-pollution-topic to-be more-difficult, than Water-pollution. This reflected in-much-more detailed-coverage of the-topic, in-their ‘help-sheets’, and in-addition 8 (38%) of the-respondents, prepared their ‘help-sheets’ only on-the-topic of Air-pollution.

This-study revealed vast-diversity, in-the-quality and composition, of student-created ‘help-sheets’. Visco et al. (2007) analyzed the ‘cheat-sheets’ that students created, for a-chemical-engineering examination. They also-found great-variety, among students’ cheat-sheets and suggested that the ‘goodness’ of a cheat-sheet does not necessarily map-to examination-performance. This-study also found, a-variety of features, in-student’s ‘help-sheets’, which is in-accord, with-the-findings of Visco et al. (2007). Moreover, Erbe (2007), also-noticed a-variety, in-the-content, and composition, of cheat-sheets, constructed, by-her-students.

The ‘help-sheets’ were also-analyzed on-the-structure, of presented-material, and revealed that majority of students did not follow any. Besides, none of the-respondents divided the ‘help-sheet’ into columns. Students also-used only one-color-pen, either blue or black, pointing-out on-the-lack of documentation-skills, particularly on-the-partitioning and highlighting of important-information. Finally, the ‘help-sheets’ were examined on accuracy and correctness of presented-information, and concluded, that it-was-average, for-the-vast-majority of respondents.

Ordering ‘help-sheet’ content to-match course-content, may-indicate a-more-thorough, start-to-finish-approach, when creating-their-sheets, and, conceivably, learning-more, from this-experience. Besides, ordering relates to-higher examination-performance; e.g., according to Gharib & Phillips (2012), students who ordered the content of their ‘cheat-sheets’ to-match the-ordering of course-content, performed, on-average, 13% better, than the-mean. In-this-study only 19% of the-students followed the-course-content, exactly.

3.6. Comparison of students’-performance

3.6.1. Paired t-test results: Comparison of performance between CAT #1 and the-weighted-mean-score (for the-previous-year).

The-weighted-mean-score gives an-excellent-indication of academic-aptitude of a-student. At-the-school, it-is normally computed at-the-end of each-academic-year. For-the-year four, students did 16 courses, totalling 49 units. Table 1 shows the-comparison (using a two-sample *t*-test, assuming unequal-variances) of performance on CAT#1 and students’ weighed-mean-score.

<table>
<thead>
<tr>
<th>Group</th>
<th>CAT#1</th>
<th>Weighed mean score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>62.583</td>
<td>60.796</td>
</tr>
<tr>
<td>SD</td>
<td>17.993</td>
<td>5.633</td>
</tr>
<tr>
<td>SEM</td>
<td>3.673</td>
<td>1.150</td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

P value and statistical-significance: The two-tailed *P* value equals 0.5828. The-traditional-cutoff for a-difference to-be-termed ‘statistically significant’ is a-*P*-value less than of 0.05 (*P* < 0.05), hence by conventional-
criteria, this difference is considered to be not statistically-significant. **Confidence interval:** The mean of CAT#1 minus weighed-mean-score equals 1.788. 95% confidence interval of this difference: from -4.850 to 8.425. **Intermediate values used in calculations:** \(t = 0.5571; \ df = 23; \) standard error of difference = 3.208. The weighed-mean-score averages were not statistically-different, indicating that the students had relatively the-same-ability.

3.6.2. Unpaired t-test results: Comparison of performance between students, who used ‘help-sheet’ (in CAT #1) and those who did not.

Relative-performance of students, with and without, ‘help-sheets’, was measured. The results are presented in Table 2, followed by its analysis.

