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Abstract

This article studies the extend of change in lattagses, relating to students, which were caledlasing DINA
and Generalized-DINA(G-DINA) Models under differedistributions and sub-sample sizes which were
calculated using DINA and Generalized-DINA(G-DINAJodels. Main focus of this study is the results of
practical application rather than statistical stnoe of Cognitive Diagnostic Models (CDM). The dttite the
individuals master that take the test in CDM ar¢edeined categorically. For this reason, both theff Q
matrix with data and the effect of sample sizess@ched in modelling the students’ category. énctiise of low
model data fit and inadequate sample size, theniysdof this research will be a guide in how tleidions
change about which attribute a student master orTothis end, a mathematic test consisted of L&iphe
choice questions taken by a group of 1000 examieseemployed. Analyses were carried out using fereifit
Q-Matrices, for which relations between test iteand attributes were determined by experts, andtlatasses
determined by both DINA and G-DINA models were camga. Comparisons were made with a view to
accuracy of values between classes associatedewdminees in different sample sizes drawn fromstrme
population and values obtained for population. THasboth models, whether they lead to independesilts
from the samples was tested for sample sizes 0630100, 200 and 400 and effects of Q matrix- didtan
analysis results were determined. Results of aisabtsowed Q-matrix — data fit had significant impaa
decisions about students for both models.

Keywords: Cognitive Diagnostic Models, DINA model, G-DINA meld Q Matrix

1. Introduction

Cognitive Diagnostic Models (CDM) have received reinereasing attention after “No Child Left Behindtt
of 2001 in USA. Main objective of this approachtasprovide cognitive feedback about students talestts,
teachers, and families (Embretson, 1991, 1998).

CDM is based mainly on latent class analysis. Liatd#ss analysis is a statistical method deterrgirsnb-
groups using multivariable categorical data antizing interrelations (Cheng 2010). CDM was develdpo
measure specific knowledge structures or skills shelent mastered, and provides information abbeir t
cognitive strengths and weakness (Leighton and,Gi@07).

CDM is designed to discriminate students accordimgatent classes based on two parameter attributes
Attributes, represented by latent variables cautitigy a vector determining expertise, define st underlying
diagnostics for students. Latent variables denatedattributes” here, may be defined as traits, petencies,
task, sub-task, cognitive process or skill (TatsydiR95a).

In a test developed by CDM, instead of total samresubscale scores, which skills, each individaélrg the
test, mastered and which non-mastered were analyzetiis regard, results of CDM analysis will nmly
allow assessment process but also help in detexghgducation needs for each student (de la TodR9&).

CDM is more convenient for cases the test measume than one interrelated structures. Each iteteshis
designed to measure those structures or cognitimgonents. Each item in CDM may measure more tingn o
aspect to be assessed by the test (Rupp & Tengidd). CDM determines student's performance on each
cognitive item instead of focusing on studentsliskevels in latent scale. Probabilities thus atd may be
transformed so as to profile the skills student tevesl. In CDM, items are matched with attributesbto
measured by Q-Matrix (K. Tatsuoka, 1985).

In Q matrix, each column is a vector of attributeskill and each row represents an item. Attribugess traits,
procedures, method of discovery, strategies, s&iils other cognitive components determined by éspdrthe
field (Embretson, 1984). Q matrix will show whethary attributes exist for item by binary codingnggil-0
(Tatsuoka, 1990). This coding approach initiallysveenoted as “weighting” by Fisher (1973) and ffilaite k
exists for item i, it was coded as 1 and if doetsaxist it takes 0.
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Q matrix with 3 attributes and 5 items are shovirable 1.1. As it was shown in Q matrix it requithe first
attribute to correctly answer the 1st item. Forgbeond item, students must have attributes 1 and 2

Table 1.
Q Matrix Example
items o2 o3
1 1 0 0
2 1 1 0
3 1 1 1
4 0 1 1
5 0 0 1

Q matrix above indicates, attribute is required for correct answering ofrité and botha; and a, attributes
are required for correct answering of item 2¥ I&ent classes are defined for k attributes in &rix As a
result of analysis based on Q matrix example, nedpots shall be placed ifi tent classes.

Latent classes are determined as (000), (100)),0a01), (110), (101), (011) and (111). Latentssks exactly
represent which attributes student mastered andhatn-mastered. A student classified under (000atent
classes defined in the above example possessesiribotas. Similarly under (100) latent class ostydents
having attributen; were assigned whereas under (011) class studdmtshawe nau,; attributes but possess
andag were classified.

This explains diagnostic function of CDM. In thigspect, test analyzed with CDM will not only allow
assessment process but also help determine eatdmtgueducational needs (Cheng & Chang, 2007; héreb
2010). De la Torre and Douglas (2004) maintained $pecification of Q matrix directly determineggiction

of students’ skills profile.

Several different CDMs were developed in recentgeReviews by Junker (1999), diBello, Roussos Siudit
(2007), Roussos et al. (2007), and Rupp et al. §2pbovide exhaustive reviews of different CDMs dhdir
statistical qualities. non-compensatory Determinisinputs noisy and-gate (DINA) and Noisy-input
deterministic-and-gate (NIDA) models (e.g. Macreathal., 1977, Haertel, 1989; Junker & Sijtsma,20fk la
Torre, 2009b)are mostly used. Deterministic inmasy or-gate (DINO) and Noisy-input deterministicgate
(NIDO) models (e.g. Maris, 1999). Hartz (2002) deped the Fusion model which is also known as redue-
parametrized unified model (RUM) (Roussos et &107).

Some frameworks such as, the flexible family ofeyahdiagnostic models (GDM, van Davier, 2005, 90€e
generalized DINA Model (de la Torre, 2008), as veallthe log-linear framework for CDMs (Henson, Témp
& Willse, 2009).were proposed for CDMs. Additionalsome extensions of CDMs for multiple-choice item
were proposed in the literature of CDM (e.g. Bolt=&, 2004 for the fusion model; de la Torre, 206@bthe
DINA model).

1.1. DINA model

DINA model was developed by Haertel (1989). DINAd®ab(deterministic inputs, noisy “and” gate) is aofe
models developed for cognitive diagnostics (JunkeBijtsma, 2001). This model is a latent class gsial
similar to binary skills model. DINA model is cldgerelated to Item Response Theory (IRT) (Haeri€ig9).
Nevertheless DINA model, differing from IRT modetfyes not assume continuous distribution of diffeskill
sizes of students. Instead, students are dichotsijnassigned to small number of latent classes.ADifbdel
classifies respondents into two dimensional classe®ach attributes. First class is “Non-Mastemygmely
class of respondents lacking specified trait, dmdther is "Mastery", namely class of respondpotsessing
the specified trait. As is understood, DINA modekd not define attributes that students possesseadinuous
variables but as a categorical variable.

DINA model can be simply defined as follows: Lef Xenotes response of respondetatitemj, andi= 1,...,!
and j= 1,..., J. Denote respondent’s binary attributesoreasa;={ oy }, for k= 1,...,K when respondent’s"k
entry is 1 it will denote 'R attribute possessed and when it is 0, not posddse la Torre 2009a).

Item Response function for DINA model is given by:

P(aj) = { .

1-r75; otherwise
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Where 1K is a vector d{; g is the probability that individuals who lack ats¢@ne of the prescribed attributes
for item j will guess correctly, and 1-s the probability that individuals who have &létrequired attributed will
not slip and get the item wrong (de la Torre 2011).

Main difference of DINA model from other CDMs, itassifying a respondent under Non-Mastery class &ve
respondent does not posses only one attributesrjired for an item. In other words, only the respemt who
mastered all attributes to answer correctly hasecbranswering probability near to 1. Function ofrect
answering probability of an individual who possabsttributes is given by:

PlYy =1]n,5.9]=(1-5)"g "

Where P is the probability of a student who possdisprescribed attributes to answer correqfilyis latent
answer, determined hy and attribute for item i and a vector of gj. Rofatem j in Q matrix can be shown as:

K
| | qdjk
n.= <,
ij k=1 ik

Main advantage of DINA model over other CDMs, igtbapplication and interpretation processes inwblve
lower level of complexity. Yet, De la Torre and pas (2004, 2008) showed DINA model achieved higher
model-data fit and facilitated easy adaptationifi@ient strategies with some modifications. Besijdie la Torre
maintained that there is a high level similarityMaeen DINA model results and new and more complBME
results (de la Torre, 2008b, 2009b; de la Torrei§, 2008;de la Torre, 201)3 As well, the studies on dina
model applications have proceeded for Biferential item functioning in DINA (Feming li, @08; Hou 2013)
and natural network with CDM (Lamb, Annetta, Vaile& Sadler, 2014Shu, Henson, & Willse, 2013) etc. All
those accounts pinpoint outstanding importance IdBfADmodel among all other CDMs and constituted main
starting point in selecting DINA model in this sjud

1.2.G- DINA model

G-DINA model is a generalization of the DINA modsith more relaxed assumptions. As many cognitive
diagnostic models, this model is also basedhdn Q matrix. G-DINA model discriminates latent classeto

2% latent groups. Each latent group is reduced tdilh \&ector represented hvy;‘j. Each latent group has
probability of correct answering represented’((yc}"j) (de la Torre, 2011).