<table>
<thead>
<tr>
<th>Group</th>
<th>Used ‘help-sheet’</th>
<th>Did not used ‘help-sheet’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>57.38</td>
<td>68.00</td>
</tr>
<tr>
<td>SD</td>
<td>21.46</td>
<td>18.03</td>
</tr>
<tr>
<td>SEM</td>
<td>4.68</td>
<td>10.41</td>
</tr>
<tr>
<td>N</td>
<td>21</td>
<td>3</td>
</tr>
</tbody>
</table>

P value and statistical significance: The two-tailed \(P \) value equals 0.4250. By conventional-criteria, this difference is considered to be not statistically-significant. **Confidence interval:** The mean of ‘used help-sheet’ minus ‘did not used’ equals -10.62; 95% confidence interval of this difference: from -37.71 to 16.48. **Intermediate values used in calculations:** \(t = 0.8128; \ df = 22; \) standard error of difference = 13.065.

In a t-test for equality of means, with roughly equal-variance, there was no significant-difference between the two groups \((p=0.4250; t=0.8128) \). This indicates that preparation and use of help-sheets did not increased the-students’ performance.

3.6.3. Paired t-test results: Comparison of performance between the-two CATs

Table 3 shows comparison of performance between two CATs.

<table>
<thead>
<tr>
<th>Group</th>
<th>CAT # 1</th>
<th>CAT # 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>58.71</td>
<td>58.79</td>
</tr>
<tr>
<td>SD</td>
<td>21.01</td>
<td>18.60</td>
</tr>
<tr>
<td>SEM</td>
<td>4.29</td>
<td>3.80</td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

P value and statistical-significance: The two-tailed \(P \) value equals 0.9888. By conventional-criteria, this difference is considered to be not statistically-significant. **Confidence interval:** The mean of CAT #1 minus CAT #2 equals -0.08; 95% confidence interval of this difference: from -12.20 to 12.04. **Intermediate values used in calculations:** \(t = 0.0142; \ df = 23; \) Standard error of difference = 5.859.

3.6.4. Paired t-test results: Comparison of performance between CAT #1 and the-final-exam (for these students who used ‘help-sheet’).

The-impact on learning and short-term retention is evaluated using a test-retest-assessment. The-final examination is used, to-evaluate-retention, as students have been-tested on the-course-concepts, during a-within-semester examination (CAT) and is then, retested on the-final-examination.

Table 4 shows the results of comparison. **P value and statistical-significance:** The two-tailed \(P \) value equals 0.1416. By conventional-criteria, this difference is considered to be not statistically-significant. **Confidence interval:** The mean of Final-Exam minus CAT #1 equals -6.29. 95% confidence-interval of this-difference: from -14.84 to 2.26. **Intermediate values used in calculations:** \(t = 1.5220; \ df = 23; \) standard error of difference = 4.134.

<table>
<thead>
<tr>
<th>Group</th>
<th>Final Exam</th>
<th>CAT #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>56.29</td>
<td>62.58</td>
</tr>
<tr>
<td>SD</td>
<td>11.79</td>
<td>17.99</td>
</tr>
<tr>
<td>SEM</td>
<td>2.41</td>
<td>3.67</td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

4. Discussion.

The-findings of this-study indicate, that the-preparation and use, of student-created ‘help-sheets’ have no impact on student-performance. This agrees with the-findings of Dickson & Miller (2005), and contradicts the suggestions of Sanborn et al. (2012); Erbe (2007); Skidmore & Aagaard (2004); and Daly & Waldron (2004) that the-process of creating a ‘cheat-sheet’ can improve student-outcomes.

Academic-performance, however, is just one of the-many-variables, potentially-influenced, by the-use of
‘help-sheets’. To give a broader reflection on the subject-matter, the issues of cheating, and test-anxiety, are addressed, in the following sections.