The original formulation of the G-DINA model basedP(oc}‘j)can be decomposed into the sum of the effects
due the presence of specific attributes and thegractions. Probability formula for G-DINA modslgiven by:

K;f K;f Kj—-1 K;f
* —
P(alj) = 6]0 + Z Sjkalk + Z Z 6jkk' Ak +6]12K]* | | A,
k=1 k=k+1 k=1 k=1

8jo = is the intercept for item j

ik = is the main effect due tk

8jkk, = is the interaction effect due d# andok
6]-12."_,(; = is the interaction effect due m,...,.aK]f

Estimation code of G-DINA is an implementation d¥lElgorithm. In analysis procedure, fid%(ocfj) values

with standard errors are calculated, then postgmiobabilities of skills are determined and latelasses of
students and goodness of fit statistics for itehtast are calculated according to those probasilit
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Above Figure 1 shows distribution of success praligls against levels of attributes mastered foNB and G-
DINA. For three attributes probability of correatsaver is maximum only for students who masteredhaéie
attributes and for all other cases probability ism@nimum level. In G-DINA model contribution of ela
attributes to probability of correct answering ifetent and in case student mastered one or mibribaes
probability of correct answering depends on weighthe attribute. In G-DINA model probabilities felach
P(«;j;) case which respondent may have are calculated.

mo3

m62

msl
w60

000 100 010 001 110 101 o011 111

Figure2

Figure 2 below show8 values for each items determined by G-DINA model.

As shown in graphics, contributions of attributegptobability that a student gets the item coregetnot equal.
As an example, in columns 110 and 101, probakhigy students get item correct if they have fingi &ttributes
is higher than probability that students get tlemitcorrect if they have attributes first and thilel{a Torre,
2011).

Purpose of this study is to determine impact ofngles in Q matrix, which determines interrelationsoag
measured attributes and items in CDM, on skillsmesgtion power of models. Recent studies on CDMsehav
focused on new method searches to increase lewelpoésentation of items in the test by Q matrie@a2rlo,
2011; Close et al., 2012; de la Torre, 2008a; dotee et al. 2010; Rupp & Templin, 2008hen, de la Torre, &
Zhang, 2013). This study focuses on finding convigevidences of conformity between Q matrix arel tést.

In addition, effects of sample size on skill estima of models and on changes brought about by
misspecification of Q matrix were investigated.tfis end, this paper illustrates, using real datactical results
about Q matrix which is keystone for CDM.
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2.Method

This paper focuses on practical issues, usingdata, on model misspecification of Q matrix andestigates
solutions to remedy Q-matrix.

2.1.Data

Data for this study is taken from yearly OKS exaation (elementary school student selection and
placement examination) taken by primary school, & grade students. OKS is an achievement teststomgsof
Mathematics, Science, Turkish Language, Socialr8ei® and English Language sub-tests. Data oftilnily sire
responses of randomly selected 1000 examinees athgrgde 8 Mathematic sub-test in OKS 2008 exananat
Mathematical test used in the study is in the fofrh8 multiple choice items. Sample size of 100arsixees is
preferred to ease comparison of latent classe&Kaahinees are classified.

2.2.Procedure

In this study, 5 different Q matrices with diffetanodel data fits were employed to compare latgses under
which students were classified for different sangiles. To implement analysis first Q matricesdetermined.
As real data were used in this study help of fextdert was obtained for determination of Q Matmxtpining to
Mathematics sub-test items of OKS examination.dFelperts first determined attributes measuredhéntést.
Field experts divided the test into “numbera})( “geometry” @), “probability- statistics” ¢s) and “algebra”
(0y) learning fields. In the next step, experts deteedh requisite attributes to answer an item colye®
matrices determined by field expert is given inl&ésh

Table 2.
5 Q matrices specified by expert opinion
Q Q Qs Qs Qs
a1 X2 X3 (4 a1 X2 X3 (4 A1 X2 X3 4 A1 X2 X3 4 a1 X2 X3 (4
0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1
0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1
0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0

Model data fit indices for five different Q matricealculated as a result of analysis using DINA @RBINA
models are given by Table 3.

Table 3.
Test-Level Fit Statistics for Q matrices determibgdExpert Opinion
DINA G-DINA
-2LL AIC BIC -2LL AIC BIC

Q1 18136,0493 18238,0493 18488,3448 17753,7869 517889 18209,6987
Q2 18597,7407 18699,7407 18950,0362 18238,5150 (18830 18694,4268
Q3 18553,8703 18655,8703 18906,1659 18542,1316 018856 18915,1504
Q4 20522,5875 20624,5875 20874,8830 19635,9509 319569 20078,0472
Q5 21011,5629 21113,5629 21363,8584 19784,7675 819945 20351,2034

224



Journal of Education and Practice www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) JLLETE
\ol.5, No.6, 2014 IIS E

Q matrices are in descending order from highdoflower fit in Table 3. Comparing DINA and G-DIN#Aodel
results it is observed that fit statistics had Emorders for DINA and G-DINA models. Moreover GNA
model fit statistics are lower comparing to DINA deb. Lower values in fit statistics indicate bettesdel fit.

To investigate effects of model-data misfit on tdtelasses to which students are classified, sanipldifferent
sizes were drawn from data. Sub-samples were geddra30, 50, 100, 200 and 400 examinee groupioraly
selecting from the data of 1000 examinees. Tot@50$ub-samples were used in analyses drawing plearfor
each of other group sizes. For example, 5 samifl88 examinees were drawn (30a, 30b, 30c, 30d, e)-
samples were analyzed separately by using Q1, @2Q@ and Q5 matrices for DINA and G-DINA models.

Means and standard deviations pertaining to sgeciroups in different sample sizes are given inleld. At
the first row of Table descriptive statistics foetdata of 1000 examinees were provided.

Table 4.
Descriptive statistics for sub-samples drawn féfedent sample sizes

N Mean Std. Dev. Skewness Kurtosis
population 1000 6,92 3,60 0,82 0,57
a 6,80 3,40 0,98 0,87
b 6,71 3,60 0,66 1,31
30 c 6,47 2,89 0,70 -0,06
d 6,77 3,79 0,64 0,23
e 7,03 4,03 0,85 0,60
a 6,64 3,49 0,46 -0,29
b 6,94 4,00 0,60 -0,16
50 c 6,44 3,42 0,35 -0,11
d 6,84 3,59 0,86 0,47
e 7,24 3,87 0,63 0,24
a 6,97 3,59 0,68 0,54
b 6,78 3,75 0,75 0,23
Sample 100 c 7,32 3,49 0,69 0,48
d 7,23 3,61 0,83 0,51
e 6,57 3,41 0,97 1,02
a 6,96 3,45 0,72 0,48
b 6,90 3,75 0,86 0,49
200 c 6,66 3,40 1,05 1,19
d 6,92 3,63 0,92 0,66
e 6,81 3,72 0,77 0,44
a 6,72 3,57 0,97 0,94
b 6,85 3,60 0,89 0,65
400 c 6,89 3,64 0,79 0,58
d 6,76 3,47 0,83 0,73
e 6,99 3,54 0,85 0,65

As shown in Table 4, means and standard deviationsub-samples take on values close to population
distribution of 1000 examinees. Means varied inrdmgge of 6,44 to 7,32 in the sub-samples whergasiard
deviations varied between 2,89 and 4,00. This atdi sub-sample distributions are drawn from thaesa
population.

Analysis results of latent classes pertaining talshts determined by each sub-sample were compétked
analysis results of latent classes of studentgm@ted by population. For example, Students’ latdasses are
determined by analysis performed using @Qatrix for the first sample of 30 students. Thateht classes
pertaining to the same students usingn@atrix in the distribution of 1000 examinees determined. In this
case, two latent classes for each student in thgpgof 30 examinees were obtained using DINA méate),
matrix. The same procedure was repeated for fifferdnt Q matrices and for each sub-sample set bsitig
DINA and G-DINA models.