4.1. Cheating, at exams, at local-context, and relevance of ‘help-sheets’ to cheating
There is an adequate consensus, among researchers and educators, that cheating, at examinations, is widely-practiced, by students, and it poses a serious problem, across college campuses (UNESCO, 2009; McCabe & Trevino, 1996; Spiller & Crown, 1995; Aiken, 1991). Besides, the following more recent studies, at local context, at the subject school, were conducted:

(1) Study by Starovoytova & Namango (2016a) – “Factors Affecting Cheating Behavior at Undergraduate Engineering”, showed that:

65% of respondents declared that cheating is, in fact, a common phenomenon in the SOE; 60% of students also affirmed, that it is, actually, difficult to eradicate cheating in examinations in the SOE; and 70% of students acknowledged that they use mobile phones to Google or to assess notes, during examinations. The results also illustrate that cheating, undeniably, is a very real issue of massive concern at SOE.

(2) Another study entitled: “Faculty Perceptions on Cheating in Exams in Undergraduate Engineering” by Starovoytova & Namango (2016b), exposed that: ‘81% of the respondents agreed that students frequently indulge in examination malpractice, clearly revealed that cheating, indeed, is a significant problem, in the SOE’.

(3) Finally, the latest study by Starovoytova & Arimi (2017), entitled: “Witnessing of Cheating in Exams Behavior and Factors Sustaining Integrity” concluded that:

only 18% of the students admitted that they have never cheated; however, they have witnessed an array of cheating techniques used by their classmates, which illustrates, that students are exceedingly inventive and opportunistic, in nature, and they are ready to use any method, to achieve their ultimate goals (mainly, good grades). 22% of those never cheated, confessed that they were afraid of being caught by the invigilators; while only 6% stated that I was afraid of being reported by my fellow classmates. The absence of risk (fear of penalties), is above all, attention grabbing, to this study, as it implies that SOE students do not bother much about getting caught cheating.

The above studies paint a depressing picture of prevalent cheating, at the school. In contrast, during this experiment, no attempts to cheat, were observed; this fact can be considered, in the context of help sheets being a contributing factor to reduction, of temptations, to cheat which, in itself is beneficial, in promoting ethical learning experiences. This finding is in accord with the similar conclusion by Tussing (1951).

On the other hand, examination, for students, is usually associated with some anxiety. In this study, 76% of the respondents, reported to be less nervous, than usual, because of help sheets, which is analogous to Allen & Leary (2010), and Erbe (2007), who suggest, that student created cheat sheets can, indeed, reduce examination anxiety.

On the other hand, many of academicians, generally, perceive test anxiety, as something normal, unavoidable, and insignificant, and hence, as something not deserving their attention. Anxiety, however, is a rather complex phenomenon, which, therefore, will be discussed, in the following section, alongside with related to it, issues.

4.2. Anxiety
4.2.1. The concepts, types, mechanism, and consequences
All of us, might have, experienced anxiety, which is a natural response mechanism to a perceived, or real, threat, or danger. According to Osa-edoh & Okonta (2006), anxiety is a diffuse, vague, and highly unpleasant feeling of fear and apprehension. McMahon (1976) viewed anxiety as a generalized feeling of uneasiness, usually accompanied by physiological upset.

Anxiety can be classified into three types: (1) Reality anxiety, arising from dangers or threats, in the external world; (2) Neurotic anxiety, caused by impulses, threatening to break through ego’s control, resulting in behavior that will be punished, in some way; and (3) Moral anxiety arising from a real or contemplated action, in conflict with individual’s super ego or moral values, and arousing feelings of guilt (Coleman, 1976).

According to Nolen-Hoeksema (2004), four types of symptoms, that make up anxiety, are: (1) physiological, or somatic symptoms, including muscle tension, heart palpitations, stomach pain, and the need to urinate; (2) behavioral, causing avoiding situations, because of fear; (3) emotional, primarily a sense of fearfulness and watchfulness; and (4) cognitive, including unrealistic worries, that something bad is happening, or is about to happen.

The first two symptoms, make up what is known as, the fight or flight response (also called the emergency reaction). Humans are designed, in such a way, that one can fight off or flee, from threats, to safety, facing perceived, or real danger. One’s heart rate, blood pressure, and breathing rate, dramatically increase, while muscles become tense. At the same time, certain unessential activities, such as digestion, slow down;
saliva and mucus dry-up, thereby increasing the-size of air-passages, to-lungs, this-is why one gets a-dry-mouth, when anxious. The body’s natural-painkillers, endorphins, are also-secreted, and surface-blood-vessels constrict, to-reduce bleeding, in-case of injury (Nolen-Hoekscma, 2004).

These-physiological-changes begin in the-brain, when one faced with danger, consequently leading to process of activating the-neuro-chemical and neuro-anatomical-circuitry of fear (Yehuda, 1999). Two neuro-endocrine-systems are activated: the-autonomic-nervous (especially the-sympathetic-division) and the-adrenal-cortical system. The sympathetic-system acts-directly on-smooth-muscles and internal-organs, to-produce some of the-body-changes, for-example, increased heart-rate, and elevated-blood-pressure. The-sympathetic-system also-stimulates the-release of number of hormones, including epinephrine (adrenaline) and more-epinephrine, which perpetuate a-state of physiological-arousal (Nolen-Hook-Sema, 2004).

On-the-other-hand, the adrenal-cortical-system releasing corticotrophin-release-factor, which signals the-pituitary gland, to-secrete Adreanocorticotropic hormone (ACT II), the-bodies major-stress-hormone. ACT II, in-turn, stimulates the outer-layer of the-adrenal-glands (the-adrenal-cortex), resulting in-the release of a-group of hormones, the-major one being cortisol. The-amount of cortisol, in-blood or urine-samples, are often, used, as a-measure, of stress. ACT II, also-signals the-adrenal-glands, to-release about 30 other-hormones, each of which plays a-role, in-the-body’s adjustment, to-emergency-situations. Eventually, the-hormones signal the-hippocampus, a-part of the-brain, that help-regulate-emotion, to-turn-off this-physiological-cascade, when the-threatening-stimulus has passed (Nolen-Hoekscma, 2004).

At-moderate-levels, anxiety is normal, and, even, expected. It-often-provides the-motivation, needed, to-give an outstanding-performance, in all-situations. High-levels of anxiety, however, are distressing, and interfere with effective-functioning (Osinowo & Imhonde, 2004), leading, at some-instances, to anxiety disorders, where the-frequency and intensity of anxiety-responses, are out of proportion, to the-situation, that trigger them (Passer & Smith, 2001). People with-anxiety-disorders, always think of catastrophes, and they-do magnify-them, into-reality. They anticipate that the-worst will-happen, and they-feel powerless, to-cope effectively (Clark, 1988; Watson et al., 1985).

Generalized-Anxiety-disorders (GADs), have-been associated with abnormal-levels of certain-neuro transmitters, in-the-brain. Neuro-transmitters are special-chemical-messengers, which help move information, from one-nerve-cell to the-next-nerve-cell. If the-neuro-transmitters are out of balance, messages cannot get through-the-brain, properly. This-can alter the-way the-brain reacts, in certain-situations, leading to-every-more-anxiety. Victims of extreme-anxiety are not able to-concentrate, think of solution, or adaptation, to the-present-problem (Busari & Uwakwe, 2001; Moline & Borkivec, 1994).

4.2.2. Test-anxiety and self-regulating relaxation-techniques

Students are motivated to-do-well, in-examinations, for several-reasons, such-as: (1) to-master the-subjects (mastery goal orientation); (2) to-perform-well and get good-grades (performance goal orientation); or (3) to-rank-well, among peers, and to-impress-others (social goal orientation). Motivation is an-important psychological-factor, which directly-influences students’ achievement (Dowson & McInerney, 2003). For-example, Dilworth (1991), points-out on reward or promise of rewards, from-school, award of prizes, praise and encouragement, as some of the-motivations-to-do-well, at-exams.