In this study, for sample selection and descripsitagistics SPSS software package was used wheséamtion
of DINA and G-DINA model parameters were made usiades running under OX EDIT software.
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3.Results

Firstly this study investigated extends of impaaftglifferent Q matrices on decisions made aboudesits. To
this end, changes in 5 different Q matrices duBIféA and G-DINA classifications pertaining to daid1000
examinees were calculated. To this end, clasdificadiccuracy of results of highest fit; @atrix with other
matrices were determined. Result of analysis isryin Table 5.

Table 5.
Q matrices interrelations in DINA and G-DINA models

Q2 Q3 Q4 Q5

Latent Class 16 16 14 8
DINA ificati

Classification 854 846 544 134

accuracy

Latent Class 16 16 16 13
G-DINA Classification

90,9 87 812 136
accuracy

Number of latent classes, DINA and G-DINA modelsigised students to, are shown in latent classinow
Table 5. As there are four attributes in the testiioth models, there are 24 = 16 latent classe®xamination
of Table reveals that in DINA model,@nd Q matrices placed students in 16 classes but f@an@ @ matrices
the same students are assigned to less numbens¥esl For G-DINA model less variability was obsdrv
Determination of probabilities for less number affeht classes can be interpreted as diminishedtiggpson
discriminating individual differences. Classifiaati accuracy rows of Table show the concordance dmiw
classes assigned by models using Q1 matrix and othg&rices. As it is readily seen changes in masricave
significant impacts on decisions about students.

3.1.Findings regarding Different Sample sizes:

Correlations between calculated fit statistics guaig to results of all analyses implemented by #tudy and
classification accuracy percentages are investigftesults were given in Table 6.

Table 6.
Fit statistics and classification accuracy perogateorrelation.
N Fitindex =~ DINA  G-DINA
-2LL -,855 -427
30 AIC -,855" -,657
BIC -,855 716
-2LL -,869" -522"
50 AIC -,869" -,566
BIC -,869 -,598
-2LL -,667 779
100 AIC -,667 -819
BIC -,667 777
-2LL -,659" 744
200 AIC -,659" -, 746
BIC -,659 -,760"
-2LL -, 755 -, 756
400 AIC -, 755 7707
BIC -, 755 779

For five different Q matrices and five differentngales drawn randomly for each sample size, indaidu
analyses were implemented. For each analysis betwde¢a and test, 2 log likelihood (-2LL), Akaike
Information Criterion (AIC) and Bayesian Informaticriterion (BIC) were calculated. There is higlgagve
relation between fit statistics and classificatamturacy percentage as shown in Table 6. Thisatelcthat as
model-data fit deteriorates, classifications accydecreases.
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Table 7 shows results of DINA model analyses féfledént sample sizes.
Table 7.

Classification accuracy percentage of latent cladséermined by DINA model for different Q matricasl
sample sizes.

DINA
30
N M of 50 100 200 400 Toplam

%*
Q: 82,0 86,8 914 94,1 94,5 89,76
Q. 75,3 86,4 85,6 90,6 92,5 86,08
Qs 74,0 81,6 83,6 89,9 91,5 84,12
Q4 31,3 52,4 67,4 86,6 86,5 64,84
Qs 29,3 25,6 55,0 60,7 65,5 47,22

*  Average of 5 samples for each sample size
5 Different Q matrices used in analyses are dena$e@, @, Q;, Q; and Q. Symbols 30, 50, 100, 200 and 400
denote classification accuracy averages of fiveeddht groups determined for each sample size.ekample
analysis with @ in sample sizes of 30 examinees averagely resiuite2?% accuracy in 5 samples for the
decisions made about the same students. In otheispihe same 30 students are placed, in a ra&2%f in the

same classes as DINA model evaluated them bothengtoup of 1000 students and in sample size of 30
students.

As Table 7 indicates, differences among classificat get higher as Q matrix fit for each samplee siz
deteriorates. Although classification accuracysiae sample size increases, whenmmatrix, which gave lowest
data fit, was used, differences between classidinatincreased to significant levels.

Table 8.

Classification accuracy percentage of latent cladstermined by G- DINA model for different Q me&s and
sample sizes.