According to Seligman et al. (2001), test anxiety is the-uneasiness, apprehension, or nervousness, felt, by students, who have a-fear of failing an-examination. Students suffering from test-anxiety may experience any of the-following: the-association of grades with personal-work; embarrassment by a-teacher, taking a-class, which is beyond their-ability; fear of alienation, from parents or friends; time-pressures, or feeling-a-loss of control. Emotional, cognitive, behavioral, and physical-components, can-all be-present in-text-anxiety. Sweating, dizziness, headache, racing-heartbeats, nausea, fidgeting, and drumming on-a-desk, are all common.

It is absolutely-normal, for students, to-feel a-little-nervous, and stressed, before a-test, however, the-nervousness can-be so-strong, that it interferes with their-concentration, and consequently, performance (Bowen & D’Arcy, 2003). According to Olatoye & Afuwape (2003), and Hurlock (1972), test-anxiety is the-psychological-state of mind, of a-candidate, about a-test, as-expressed-by-the-level of worry, fear, uncertainty, concern and helplessness, expressed before, during, or, even, after a-test. Sgoutas-Emch et al. (2007) reported that the-level of perceived-preparedness, self-efficacy, previous-exposure, to-the-course materials, and test-anxiety, significantly predicted students’ achievement in a-science-course. In-addition, Thomas & Gadboids (2007) reported that test-anxiety was a-significant-predictor, of mid-term-examination grades.

Test-anxiety can-manifest in: (1) physical-indicators (perspiration; sweaty-palms; feeling too-hot or cold; headaches; upset-stomach; nausea; rapid heart-beat; shallow or irregular-breathing; dizziness; and muscle-tightness); (2) emotional-indicators (feeling guilty, angry, depressed, or unsure); (3) behavioral-indicators (procrastination and avoidance; excessive-study; over or under-eating; poor-nutrition; sleeping too-much, or too-little; fatigue or inability to-relax; and alcohol, or drugs-misuse); and (4) cognitive-indicators (negative or defeating self-talk; excessive-worry; difficulty with-concentration or focus; difficulty retrieving, or selecting-key-terms or concepts; difficulty organizing, integrating or expressing thoughts; going-blank on exam-questions;
and remembering the correct-answers, only after the-exam is over).

Some accelerators of exam-anxiety are: (1) insufficient exam-preparation (cramming the-night-before-the-exam; inadequate time-management; poor study-skills, or study-habits); (2) worrying about: past exam-performance; poor-present-performance; negative-consequences of poor-performance; and how others are doing, on the-exam, compared to you; (3) stimulant-use (caffeine, nicotine, alcohol, performance-enhancing-drugs, antidepressants, Amphetamines, and Cocaine, among-others); and (4) some-medical conditions (like hyperthyroidism, hypothyroidism, vitamin B12 deficiency, or hypoglycemia) can increase anxiety-levels, if left untreated.

An-optimal-level of arousal is necessary, to-best complete a-task, such as an-examination; however, when the anxiety, or level of arousal, exceeds that optimum, it results in dramatic-decline in-performance. Therefore, lecturers should help-students, to-deal with test-anxiety, by mastering self-regulation relaxation-techniques.

The most-widely-discussed anxiety-self-regulation-techniques include: progressive-muscle-relaxation; EMG biofeedback-training; finger-temperature biofeedback-training, and autogenic-training (Lehrer et al., 1994). In addition, more-simpler-techniques, such-as: controlled-breathing-strategies; and visualization strategies, e.g., five-finger relaxation-techniques (Yoga), can be trained, and routinely-performed.

Beside, there are both; short-term and long-term relaxation-techniques, which help control emotional (somatic) and worry (cognitive) test-anxiety. Selected-examples of the relaxation-techniques are: (1) the-tensing and differential-relaxation-method; (2) the-palming-method; and (3) deep-breathing.

For example, the cue-controlled relaxation-response technique is the best long-term relaxation technique. It is presented on side two of the audiocassette ‘How To Reduce Test Anxiety’ (Nolting, 1986). Cue-controlled relaxation means one can induce one’s own relaxation, based on repeating certain cue words, to oneself. In essence, one is taught to relax and then, silently-repeat cue-words, such as ‘I am relaxed’. After enough-practice one can relax, during tests.