G-DINA
30
N M of 50 100 200 400 Toplam

%*
Q 81,3 85,6 91,8 92,9 96,6 89,6
Q2 74,0 82,4 88,8 90,5 94,3 86,0
Qs 79,3 79,2 83,8 87,0 90,0 83,9
Q4 78,0 76,8 82,8 84,7 92,0 82,9
Qs 26,0 68,4 52,4 53,7 90,3 58,2

*  Average of 5 samples for each sample size
Tables 8 shows classification accuracy of decisimasle about students between sub-groups and da0of
students by results of analyses for G-DINA modehva different Q matrices. An examination of Tal#eeals
that G-DINA model gave highest classification aemyr with Q matrix. On the other hand, poorest
classifications accuracy in G-DINA model, was ob&l using @ matrix. Besides, for G-DINA
model ,accuracy percentage increases as n becarges. |

3.2.DINA and G-DINA models comparison results:

Following results are obtained from comparison lagsification accuracy rates of models for differsample
sizes.
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Figure 3 illustrates classification accuracy fardgints determined by DINA and G-DINA models forivas
sample sizes. First graphics in Figure 1, is basedesults of analysis for 5 different Q matricessng both
models for n=30. First points in the graphics arerage of classification accuracy percentages ioédaby Q
matrix pertaining to 5 different samples of 30 ekams. As readily observed in graphics, classificat
accuracy by DINA model significantly deteriorateghnQ, matrix. For the same matrix, G-DINA models still
give high level classifications accuracy. For bothdels it can be said that there is discrepanageirisions
made about students using Qatrix. For n=50, DINA and G-DINA models achieveohsistent decisions about
students using Q @ and Q matrices whereas for DINA model calculations madh Q, and Q@ matrices
classification accuracy significantly deterioratédthough higher accuracy for all matrices was obsé in G-
DINA model, misclassification increases as modéhdi deteriorates.

Considering results of sample size n=100, for DIédel, significant discrepancies were observeckitisions
about students with and @ matrices. On the other hand, higher accuracy tesidre obtained for first four
matrices with G-DINA model but it deteriorates sfgrantly when Q was used. As for averages of sample size
n=200, both DINA and G-DINA models give similar uéts. Lastly for the sample size n=400, classifaat
accuracy deteriorated in DINA model wheg @atrix was used, yet, classification accuracyadibmatrices in
G-DINA was above 90%. All in all, it can be saidtl) matrix changes had less impact on G-DINA th&wA
model. However, the impacts of sample sizes on buttiels are similar.

4.Conclusion

Considering the findings of this study, significamipact of model-data fit on decisions about stisiém CDM
was observed. Analyses summarized in Table 5 itelitteat two students classified under “1111” classnely
determined as having all attributes using f@ the population, were assigned to “1010” claten Q matrix
was used. As matrix misfit increases, misclasdificaincreases significantly as well. Decision maegarding
any student changes as data-fit of Q matrix detes.

Deterioration in model-data fit lead to changesestimated profiles for the same students with t@es Q
matrix when different sample sizes were analyzexbuRs of analysis showed that a student who wassified
as having all four attributes (1111) in the grodfl@00 students, was classified as having no atei (0000)
when evaluated in the sub-group of 400 students rEivealed importance of Q matrix in practical laggtions.
In DINA model results, classes determined by angligs population using Qand @ matrices were observed
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to differentiate approximately 50% in sub-samplBsis differentiation was also observed in large ks of
400 students. In other words, this rate indicates model decisions were changed for half of tlwugr It can
be said that when a Q matrix with lower data-fiswsed, models cannot give sample- independeritsesu

When relations between DINA and G-DINA models avasidered, generally classifications by G-DINA miode
will be affected less by changes in Q matrix. Tds conforms to the fact that fit-indices of G-IANs lower
than DINA model's as shown in this study. At thisge, it can be assumed as an indication thatatatatems
studied here better fits G-DINA model.

Determination of Q matrix- item relations by exdlady expert view may lead to thoughts that decisionade
by CDM models on students are open to disputehigdtudy, fit statistics showing data-fit of Q mpatwas
found to have high correlation with population asdab-sample classification intersections. In thissse
statistical evidences are needed to determine @xrstecification. Researchers and practitionexmukhtake
the studies on this issue (DeCarlo, 2011, 2012s€kt al. , 2012; de la Torre, 2008a; de la Torra.a2010;
Rupp & Templin, 2008) into consideration during staction of their models to ensure reliability thieir
outcomes. Those studies regarding structure of nembody milestones for “diagnostic analysis”.

Besides, the researchers’ obtaining new findingsiathe model fit and sample size with the resessdiased
on the real application data in the field of CDMlats appropriate usage in the educational arethsnerease
the usage of these approaches. Meanwhile, the afffoaches’ comparison that developed in CDM hell
useful for practitioners.
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