On the other hand, negative self-talk (cognitive anxiety) is defined as the negative-statements one tells oneself, before, and during-tests. Negative self-talk causes students to lose-confidence, and, even, to give-up on tests. Students need to change their negative self-talk to positive self-talk, without making unrealistically ambitious statements. Some students, however, might have difficulty stopping their negative self-talk; these students need to use a ‘thought-stopping-technique’ to overcome their worry, and become relaxed. To stop one’s negative thoughts, in the-classroom, or during a test, one should silently-shout to oneself ‘Stop’ or ‘Stop thinking about that’. After one’s silent shout, one need either to relax, or repeat one of positive self-talk statements. One may have to shout, to oneself, several-times, during a test, or while doing homework, to control negative self-talk. After every shout, one should use a different relaxation-technique, or positive self-talk statement.

From the author’s personal experiences, relaxation-techniques do really work, because they interrupt the worry-response, before it can cause high uncontrollable anxiety, or negative emotions. Test anxiety – worrying about the outcome of the exam, and experiencing negative emotions, during the exam – is associated with poor performance, on exams (Tyrone, 1980). Therefore, students, with high worry-anxiety, should practice these technique, and choose the best one(s), suited, for them. Once these procedures are learned, the relaxation body response will take the place of an anxiety response.

5. Conclusion and Recommendations.

This paper describes an experiment, which investigated the effects of preparing and using ‘help-sheets’ on students’ attitudes and test-performance. The study revealed overall positive attitudes, by the students, towards ‘help-sheets’ and vast diversity, in the quality, and composition, of student created ‘help-sheets’. The findings of this study also indicate, that the preparation and use of student created ‘help-sheets’ have no impact on student performance. Nevertheless, the findings also showed, that students feel less anxious, with the use of ‘help-sheets’. Knowing the negative impact that anxiety might have on student performance, any potential reduction in test anxiety, alone, may be a valid reason, to supplement the traditional ‘closed-book’ exams, which is currently, the only mode, used in the examinations, at the school, with the use of ‘help-sheets’.

In addition, during this experiment, no attempts, by students, to cheat, were observed; this fact can be considered, in the context of ‘help-sheets’ being a contributing factor to reduction, of temptations, to cheat; which, in itself, is beneficial, in promoting ethical learning experiences. The author, therefore, recommends use of ‘help-sheets’ in examinations, on the grounds that it potentially reduces test anxiety, and cheating, at examinations. The results of the experiment can also help engineering lecturers decide, for themselves, whether to allow their students to use ‘help-sheets’. Moreover, lecturers should help students, to deal with test anxiety, by mastering self-regulation relaxation techniques.

Regarding further research: The author’s evaluation, based on grade data, therefore, it is necessary to determine, whether or not, other variables, such as motivation to succeed in the course, or academic level of study (undergraduate, Master’s and Doctorate), might have an impact on the results. The future studies would...
also-benefit, from wider-analysis, in: (1) other-engineering-courses; (2) other-knowledge-domains; and also (3) different-levels of study (starting from 1st year thru 5th). In-this-study, the-reduction of test-anxiety was self-reported, by the-students, hence, an-investigation of the-relationship between test anxiety (measured before a-test) and the-test-performance should-be conducted.

6. Acknowledgment.
The-author wishes to-thank the-5th year students of MIT, SOE, MU, for their-openness to new-a-approach, and their-participation, in-this-experiment.

References.
Electrical and Electronics Engineers.

Sanborn, M.; Purchase, K. and Brock, B. (2012). Kicking out the Crutch: The Impact of Formula Sheets on Student Performance and Learning. Paper was completed and submitted in partial fulfilment of the Master Teacher Program, a 2-year faculty professional development program conducted by the Center for Faculty Excellence, United States Military Academy, West Point, NY, 2012.

